ABSTRACT
We evaluated the daily changes in immunological and hematological factors in tilapia (Oreochromis niloticus) after an immunization period with a subsequent challenge. Experiments were divided into two phases: Phase 1 (immunization): 144 fish were distributed into two groups with 72 fish in six tanks. One group (T1) was immunized, comprising six vaccination time points (ZT schedule = ZT2 h, ZT6 h, ZT10 h, ZT14 h, ZT18 h, ZT22 h). The same schedule was applied to the other group, but with saline solution (non-vaccinated: T2). Both groups remained in the laboratory for 30 days (considered the immunization period). Phase 2 (challenge): on day 30, both vaccinated and non-vaccinated groups were challenged with Streptococcus agalactiae (2.0 × 107 CFU mL-1) following the same ZT schedule to stimulate the immune response without leading to widespread infection and mortality. On day 45, blood and head kidney samples were collected during the same ZT schedule. The variations in time of the following parameters within each group were evaluated: hematology, peroxidase activity, IgM, tnf-α3, tgf-ß1, il-1ß and il-12 gene expression. No significant mortality was observed for the groups or the ZT schedule (p > 0.05). Daily rhythms with diurnal acrophases were found in T2 for il12, tnf-α3 and tgf-ß1 expression gene, while the acrophases of the peroxidase level, hematocrit and thrombocytes were at nighttime (p < 0.05). In contrast, most of the parameters in the vaccinated tilapia showed no daily rhythms (p > 0.05), except IgM. For all the parameters, the interaction effect between time and treatment (vaccinated and non-vaccinated groups) depended on ZT. Our results reveal that the humoral and non-specific immune system displayed a circadian rhythm based on the light-dark cycle, which could be affected by the vaccination procedure in tilapia.
Subject(s)
Behavior, Animal/physiology , Circadian Rhythm/physiology , Photoperiod , Vaccination/adverse effects , Animals , Cichlids/physiology , Fish Diseases/physiopathology , Streptococcus agalactiae , Vaccination/methodsABSTRACT
The role of light and feeding cycles in synchronizing self-feeding and locomotor activity rhythms was studied in white shrimps using a new self-feeding system activated by photocell trigger. In experiment 1, shrimps maintained under a 12:12h light/dark (LD) photoperiod were allowed to self-feed using feeders connected to a photoelectric cell, while locomotor activity was recorded with a second photocell. On day 30, animals were subjected to constant darkness (DD) for 12days to check the existence of endogenous circadian rhythms. In the experiment 2, shrimps were exposed to both a 12:12h LD photoperiod and a fixed meal schedule in the middle of the dark period (MD, 01:00h). On day 20, shrimps were exposed to DD conditions and the same fixed feeding. On day 30, they were maintained under DD and fasted for 7days. The results revealed that under LD, shrimps showed a clear nocturnal feeding pattern and locomotor activity (81.9% and 67.7% of total daily food-demands and locomotor activity, respectively, at nighttime). Both feeding and locomotor rhythms were endogenously driven and persisted under DD with an average period length (τ) close to 24h (circadian) (τ=24.18±0.13 and 23.87±0.14h for locomotor and feeding, respectively). Moreover, Shrimp showed a daily food intake under LD condition (1.1±0.2gday(-1) in the night phase vs. 0.2±0.1gday(-1) in the light phase). Our findings might be relevant for some important shrimp aquaculture aspects, such as developing suitable feeding management on shrimp farms.