Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.750
Filter
1.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003037

ABSTRACT

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Subject(s)
Cadmium , Charcoal , Soil Microbiology , Soil Pollutants , Triticum , Triticum/metabolism , Triticum/microbiology , Cadmium/metabolism , Soil Pollutants/metabolism , Endophytes/physiology , Rhizosphere , Soil/chemistry , Biodegradation, Environmental , Microbiota/drug effects
2.
Braz J Microbiol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020098

ABSTRACT

Different bioproducts can be obtained by changing operative condition of biotechnological process, and this bioprocess aspect is a significant approach to be adopted on industrial scale leading to the creation of new natural aroma. Thus, this study aimed to investigate the culture conditions and optimization of the biotransformation of limonene into limonene-1,2-diol using Pestalotiopsis mangiferae LaBMicrA-505 obtained from the Brazilian Amazon. The study started with the investigation of the establishment of culture, followed by optimization of the conditions for biotransformation of R-(+)-limonene to limonene-1,2-diol, using shake flasks. The fresh biomass of P. mangiferae LaBMicrA-505 obtained in liquid media supplemented with yeast-malt extract under with 72 h (stationary phase) performed better diol productivity when compared to other biomasses. Finally, in the modeling of contour plots and surface responses of a central composite design, the use of 4 g l- 1 biomass, 2% of the substrate at 24 °C, 120 rpm, and pH of 6.0 could maximize the production of limonene-1,2-diol, accumulated up to 98.34 ± 1.53% after 96 h of reaction. This study contributed to identified operational condition for the R-(+)-limonene bioconversion scale-up. The endophytic fungus P. mangiferae LaBMicrA-505 proved to be a potent biocatalyst to biotechnologically produce limonene-1,2-diol, an aroma compounds with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures.

3.
Heliyon ; 10(12): e33453, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39015808

ABSTRACT

Saikosaponin D (SSd) is a naturally active product with strong pharmacological activity found in Bupleurum scorzonerifolium Willd. Studies have shown that endophytic fungi have great potential as sources of natural medicines. Fusarium acuminatum (CHS3), an SSd-producing endophytic fungus, was isolated from B. scorzonerifolium. To elucidate the effect of host plants on the production of SSd in CHS3, CHS3 was co-cultured with suspension cells of B. scorzonerifolium and SSd was detected using high-performance liquid chromatography (HPLC). Transcriptome sequencing (RNA-Seq) of CHS3 before and after co-culture was performed using an Illumina HiSeq 2500 platform. The results indicated that the content of SSd synthesised by CHS3 increased after co-culture with suspension cells of B. scorzonerifolium. Transcriptome analysis of CHS3 with differentially expressed genes (DEGs) showed that 1202 and 1049 genes were upregulated and downregulated, respectively, after co-culture. Thirty genes associated with SSd synthesis and 11 genes related to terpene backbone biosynthesis were annotated to the Kyoto Encyclopaedia of Genes and Genomes (KEGG). Combined with transcriptome data, it was speculated that the mevalonate (MVA) pathway is a possible pathway for SSd synthesis in CHS3, and the expression of key enzyme genes (HMGR, HMGCS, GGPS1, MVK, FDFT1, FNTB) was validated by qRT-PCR. In conclusion, the endophytic fungus CHS3 can form an interactive relationship with its host, thereby promoting SSd biosynthesis and accumulation by upregulating the expression of key enzyme genes in the biosynthesis pathway.

4.
Biomed Pharmacother ; 177: 117046, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981241

ABSTRACT

Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3ß inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3ß pathway.

5.
Article in English | MEDLINE | ID: mdl-38995769

ABSTRACT

OBJECTIVE: This study aimed to evaluate the clinical characteristics and features of conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) in differentiating between renal urothelial carcinomas (RUC) and endophytic clear cell renal cell carcinomas (EccRCC). METHODS: A total of 72 RUCs and 120 EccRCCs confirmed by pathology were assessed retrospectively. Both CUS and CEUS were performed within 4 weeks before the surgery. Logistic regression analyses were used to select statistically significant variables of clinical, CUS, and CEUS features for the differentiation of RUC and EccRCC. Sensitivity (SEN), specificity (SPE), and the area under the receiver-operating characteristic curve (AUC) were assessed for diagnostic performance. Inter- and intra-observer agreements of CUS and CEUS features were evaluated using the intra-class correlation coefficient(ICC). RESULTS: Multiple logistic regression analysis demonstrated that clinical (age >50 years old and hematuria), CUS (size <4.0 cm, hypo-echogenicity, irregular shape, hydronephrosis) and CEUS (absence of non-enhancement area, iso- /hypo-enhancement in cortical phase and absence of rim-like enhancement) features were independent factors for RUC diagnosis. When combining clinical characters with CUS and CEUS features into an integrated diagnostic criterion, the AUC reached 0.917 (95% CI 0.873-0.961), with a sensitivity of 95.8% and specificity of 87.5%. ICC ranged from 0.756 to 0.907 for inter-observer agreement and 0.791 to 0.934 for intra-observer agreement for CUS and CEUSfeatures. CONCLUSIONS: The combination of clinical features of age and hematuria with imaging features of CUS and CEUS can be useful for the differentiation between RUC and EccRCC.

6.
Microb Cell Fact ; 23(1): 196, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987741

ABSTRACT

BACKGROUND: Telomerase activators are promising agents for the healthy aging process and the treatment/prevention of short telomere-related and age-related diseases. The discovery of new telomerase activators and later optimizing their activities through chemical and biological transformations are crucial for the pharmaceutical sector. In our previous studies, several potent telomerase activators were discovered via fungal biotransformation, which in turn necessitated optimization of their production. It is practical to improve the production processes by implementing the design of experiment (DoE) strategy, leading to increased yield and productivity. In this study, we focused on optimizing biotransformation conditions utilizing Camarosporium laburnicola, a recently discovered filamentous fungus, to afford the target telomerase activators (E-CG-01, E-AG-01, and E-AG-02). RESULTS: DoE approaches were used to optimize the microbial biotransformation processes of C. laburnicola. Nine parameters were screened by Plackett-Burman Design, and three significant parameters (biotransformation time, temperature, shaking speed) were optimized using Central Composite Design. After conducting validation experiments, we were able to further enhance the production yield of target metabolites through scale-up studies in shake flasks (55.3-fold for E-AG-01, 13-fold for E-AG-02, and 1.96-fold for E-CG-01). CONCLUSION: Following a process optimization study using C. laburnicola, a significant increase was achieved in the production yields. Thus, the present study demonstrates a promising methodology to increase the production yield of potent telomerase activators. Furthermore, C. laburnicola is identified as a potential biocatalyst for further industrial utilization.


Subject(s)
Biotransformation , Telomerase , Telomerase/metabolism , Enzyme Activators/metabolism
7.
Sci Rep ; 14(1): 16004, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992288

ABSTRACT

The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.


Subject(s)
Anti-Bacterial Agents , Microalgae , Microalgae/metabolism , Anti-Bacterial Agents/pharmacology , Chlorella vulgaris/metabolism , Coculture Techniques , Lactones/metabolism , Wastewater/chemistry , Wastewater/microbiology , Heterocyclic Compounds, 3-Ring/isolation & purification , Sewage/microbiology , Water Pollutants, Chemical , Biodegradation, Environmental , Water Purification/methods
8.
J Sci Food Agric ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007367

ABSTRACT

BACKGROUND: Codonopsis pilosula var. modesta (CPVM) is a famous medicinal and edible plant of Campanulaceae. However, fresh CPVM roots (FCPVR) are prone to softening, browning and spoilage after concentrated harvesting in the main production area of Gansu Province, China in autumn, which poses great challenges to their large-scale storage and modern processing. In this study, effects of chitosan (CS), natamycin (NA) and modified atmosphere agent (MA) on the postharvest quality of FCPVR were first investigated. The roots after different treatments were stored at 4 °C and relative humidity of 75 ± 5% for 100 days. Their overall quality changes were evaluated from three perspectives: physiological quality, endophytic bacterial community and volatile organic compounds. RESULTS: The clustering heatmap and principal component analysis results indicated that CS (2 g kg-1), NA (0.5 g kg-1) and MA (5 g) had a synergistic effect on physiological quality. The roots in the CS + NA + MA group maintained better physiological state, effective components and antioxidant capacity throughout the storage process. On this basis, compared with room temperature storage, the relative abundance of the main spoilage bacterium Pseudomonas in the CS + NA + MA group roots decreased by 44% on the 100th day of storage. Furthermore, after CS + NA + MA composite treatment, the roots produced richer esters with fruit aroma during low-temperature storage. CONCLUSIONS: The CS + NA + MA composite treatment could maintain the physiological quality and flavor of FCPVR, inhibit spoilage by microbial contamination and maintain the optimal quality during low-temperature storage for up to 100 days. © 2024 Society of Chemical Industry.

9.
Indian J Microbiol ; 64(2): 618-634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011001

ABSTRACT

Natural pigments are becoming increasingly popular owing of their reliability. Microbial pigments provide an alternative to natural colours. A total of 24 fungal cultures were collected from leaf bits of Senna auriculata, with one strain (FNG1) producing an extracellular red orange pigment. Nigrospora oryzae was confirmed by using physical criteria and molecular phylogenetic study by using ITS and ß- tubulin analysis. In EtOAc, the crude red pigment was the most soluble. The TLC analysis was used to partly purify the natural pigment. The partially purified fungal pigment was used in successive bioprospecting studies. The antimicrobial activity of the partially purified sample was assessed against eight human pathogens, with Leucobacter AA7 showing the largest zone of inhibition (200-500 µg/mL). The compound's DPPH scavenging activity enhanced from 38.2 to 67.9%, with an IC50 value of 34.195 ± 2.33 µg/mL. Cancer cells were suppressed by partly pure fungal pigment, but non-cancerous HEK 293 cells were unaffected. The GC-MS analysis was used to characterize the molecule present in the partly purified pigment. In addition, the cotton textiles have the greatest staining capability for crude mycobial pigment, which dyes quickly and has a negative cytotoxicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01211-y.

10.
Sci Rep ; 14(1): 15456, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965317

ABSTRACT

Medicinal plant microbiomes undergo selection due to secondary metabolite presence. Resident endophytic/epiphytic microorganisms directly influence plant's bioactive compound synthesis. Hypothesizing low microbial diversity in Serjania erecta leaves, we assessed leaf colonization by epiphytic and endophytic fungi. Given its traditional medicinal importance, we estimated diversity in the endophytic fungal microbiome. Analyses included scanning electron microscopy (SEM), isolation of cultivable species, and metagenomics. Epiphytic fungi interacted with S. erecta leaf tissues, horizontally transmitted via stomata/trichome bases, expressing traits for nematode trapping. Cultivable endophytic fungi, known for phytopathogenic habits, didn't induce dysbiosis symptoms. This study confirms low leaf microbiome diversity in S. erecta, with a tendency towards more fungal species, likely due to antibacterial secondary metabolite selection. The classification of Halicephalobus sp. sequence corroborated the presence of nematode eggs on the epidermal surface of S. erecta by SEM. In addition, we confirmed the presence of methanogenic archaea and a considerable number of methanotrophs of the genus Methylobacterium. The metagenomic study of endophytic fungi highlighted plant growth-promoting yeasts, mainly Malassezia, Leucosporidium, Meyerozyma, and Hannaella. Studying endophytic fungi and S. erecta microbiomes can elucidate their impact on beneficial bioactive compound production, on the other hand, it is possible that the bioactive compounds produced by this plant can recruit specific microorganisms, impacting the biological system.


Subject(s)
Fungi , Microbiota , Nematoda , Plant Leaves , Plant Leaves/microbiology , Plant Leaves/parasitology , Animals , Nematoda/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Endophytes/genetics , Endophytes/isolation & purification , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Metagenomics/methods , Biodiversity
11.
J Nanobiotechnology ; 22(1): 389, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956645

ABSTRACT

BACKGROUND: Nanotechnology holds revolutionary potential in the field of agriculture, with zinc oxide nanoparticles (ZnO NPs) demonstrating advantages in promoting crop growth. Enhanced photosynthetic efficiency is closely linked to improved vigor and superior quality in tea plants, complemented by the beneficial role of phyllosphere microorganisms in maintaining plant health. However, the effects of ZnO NPs on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms have not been fully investigated. RESULTS: This study investigated the photosynthetic physiological parameters of tea plants under the influence of ZnO NPs, the content of key photosynthetic enzymes such as RubisCO, chlorophyll content, chlorophyll fluorescence parameters, transcriptomic and extensive targeted metabolomic profiles of leaves and new shoots, mineral element composition in these tissues, and the epiphytic and endophytic microbial communities within the phyllosphere. The results indicated that ZnO NPs could enhance the photosynthesis of tea plants, upregulate the expression of some genes related to photosynthesis, increase the accumulation of photosynthetic products, promote the development of new shoots, and alter the content of various mineral elements in the leaves and new shoots of tea plants. Furthermore, the application of ZnO NPs was observed to favorably influence the microbial community structure within the phyllosphere of tea plants. This shift in microbial community dynamics suggests a potential for ZnO NPs to contribute to plant health and productivity by modulating the phyllosphere microbiome. CONCLUSION: This study demonstrates that ZnO NPs have a positive impact on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms, which can improve the growth condition of tea plants. These findings provide new scientific evidence for the application of ZnO NPs in sustainable agricultural development and contribute to advancing research in nanobiotechnology aimed at enhancing crop yield and quality.


Subject(s)
Camellia sinensis , Metal Nanoparticles , Microbiota , Photosynthesis , Plant Leaves , Plant Shoots , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Photosynthesis/drug effects , Camellia sinensis/microbiology , Plant Shoots/growth & development , Microbiota/drug effects , Plant Leaves/microbiology , Metal Nanoparticles/chemistry , Chlorophyll/metabolism , Nanoparticles/chemistry
12.
Appl Microbiol Biotechnol ; 108(1): 405, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958755

ABSTRACT

This study investigated the potential of endophytic fungi to produce paclitaxel (Taxol®), a potent anticancer compound widely employed in chemotherapy. This research aimed to identify, confirm, and characterize endophytic fungi capable of paclitaxel (PTX) production and assess their paclitaxel yield. Additionally, it aimed to investigate factors influencing paclitaxel production. A total of 100 endophytic fungal isolates were collected and identified from the roots of Artemisia judaica. Aspergillus fumigatiaffinis exhibited the highest PTX production (26.373 µg L-1) among the isolated endophytic fungi. The strain was identified as A. fumigatiaffinis (Accession No. PP235788.1). Molecular identification confirmed its novelty, representing the first report of PTX production by A. fumigatiaffinis, an endophyte of Artemisia judaica. Optimization through full factorial design of experiments (DOE) and response surface methodology (RSM) significantly enhanced PTX production to 110.23 µg L-1 from 1 g of dry weight of the fungal culture under optimal conditions of pH 8.0, 150 µg L-1 becozyme supplementation, and 18 days of fermentation in potato dextrose broth. The presence of paclitaxel was confirmed using thin layer chromatography, high performance liquid chromatography, and gas chromatography-mass spectrometry. These findings maximize the role of endophytic fungus to produce a secondary metabolite that might be able to replace the chemically produced PTX and gives an opportunity to provide a sustainable source of PTX eco-friendly at high concentrations. KEY POINTS: • Endophytic fungi, like A. fumigatiaffinis, show promise for eco-friendly paclitaxel production • Optimization strategies boost paclitaxel yield significantly, reaching 110.23 µg L -1 • Molecular identification confirms novelty, offering a sustainable PTX source.


Subject(s)
Aspergillus , Endophytes , Fermentation , Paclitaxel , Paclitaxel/biosynthesis , Aspergillus/metabolism , Aspergillus/genetics , Endophytes/metabolism , Endophytes/genetics , Endophytes/isolation & purification , Endophytes/classification , Plant Roots/microbiology , Culture Media/chemistry , Gas Chromatography-Mass Spectrometry , Chromatography, High Pressure Liquid
13.
Data Brief ; 54: 110286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962187

ABSTRACT

This study provides sequence datasets of endophytic and rhizobacteria of jute using 16S rRNA gene sequencing. The plant samples were first surface sterilized and DNA of the bacteria from soil and jute roots and stem was extracted using Quick-DNA™ Fungal/Bacterial Miniprep Kit. The purified DNA was amplified and subjected to polymerase chain reaction using forward and reverse primers. The PCR products were sequenced on Applied Biosystems ABI 3500XL Genetic Analyser (Applied Biosystems, ThermoFisher Scientific). The sequences were analyzed using BioEdit version 7.2.5 and then BLAST on NCBI. The identifiable bacteria include the rhizobacteria, Citrobacter fruendii RZS23 (accession number: CP024673.1), endophytic bacteria, Bacillus cereus EDR23 (accession number: LN890242.1), and Morganella morganii EDS23 (accession number: KR094121.1). The plant growth-promoting traits exhibited by these bacteria suggest their future exploration as bioinoculants.

14.
BMC Biotechnol ; 24(1): 46, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971771

ABSTRACT

BACKGROUND: Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS: The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 µg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS: The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.


Subject(s)
Endophytes , Germination , Indoleacetic Acids , Ocimum basilicum , Seeds , Thymus Plant , Ocimum basilicum/microbiology , Thymus Plant/chemistry , Indoleacetic Acids/metabolism , Endophytes/physiology , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/genetics , Germination/drug effects , Seeds/microbiology , Seeds/growth & development , Seeds/drug effects
15.
World J Microbiol Biotechnol ; 40(9): 274, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030384

ABSTRACT

Argemone mexicana belonging to family Papaveraceae is a traditional medicinal plant widely utilized by tribal people in India for treating various ailments like skin infections, wounds and inflammation. This plant is very rich in alkaloidal content, which has a great potential in the treatment of anti-inflammatory disorders. Therapeutically promising bioactive molecules are often produced by endophytic fungi associated with medicinal plants. In this investigation, endophytic fungi were isolated from various parts of A. mexicana and screened for alkaloidal content. Among these, one of the fungal isolate, Acremonium alternatum AMEF-5 producing maximum alkaloids showed significant anti-inflammatory activity. Fractionation of this crude fungal extract through column chromatography yielded eight fractions, which were further screened for anti-inflammatory activities. Fraction 3 exhibited significant anti-inflammatory activity by the inhibition of lipoxygenase enzyme (IC50 15.2 ± 0.09 µg/ml), scavenging of the nitric oxide radicals (IC50 11.38 ± 0.35 µg/ml), protein denaturation (IC50 14.93 ± 0.4 µg/ml), trypsin inhibition (IC50 12.06 ± 0.64 µg/ml) and HRBC stabilization (IC50 11.9 ± 0.22 µg/ml). The bioactive alkaloid in fraction 3 was identified as aconitine which was confirmed by UV, FTIR, HPLC, HRMS, 1H NMR, and 13C NMR analysis. This study demonstrates that endophytic fungi serve a potential source for sustainable production of therapeutically important alkaloids.


Subject(s)
Aconitine , Acremonium , Anti-Inflammatory Agents , Endophytes , Acremonium/metabolism , Acremonium/chemistry , Anti-Inflammatory Agents/pharmacology , Aconitine/pharmacology , Aconitine/chemistry , Endophytes/metabolism , Endophytes/chemistry , Endophytes/isolation & purification , Animals , Nitric Oxide/metabolism , Mice , Alkaloids/pharmacology , Lipoxygenase/metabolism , RAW 264.7 Cells , India
17.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849736

ABSTRACT

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Subject(s)
Biodiversity , Endophytes , Fungi , Plant Roots , Rhizosphere , Soil Microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Plant Roots/microbiology , DNA, Fungal/genetics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/growth & development , Ascomycota/isolation & purification , Phylogeny , Mycobiome
18.
Front Plant Sci ; 15: 1349202, 2024.
Article in English | MEDLINE | ID: mdl-38855464

ABSTRACT

Introduction: Arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSEs) generally coexist in the roots of plants. However, our understanding of the effects of their coexistence on plant growth and stress resistance is limited. Methods: In the present study, the effects of single and dual inoculation of AMF and DSE on the growth, photosynthetic physiology, glutathione (GSH) metabolism, endogenous hormones, and cadmium (Cd) content of maize under 25 mg•kg-1 Cd stress were investigated. Results: Compared with that after the non-inoculation treatment, AMF+DSE co-inoculation significantly increased the photosynthetic rate (Pn) of maize leaves; promoted root GSH metabolism; increased the root GSH concentration and activity of γ-glutamyl cysteine synthase (γ-GCS), ATP sulfatase (ATPS) and sulfite reductase (SIR) by 215%, 117%, 50%, and 36%, respectively; and increased the concentration of endogenous hormones in roots, with increases in zeatin (ZR), indole-3 acetic acid (IAA), and abscisic acid (ABA) by 81%, 209%, and 72%, respectively. AMF inoculation, DSE inoculation and AMF+DSE co-inoculation significantly increased maize biomass, and single inoculation with AMF or DSE increased the Cd concentration in roots by 104% or 120%, respectively. Moreover, significant or highly significant positive correlations were observed between the contents of ZR, IAA, and ABA and the activities of γ-GCS, ATPS, and SIR and the glutathione (GSH) content. There were significant or highly significant positive interactions between AMF and DSE on the Pn of leaves, root GSH metabolism, and endogenous hormone contents according to two-way analysis of variance. Therefore, the coexistence of AMF and DSE synergistically enhanced the Cd tolerance of maize.

19.
J Microbiol Biotechnol ; 34(7): 1-12, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858094

ABSTRACT

Fungi generate different metabolites some of which are intrinsically bioactive and could therefore serve as templates for drug development. In the current study, six endophytic fungi namely Aspergillus flavus, Aspergillus tubigenesis, Aspergillus oryzae, Penicillium oxalicum, Aspergillus niger and Aspergillus brasiliensis were isolated and identified from the medicinal plant, Silybum marianum. These endophytic fungi were identified through intra transcribed sequence (ITS) gene sequencing. The bioactive potentials of fungal extracts were investigated using several bioassays such as antibacterial activity by well-diffusion, MIC, MBC, anti-biofilm, antioxidant, and haemolysis. The Pseudomonas aeruginosa strain PAO1 was used to determine the antibiofilm activity. The ethyl acetate extract of Aspergillus flavus showed strong to moderate efficacy against Staphylococcus aureus, Escherichia coli, P. aeruginosa, and Bacillus spizizenii. Aspergillus flavus and Aspergillus brasiliensis exhibited significant antibiofilm activity with IC50 at 4.02 and 3.63 mg/ml while A. flavus exhibited maximum antioxidant activity of 50.8%. Based on, HPLC, LC-MS and NMR experiments kojic acid (1) and carbamic acid (methylene-4, 1-phenylene) bis-dimethyl ester (2) were identified from A. flavus. Kojic acid exhibited DPPH free radical scavenging activity with an IC50 value of 99.3 µg/ml and moderate activity against ovarian teratocarcinoma (CH1), colon carcinoma (SW480), and non-small cell lung cancer (A549) cell lines. These findings suggest that endophytic fungi are able produce promising bioactive compounds which deserve further investigation.

20.
Iran J Biotechnol ; 22(1): e3644, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38827345

ABSTRACT

Background: The search for sources of industrial biocatalysts, which are non-pathogenic and can utilise cheap nutrient sources, has been a continuous endeavour in the ~ 7 billion USD enzyme industry. Beauveria bassiana, an endophytic fungal entomopathogen, is non-pathogenic and possesses the potential to secrete various bioproducts while utilising readily available lignocellulosic biomass. Objective: This study investigated the optimised production of two glycosyl hydrolases, amylase and polygalacturonase, by B. bassiana while utilising readily available agricultural residues. Subsequently, the industrial potential of the enzymes in the clarification of fruit juice was evaluated. Materials and Methods: Initially, seven agro residues were screened for the concomitant production of amylase and polygalacturonase by B. bassiana SAN01. Subsequently, statistical optimisation tools, Plackett Burman Design (PBD) and Central Composite Design (CCD), were employed for the optimisation of enzyme production. The enzyme mixture was partially purified and applied in the clarification of pineapple juice. Result: The production of B. bassiana SAN01 amylase and polygalacturonase was found to be maximal while utilising wheat bran. Subsequent to PBD and CCD optimisation, the optimal conditions for enzyme production were identified to be at 30 °C, pH 6.0 and wheat bran concentration of ~40 g.L-1. Under these optimised conditions, heightened production levels of 34.82 and 51.05 U.mL-1 were recorded for amylase and polygalacturonase, respectively, which were 179% and 187% of the initial unoptimised levels. In addition, the most effective clarification of the juice (~90%) was observed at 35 °C after an incubation time of 120 min with no significant effect on the pH and total dissolved solids. Conclusion: B. bassiana, a well-known biocontrol agent, was shown to produce amylase and polygalacturonase using readily available agricultural residues for the first time. These enzyme production levels are the highest for these enzymes from any known endophytic fungal entomopathogen. This study further demonstrates the potential applicability of B. bassiana in other industrial processes besides its widespread use as a biopesticide.

SELECTION OF CITATIONS
SEARCH DETAIL
...