Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Addict Biol ; 29(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38963015

ABSTRACT

The addictive use of nicotine contained in tobacco is associated with stressor-like emotional and cognitive effects such as anxiety and working memory impairment, and the involvement of epigenetic mechanisms such as histone acetylation has recently been reported. Although the precise nature of behavioural plasticity remains unclear, both anxiogenic- and working memory impairment-like effects were observed in the present experimental model of mice treated with repeated subcutaneous nicotine and/or immobilization stress, and these effects were commonly attenuated by the histone deacetylase (HDAC) inhibitors that induce histone acetylation. Such HDAC inhibitor-induced resilience was mimicked by ligands for the endocannabinoid (ECB) system, a neurotransmitter system that is closely associated with nicotine-induced addiction-related behaviours: the anxiogenic-like effects were mitigated by the cannabinoid type 1 (CB1) agonist arachidonylcyclopropylamide (ACPA), whereas the working memory impairment-like effects were mitigated by the CB1 antagonist SR 141716A. Moreover, the effects of the HDAC inhibitors were also mimicked by ligands for the endovanilloid (transient receptor potential vanilloid 1 [TRPV1]) system, a system that shares common characteristics with the ECB system: the anxiogenic-like effects were mitigated by the TRPV1 antagonist capsazepine, whereas the working memory impairment-like effects were mitigated by the TRPV1 agonist olvanil. Notably, the HDAC inhibitor-induced anxiolytic-like effects were attenuated by SR 141716A, which were further counteracted by capsazepine, whereas the working memory improvement-like effects were attenuated by capsazepine, which were further counteracted by SR 141716A. These results suggest the contribution of interrelated control of the ECB/TRPV1 systems and epigenetic processes such as histone acetylation to novel therapeutic approaches.


Subject(s)
Anxiety , Endocannabinoids , Epigenesis, Genetic , Memory, Short-Term , Nicotine , Stress, Psychological , TRPV Cation Channels , Animals , TRPV Cation Channels/drug effects , Nicotine/pharmacology , Mice , Memory, Short-Term/drug effects , Endocannabinoids/metabolism , Male , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Receptor, Cannabinoid, CB1/drug effects , Memory Disorders/chemically induced , Capsaicin/pharmacology , Capsaicin/analogs & derivatives , Disease Models, Animal , Rimonabant/pharmacology , Nicotinic Agonists/pharmacology , Piperidines/pharmacology
2.
Brain Res Bull ; 192: 128-141, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36414159

ABSTRACT

RATIONALE: Several lines of evidence have demonstrated that the cannabinoid type 1 receptor (CB1) is found in the caudate nucleus and putamen (CPu) in addition to the substantia nigra pars reticulata (SNpr). Here, we investigated the role of endocannabinoid neuromodulation of striato-nigral disinhibitory projections on the activity of nigro-collicular GABAergic pathways that control the expression of unconditioned fear-related behavioural responses elicited by microinjections of the GABAA receptor selective antagonist bicuculline (BIC) in the deep layers of the superior colliculus (dlSC). METHODS: Fluorescent neural tract tracers were deposited in either CPu or in SNpr. Wistar rats received injection of vehicle, anandamide (AEA), either at low (50 pmol) or high (100 pmol) concentrations in CPu followed by bicuculline microinjections in dlSC. RESULTS: Connections between CPu, the SNpr and dlSC were demonstrated. The GABAA receptor blockade in dlSC elicited panic-like behaviour. AEA at the lowest concentration caused a panicolytic-like effect that was antagonised by the CPu pretreatment with AM251 at 100 pmol. AEA at the highest concentration caused a panicogenic-like effect that was antagonised by the CPu pretreatment with 6-iodonordihydrocapsaicin (6-I-CPS) at different concentrations (0.6, 6, 60 nmol). CONCLUSION: These findings suggest that while pre-synaptic CB1-signalling subserves an indirect facilitatory effect of AEA on striato-nigral pathways causing panicolytic-like responses through midbrain tectum enhanced activity, post-synaptic TRPV1-signalling in CPu mediates AEA direct activation of striato-nigral disinhibitory pathways resulting in increasing dlSC neurons activity and a panicogenic-like response. All these actions seem to depend on the interface with the nigro-collicular inhibitory GABAergic pathways.


Subject(s)
Receptors, GABA-A , Substantia Nigra , Animals , Rats , Receptors, GABA-A/metabolism , Rats, Wistar , Bicuculline/pharmacology , GABA-A Receptor Antagonists/pharmacology , Neural Pathways/physiology
3.
J Neuroinflammation ; 19(1): 118, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35610647

ABSTRACT

BACKGROUND: The transient receptor potential vanilloid 1 (TRPV1) participates in thermosensation and inflammatory pain, but its immunomodulatory mechanisms remain enigmatic. N-Oleoyl dopamine (OLDA), an endovanilloid and endocannabinoid, is a TRPV1 agonist that is produced in the central nervous system and the peripheral nervous system. We studied the anti-inflammatory effects and TRPV1-dependent mechanisms of OLDA in models of inflammation and sepsis. METHODS: Mice were challenged intratracheally or intravenously with LPS, or intratracheally with S. aureus to induce pneumonia and sepsis, and then were treated intravenously with OLDA. Endpoints included plasma cytokines, leukocyte activation marker expression, mouse sepsis scores, lung histopathology, and bacterial counts. The role of TRPV1 in the effects of OLDA was determined using Trpv1-/- mice, and mice with TRPV1 knockdown pan-neuronally, in peripheral nervous system neurons, or in myeloid cells. Circulating monocytes/macrophages were depleted using clodronate to determine their role in the anti-inflammatory effects of OLDA in endotoxemic mice. Levels of exogenous OLDA, and of endovanilloids and endocannabinoids, at baseline and in endotoxemic mice, were determined by LC-MS/MS. RESULTS: OLDA administration caused an early anti-inflammatory response in endotoxemic and septic mice with high serum levels of IL-10 and decreased levels of pro-inflammatory cytokines. OLDA also reduced lung injury and improved mouse sepsis scores. Blood and lung bacterial counts were comparable between OLDA- and carrier-treated mice with S. aureus pneumonia. OLDA's effects were reversed in mice with pan-neuronal TRPV1 knockdown, but not with TRPV1 knockdown in peripheral nervous system neurons or myeloid cells. Depletion of monocytes/macrophages reversed the IL-10 upregulation by OLDA in endotoxemic mice. Brain and blood levels of endovanilloids and endocannabinoids were increased in endotoxemic mice. CONCLUSIONS: OLDA has strong anti-inflammatory actions in mice with endotoxemia or S. aureus pneumonia. Prior studies focused on the role of peripheral nervous system TRPV1 in modulating inflammation and pneumonia. Our results suggest that TRPV1-expressing central nervous system neurons also regulate inflammatory responses to endotoxemia and infection. Our study reveals a neuro-immune reflex that during acute inflammation is engaged proximally by OLDA acting on neuronal TRPV1, and through a multicellular network that requires circulating monocytes/macrophages, leads to the systemic production of IL-10.


Subject(s)
Endotoxemia , Sepsis , Animals , Central Nervous System/metabolism , Chromatography, Liquid , Cytokines/metabolism , Dopamine/metabolism , Endocannabinoids , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Inflammation/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/toxicity , Mice , Sepsis/drug therapy , Staphylococcus aureus , TRPV Cation Channels/metabolism , Tandem Mass Spectrometry
4.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576321

ABSTRACT

The role of the endocannabinoid/endovanilloid (EC/EV) system in bone metabolism has recently received attention. Current literature evidences the modulation of osteoclasts and osteoblasts through the activation or inhibition of cannabinoid receptors in various pathological conditions with secondary involvement of bone tissue. However, this role is still unclear in primary bone diseases. Paget's disease of the bone (PDB) could be considered a disease model for analyzing the role of the EC/EV system on osteoclasts (OCs), speculating the potential use of specific agents targeting this system for managing metabolic bone disorders. The aim of the study is to analyze OCs expression of EC/EV system in patients with PDB and to compare OCs activity between this population and healthy people. Finally, we investigate whether specific agents targeting EC/EV systems are able to modulate OCs activity in this metabolic bone disorder. We found a significant increase in cannabinoid receptor type 2 (CB2) protein expression in patients with PDB, compared to healthy controls. Moreover, we found a significant reduction in multi-nucleated tartrate-resistant acid phosphatase (TRAP)-positive OCs and resorption areas after treatment with JWH-133. CB2 could be a molecular target for reducing the activity of OCs in PDB, opening new therapeutic scenarios for the management of this condition.


Subject(s)
Bone Diseases/metabolism , Endocannabinoids/metabolism , Osteitis Deformans/metabolism , Osteoclasts/metabolism , Bone Resorption/metabolism , Humans , Tartrate-Resistant Acid Phosphatase/metabolism
5.
Front Neuroanat ; 15: 701573, 2021.
Article in English | MEDLINE | ID: mdl-34305539

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) participates in synaptic functions in the brain. In the dentate gyrus, post-synaptic TRPV1 in the granule cell (GC) dendritic spines mediates a type of long-term depression (LTD) of the excitatory medial perforant path (MPP) synapses independent of pre-synaptic cannabinoid CB1 receptors. As CB1 receptors also mediate LTD at these synapses, both CB1 and TRPV1 might be influencing the activity of each other acting from opposite synaptic sites. We tested this hypothesis in the MPP-GC synapses of mice lacking TRPV1 (TRPV1-/-). Unlike wild-type (WT) mice, low-frequency stimulation (10 min at 10 Hz) of TRPV1-/- MPP fibers elicited a form of long-term potentiation (LTP) that was dependent on (1) CB1 receptors, (2) the endocannabinoid 2-arachidonoylglycerol (2-AG), (3) rearrangement of actin filaments, and (4) nitric oxide signaling. These functional changes were associated with an increase in the maximum binding efficacy of guanosine-5'-O-(3-[35S]thiotriphosphate) ([35S]GTPγS) stimulated by the CB1 receptor agonist CP 55,940, and a significant decrease in receptor basal activation in the TRPV1-/- hippocampus. Finally, TRPV1-/- hippocampal synaptosomes showed an augmented level of the guanine nucleotide-binding (G) Gαi1, Gαi2, and Gαi3 protein alpha subunits. Altogether, the lack of TRPV1 modifies CB1 receptor signaling in the dentate gyrus and causes the shift from CB1 receptor-mediated LTD to LTP at the MPP-GC synapses.

6.
Front Neuroanat ; 15: 645940, 2021.
Article in English | MEDLINE | ID: mdl-33692673

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) is a non-selective ligand-gated cation channel involved in synaptic transmission, plasticity, and brain pathology. In the hippocampal dentate gyrus, TRPV1 localizes to dendritic spines and dendrites postsynaptic to excitatory synapses in the molecular layer (ML). At these same synapses, the cannabinoid CB1 receptor (CB1R) activated by exogenous and endogenous cannabinoids localizes to the presynaptic terminals. Hence, as both receptors are activated by endogenous anandamide, co-localize, and mediate long-term depression of the excitatory synaptic transmission at the medial perforant path (MPP) excitatory synapses though by different mechanisms, it is plausible that they might be exerting a reciprocal influence from their opposite synaptic sites. In this anatomical scenario, we tested whether the absence of TRPV1 affects the endocannabinoid system. The results obtained using biochemical techniques and immunoelectron microscopy in a mouse with the genetic deletion of TRPV1 show that the expression and localization of components of the endocannabinoid system, included CB1R, change upon the constitutive absence of TRPV1. Thus, the expression of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) drastically increased in TRPV1-/- whole homogenates. Furthermore, CB1R and MAGL decreased and the cannabinoid receptor interacting protein 1a (CRIP1a) increased in TRPV1-/- synaptosomes. Also, CB1R positive excitatory terminals increased, the number of excitatory terminals decreased, and CB1R particles dropped significantly in inhibitory terminals in the dentate ML of TRPV1-/- mice. In the outer 2/3 ML of the TRPV1-/- mutants, the proportion of CB1R particles decreased in dendrites, and increased in excitatory terminals and astrocytes. In the inner 1/3 ML, the proportion of labeling increased in excitatory terminals, neuronal mitochondria, and dendrites. Altogether, these observations indicate the existence of compensatory changes in the endocannabinoid system upon TRPV1 removal, and endorse the importance of the potential functional adaptations derived from the lack of TRPV1 in the mouse brain.

7.
Brain Res Bull ; 165: 118-128, 2020 12.
Article in English | MEDLINE | ID: mdl-33038420

ABSTRACT

Neuropathic pain (NP) is a challenge due to our limited understanding of the mechanisms that initiate and maintain chronic pain. The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is an important area of the emotional and cognitive components of pain and pharmacological systems can interact into the neocortex to elaborate the chronic pain. This work aimed to investigate the pharmacological cross-talk between synaptic neurotransmission, neuroanatomical approaches and NP conditions. A bidirectional neural tract tracer, the 3000-molecular-weight biodextran (BDA) was microinjected into the PrL cortex. The mechanical withdrawal threshold (MWT) was recorded by a von Frey test, and the effect of prelimbic cortex CB1, NMDA, and TRPV1 receptor modulation was evaluated 21 days after chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. Microinjection of a bidirectional neurotracer in the PrL cortex showed connections with the lateral division of the mediodorsal thalamic nucleus (MDL), central division of the mediodorsal thalamic nucleus (MDC), centrolateral thalamic nucleus (CL), ventromedial thalamic nucleus (VM), and the paracentral thalamic nucleus (PC). In detail, AM251, a CB1 receptor antagonist (at 50, 100 and 200 pmol) microinjections intra-PrL cortex decreased the MWT. Administrations of 6-iodonordihydrocapsaicin (6-I-CPS), a transient receptor potential vanilloid type 1 (TRPV1) antagonist, at 3 nmol and the endocannabinoid anandamide (AEA) at 50 and 100 pmol increased the MWT. AEA at 200 pmol injected in the PrL cortex decreased the MWT, and this hyperalgesic effect was blocked by 6-I-CPS at 3 nmol. The AEA (at 100 pmol) anti-allodynic effect was attenuated by AM251 (at 5 pmol). The TRPV1 selective agonist N-oleoyldopamine (OLDA) at 10 µM decreased the MWT. The blockade of the NMDA receptor with LY235959 (at 8 nmol) and 6-I-CPS (at 3 nmol) reversed the OLDA (at 10 µM) hyperalgesic effect. These findings showed that the PrL cortex sends pathways to thalamic nuclei that can mediate the nociception. We also suggest that the PrL cortex is involved in the potentiation and maintenance of mechanical allodynia by NMDA and TRPV1 receptor activation and that attenuation of this allodynia depends on CB1 receptor activation during NP.


Subject(s)
Cerebral Cortex/metabolism , Neuralgia/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , TRPV Cation Channels/metabolism , Animals , Cannabinoid Receptor Antagonists/pharmacology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cerebral Cortex/drug effects , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Male , Rats , Rats, Wistar
8.
Pharmacol Res ; 137: 25-33, 2018 11.
Article in English | MEDLINE | ID: mdl-30267762

ABSTRACT

Osteosarcoma is the most common primary malignant tumor of bone in children and adolescents. Bortezomib (BTZ) is an approved anticancer drug, classified as a selective reversible inhibitor of the ubiquitin-dependent proteasome system, that leads to cancer cell cycle arrest and apoptosis reducing the invasion ability of Osteosarcoma cells in vitro. It also regulates the RANK/RANKL/OPG system, involved in the pathogenesis of bone tumors and in cell migration. A side effect of BTZ is to induce painful sensory peripheral neuropathy which lead to cessation of therapy or dose reduction. Recently BTZ has been evaluated in combination with Cannabinoids targeting CB1 receptor, demonstrating a promising synergic effect. The Endocannabinoid/Endovanilloid (EC/EV) system includes two G protein-coupled receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel and their endogenous ligands and enzymes. CB1 and CB2 are expressed mainly in Central Nervous System and Immune Peripheral cells respectively. TRPV1 is also expressed in primary sensory neurons and is involved in pain modulation. EC/EV system induces apoptosis, reduces invasion and cell proliferation in Osteosarcoma cell lines and is involved in bone metabolism. We analyzed the effects of BTZ, alone and in combination with selective agonists at CB2 (JWH-133) and TRPV1 (RTX) receptors, in the Osteosarcoma cell line (HOS) on Apoptosis, Cell Cycle progression, migration and bone balance. We observed that the stimulation of CB2 and TRPV1 receptors increase the efficacy of BTZ in inducing apoptosis and reducing invasion, cell cycle progression and by modulating bone balance. These data suggest the possibility to use BTZ, in combination with EC/EV agonists, in Osteosarcoma therapy reducing its dose and its side effects.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Bortezomib/pharmacology , Cannabinoids/pharmacology , Diterpenes/pharmacology , Osteosarcoma/drug therapy , Receptor, Cannabinoid, CB2/agonists , TRPV Cation Channels/agonists , Bone Neoplasms/metabolism , Cell Line, Tumor , Drug Synergism , Humans , Osteosarcoma/metabolism
9.
Article in English | MEDLINE | ID: mdl-30108548

ABSTRACT

The ion channel TRPV1 is involved in a wide range of processes including nociception, thermosensation and, more recently discovered, energy homeostasis. Tightly controlling energy homeostasis is important to maintain a healthy body weight, or to aid in weight loss by expending more energy than energy intake. TRPV1 may be involved in energy homeostasis, both in the control of food intake and energy expenditure. In the periphery, it is possible that TRPV1 can impact on appetite through control of appetite hormone levels or via modulation of gastrointestinal vagal afferent signaling. Further, TRPV1 may increase energy expenditure via heat production. Dietary supplementation with TRPV1 agonists, such as capsaicin, has yielded conflicting results with some studies indicating a reduction in food intake and increase in energy expenditure, and other studies indicating the converse. Nonetheless, it is increasingly apparent that TRPV1 may be dysregulated in obesity and contributing to the development of this disease. The mechanisms behind this dysregulation are currently unknown but interactions with other systems, such as the endocannabinoid systems, could be altered and therefore play a role in this dysregulation. Further, TRPV1 channels appear to be involved in pancreatic insulin secretion. Therefore, given its plausible involvement in regulation of energy and glucose homeostasis and its dysregulation in obesity, TRPV1 may be a target for weight loss therapy and diabetes. However, further research is required too fully elucidate TRPV1s role in these processes. The review provides an overview of current knowledge in this field and potential areas for development.

10.
Cannabis Cannabinoid Res ; 2(1): 183-196, 2017.
Article in English | MEDLINE | ID: mdl-29082315

ABSTRACT

N-arachidonoyl dopamine (NADA) is a member of the family of endocannabinoids to which several other N-acyldopamines belong as well. Their activity is mediated through various targets that include cannabinoid receptors or transient receptor potential vanilloid (TRPV)1. Synthesis and degradation of NADA are not yet fully understood. Nonetheless, there is evidence that NADA plays an important role in nociception and inflammation in the central and peripheral nervous system. The TRPV1 receptor, for which NADA is a potent agonist, was shown to be an endogenous transducer of noxious heat. Moreover, it has been demonstrated that NADA exerts protective and antioxidative properties in microglial cell cultures, cortical neurons, and organotypical hippocampal slice cultures. NADA is present in very low concentrations in the brain and is seemingly not involved in activation of the classical pathways. We believe that treatment with exogenous NADA during and after injury might be beneficial. This review summarizes the recent findings on biochemical properties of NADA and other N-acyldopamines and their role in physiological and pathological processes. These findings provide strong evidence that NADA is an effective agent to manage neuroinflammatory diseases or pain and can be useful in designing novel therapeutic strategies.

11.
Mol Pain ; 122016.
Article in English | MEDLINE | ID: mdl-27178246

ABSTRACT

Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic deletion of FAAH may predispose animals to increased sensitivity to certain types of pain. More work is necessary to determine whether such changes could explain the lack of efficacy of FAAH inhibitors in clinical trials.


Subject(s)
Amidohydrolases/deficiency , Nociception , Acrylamides/pharmacology , Acrylamides/therapeutic use , Amidohydrolases/metabolism , Analgesia , Animals , Arachidonic Acid/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Capsaicin/administration & dosage , Carrageenan , Disease Models, Animal , Ethanolamines/metabolism , Formaldehyde , Genotype , Hyperalgesia/complications , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Injections, Intraperitoneal , Ligands , Lumbar Vertebrae/metabolism , Lumbar Vertebrae/pathology , Mice, Inbred C57BL , Mice, Knockout , Nociception/drug effects , Pain/complications , Pain/drug therapy , Pain/pathology , Pain Threshold/drug effects , Phenotype , Piperidines/pharmacology , Piperidines/therapeutic use , Proto-Oncogene Proteins c-fos/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Skin/metabolism , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/pathology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism
12.
J Headache Pain ; 17: 53, 2016.
Article in English | MEDLINE | ID: mdl-27189587

ABSTRACT

BACKGROUND: In the dura mater encephali a significant population of trigeminal afferents coexpress the nociceptive ion channel transient receptor potential vanilloid type 1 (TRPV1) receptor and calcitonin gene-related peptide (CGRP). Release of CGRP serves the central transmission of sensory information, initiates local tissue reactions and may also sensitize the nociceptive pathway. To reveal the possible activation of meningeal TRPV1 receptors by endogenously synthetized agonists, the effects of arachidonylethanolamide (anandamide) and N-arachidonoyl-dopamine (NADA) were studied on dural vascular reactions and meningeal CGRP release. METHODS: Changes in meningeal blood flow were measured with laser Doppler flowmetry in a rat open cranial window preparation following local dural applications of anandamide and NADA. The release of CGRP evoked by endovanilloids was measured with ELISA in an in vitro dura mater preparation. RESULTS: Topical application of NADA induced a significant dose-dependent increase in meningeal blood flow that was markedly inhibited by pretreatments with the TRPV1 antagonist capsazepine, the CGRP antagonist CGRP8-37, or by prior systemic capsaicin desensitization. Administration of anandamide resulted in minor increases in meningeal blood flow that was turned into vasoconstriction at the higher concentration. In the in vitro dura mater preparation NADA evoked a significant increase in CGRP release. Cannabinoid CB1 receptors of CGRP releasing nerve fibers seem to counteract the TRPV1 agonistic effect of anandamide in a dose-dependent fashion, a result which is confirmed by the facilitating effect of CB1 receptor inhibition on CGRP release and its reversing effect on the blood flow. CONCLUSIONS: The present findings demonstrate that endovanilloids are potential activators of meningeal TRPV1 receptors and, consequently the trigeminovascular nocisensor complex that may play a significant role in the pathophysiology of headaches. The results also suggest that prejunctional CB1 receptors may modulate meningeal vascular responses.


Subject(s)
Arachidonic Acids/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Cannabinoid Receptor Agonists/pharmacology , Capsaicin/analogs & derivatives , Dopamine/analogs & derivatives , Dura Mater , Endocannabinoids/pharmacology , Nociceptors/drug effects , Peptide Fragments/metabolism , Polyunsaturated Alkamides/pharmacology , TRPV Cation Channels/drug effects , Trigeminal Nerve/drug effects , Animals , Capsaicin/pharmacology , Disease Models, Animal , Dopamine/pharmacology , Dose-Response Relationship, Drug , Dura Mater/blood supply , Dura Mater/drug effects , Enzyme-Linked Immunosorbent Assay , Laser-Doppler Flowmetry , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/drug effects , Receptors, Calcitonin Gene-Related Peptide/drug effects , Regional Blood Flow/drug effects
13.
Behav Brain Res ; 293: 182-8, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26187694

ABSTRACT

Cannabinoid compounds usually produce biphasic effects in the modulation of emotional responses. Low doses of the endocannabinoid anandamide (AEA) injected into the dorsolateral periaqueductal gray matter (dlPAG) induce anxiolytic-like effects via CB1 receptors activation. However, at higher doses the drug loses this effect, in part by activating Transient Receptor Potential Vanilloid Type 1 (TRPV1). Activation of these latter receptors could induce the formation of nitric oxide (NO). Thus, the present study tested the hypothesis that at high doses AEA loses it anxiolytic-like effect by facilitating, probably via TRPV1 receptor activation, the formation of NO. Male Wistar rats received combined injections into the dlPAG of vehicle, the TRPV1 receptor antagonist 6-iodo-nordihydrocapsaicin or the NO scavenger carboxy-PTIO (c-PTIO), followed by vehicle or AEA, and were submitted to the elevated plus maze (EPM) or the Vogel conflict test (VCT). A low dose (5pmol) of AEA produced an anxiolytic-like effect that disappeared at higher doses (50 and 200pmol). The anxiolytic-like effects of these latter doses, however, were restored after pre-treatment with a low and ineffective dose of c-PTIO in both animal models. In addition, the combined administration of ineffective doses of 6-iodo-nordihydrocapsaicin (1nmol) and c-PTIO (0.3nmol) produced an anxiolytic-like response. Therefore, these results support the hypothesis that intra-dlPAG injections of high doses of AEA lose their anxiolytic effects by favoring TRPV1 receptors activity and consequent NO formation, which in turn could facilitate defensive responses.


Subject(s)
Anxiety/drug therapy , Anxiety/pathology , Endocannabinoids/metabolism , Nitric Oxide/metabolism , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Animals , Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cyclic N-Oxides/pharmacology , Disease Models, Animal , Drinking/drug effects , Drug Interactions , Endocannabinoids/pharmacology , Free Radical Scavengers/pharmacology , Imidazoles/pharmacology , Male , Maze Learning/drug effects , Microinjections , Polyunsaturated Alkamides/pharmacology , Rats , Rats, Wistar , Reaction Time/drug effects , TRPV Cation Channels/metabolism
14.
Pharmacol Res ; 99: 194-201, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26117426

ABSTRACT

In the current study, we have investigated the effect of CB2 and TRPV1 receptor ligands on in vitro osteoblasts from bone marrow of human healthy donors. A pivotal role for the endocannabinoid/endovanilloid system in bone metabolism has been highlighted. We have demonstrated a functional cross-talk between CB2 and TRPV1 in human osteoclasts, suggesting these receptors as new pharmacological target for the treatment of bone resorption disease as osteoporosis. Moreover, we have shown the presence of these receptors on human mesenchimal stem cells, hMSCs. Osteoblasts are mononucleated cells originated from hMSCs by the essential transcription factor runt-related transcription factor 2 and involved in bone formation via the synthesis and release of macrophage colony-stimulating factor, receptor activator of nuclear factor kappa-B ligand and osteoprotegerin. For the first time, we show that CB2 and TRPV1 receptors are both expressed on human osteoblasts together with enzymes synthesizing and degrading endocannabinoids/endovanilloids, and oppositely modulate human osteoblast activity in culture in a way that the CB2 receptor stimulation improves the osteogenesis whereas TRPV1 receptor stimulation inhibits it.


Subject(s)
Osteoblasts/metabolism , Receptor, Cannabinoid, CB2/metabolism , TRPV Cation Channels/metabolism , Bone Resorption/metabolism , Bone and Bones/metabolism , Bone and Bones/physiology , Cell Differentiation/physiology , Cells, Cultured , Endocannabinoids/metabolism , Endocannabinoids/physiology , Humans , Macrophage Colony-Stimulating Factor/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , NF-kappa B/metabolism , Osteoblasts/physiology , Osteoclasts/metabolism , Osteoclasts/physiology , Osteogenesis/physiology , Osteoporosis/metabolism , Osteoprotegerin/metabolism , Osteoprotegerin/physiology
15.
Neurobiol Dis ; 73: 334-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25123336

ABSTRACT

The endocannabinoid system serves as a retrograde negative feedback mechanism. It is thought to control neuronal activity in an epileptic neuronal network. The purpose of this study was to evaluate the impact of the endocannabinoid and endovanilloid systems on both epileptogenesis and ictogenesis. Therefore, we modulated the endocannabinoid and endovanilloid systems genetically and pharmacologically, and analyzed the subsequent impact on seizure progression in the kindling model of temporal lobe epilepsy in mice. In addition, the impact of seizures on associated cellular alterations was evaluated. Our principal results revealed that the endocannabinoid system affects seizure and afterdischarge duration dependent on the neuronal subpopulation being modulated. Genetic deletion of CB1-receptors (CB1Rs) from principal neurons of the forebrain and pharmacological antagonism with rimonabant (5 mg/kg) caused longer seizure duration. Deletion of CB1R from GABAergic forebrain neurons resulted in the opposite effect. Along with these findings, the CB1R density was elevated in animals with repetitively induced seizures. However, neither genetic nor pharmacological interventions had any impact on the development of generalized seizures. Other than CB1, genetic deletion or pharmacological blockade with SB366791 (1 mg/kg) of transient receptor potential vanilloid receptor 1 (TRPV1) had no effect on the duration of behavioral or electrographic seizure activity in the kindling model. In conclusion, we demonstrate that endocannabinoid, but not endovanilloid, signaling affects termination of seizure activity, without influencing seizure severity over time. These effects are dependent on the neuronal subpopulation. Thus, the data argue that the endocannabinoid system plays an active role in seizure termination but does not regulate epileptogenesis.


Subject(s)
Epilepsy/genetics , Epilepsy/pathology , Kindling, Neurologic/genetics , Neurons/metabolism , Prosencephalon/pathology , Receptor, Cannabinoid, CB1/deficiency , Anilides/pharmacology , Animals , Bromodeoxyuridine , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Cannabinoid Receptor Antagonists/adverse effects , Cinnamates/pharmacology , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Male , Mice , Mice, Knockout , Neurogenesis/drug effects , Neurogenesis/genetics , Neurons/drug effects , Piperidines/adverse effects , Pyrazoles/adverse effects , Rimonabant , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , gamma-Aminobutyric Acid/metabolism
16.
Curr Neuropharmacol ; 12(5): 462-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25426013

ABSTRACT

Depression is one of the most frequent causes of disability in the 21st century. Despite the many preclinical and clinical studies that have addressed this brain disorder, the pathophysiology of depression is not well understood and the available antidepressant drugs are therapeutically inadequate in many patients. In recent years, the potential role of lipid-derived molecules, particularly endocannabinoids (eCBs) and endovanilloids, has been highlighted in the pathogenesis of depression and in the action of antidepressants. There are many indications that the eCB/endovanilloid system is involved in the pathogenesis of depression, including the localization of receptors, modulation of monoaminergic transmission, inhibition of the stress axis and promotion of neuroplasticity in the brain. Preclinical pharmacological and genetic studies of eCBs in depression also suggest that facilitating the eCB system exerts antidepressant-like behavioral responses in rodents. In this article, we review the current knowledge of the role of the eCB/endovanilloid system in depression, as well as the effects of its ligands, models of depression and antidepressant drugs in preclinical and clinical settings.

17.
Stem Cells ; 32(12): 3183-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25092424

ABSTRACT

The capsaicin receptor (TRPV1, transient receptor potential vanilloid type 1) was first discovered in the peripheral nervous system as a detector of noxious chemical and thermal stimuli including the irritant chili pepper. Recently, there has been increasing evidence of TRPV1 expression in the central nervous system. Here, we show that TRPV1 is expressed in neural precursor cells (NPCs) during postnatal development, but not in the adult. However, expression of TRPV1 is induced in the adult in paradigms linked to an increase in neurogenesis, such as spatial learning in the Morris water maze or voluntary exercise. Loss of TRPV1 expression in knockout mice leads to an increase in NPC proliferation. Functional TRPV1 expression has been confirmed in cultured NPCs. Our results indicate that TRPV1 expression influences both postnatal and activity-induced neurogenesis in adulthood.


Subject(s)
Capsaicin/metabolism , Cell Proliferation/physiology , Neural Stem Cells/cytology , Neurogenesis/physiology , Neurons/cytology , TRPV Cation Channels/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation/genetics , Cells, Cultured , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/metabolism
18.
Braz. j. med. biol. res ; 45(4): 357-365, Apr. 2012. tab
Article in English | LILACS | ID: lil-622757

ABSTRACT

This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO) and endocannabinoids (eCBs) play an important role in the regulation of aversive responses in the periaqueductal gray (PAG). Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1) receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1) receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.


Subject(s)
Animals , Mice , Rats , Anxiety/physiopathology , Escape Reaction/physiology , Neurotransmitter Agents/physiology , Periaqueductal Gray/physiology , Synaptic Transmission/physiology , Anxiety/metabolism , Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Endocannabinoids/pharmacology , Endocannabinoids/physiology , Nitric Oxide/physiology , Periaqueductal Gray/metabolism , Polyunsaturated Alkamides/pharmacology , TRPV Cation Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...