Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Ann Surg Treat Res ; 106(5): 284-295, 2024 May.
Article in English | MEDLINE | ID: mdl-38725807

ABSTRACT

Purpose: This study aimed to analyze the expression and prognosis of SRY-box transcription factor 11 (SOX11) in neuroblastoma (NB), as well as the biological function and potential regulatory mechanism of SOX11 in NB. Methods: Public RNA sequencing was used to detect the expression level of SOX11. The Kaplan-Meier curve and hazard ratios (HR) were used to determine the prognostic value of SOX11 in NB. Functional analyses were performed using CCK8, wound healing assay, and transwell invasion assay. Finally, the potential target genes of SOX11 were predicted by Harmonizonme (Ma'ayan Laboratory) and Cistrome Data Browser (Cistrome Project) database to explore the potential molecular mechanism of SOX11 in NB. Results: Compared with normal adrenal tissue, the expression of SOX11 in NB tissue was significantly upregulated. The Kaplan-Meier curve showed that high expression of SOX11 was associated with poor prognosis in children with NB (HR, 1.719; P = 0.049). SOX11 knockdown suppressed the migration capacity of SK-N-SH cells but did not affect proliferation and invasion capacity. Enhancer of zeste homolog 2 (EZH2) may be a potential downstream target gene for the transcription factor SOX11 to play a role in NB. Conclusion: The transcription factor SOX11 was significantly upregulated in NB. SOX11 knockdown suppressed the migration capacity of NB cell SK-N-SH. SOX11 may promote the progression of NB by targeting EZH2.

3.
Biomolecules ; 14(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38672463

ABSTRACT

BACKGROUND: The scaffold protein tyrosine kinase substrate 4 (TKS4) undergoes tyrosine phosphorylation by the epidermal growth factor receptor (EGFR) pathway via Src kinase. The TKS4 deficiency in humans is responsible for the manifestation of a genetic disorder known as Frank-Ter Haar syndrome (FTHS). Based on our earlier investigation, the absence of TKS4 triggers migration, invasion, and epithelial-mesenchymal transition (EMT)-like phenomena while concurrently suppressing cell proliferation in HCT116 colorectal carcinoma cells. This indicates that TKS4 may play a unique role in the progression of cancer. In this study, we demonstrated that the enhancer of zeste homolog 2 (EZH2) and the histone methyltransferase of polycomb repressive complex 2 (PRC2) are involved in the migration, invasion, and EMT-like changes in TKS4-deficient cells (KO). EZH2 is responsible for the maintenance of the trimethylated lysine 27 on histone H3 (H3K27me3). METHODS: We performed transcriptome sequencing, chromatin immunoprecipitation, protein and RNA quantitative studies, cell mobility, invasion, and proliferation studies combined with/without the EZH2 activity inhibitor 3-deazanoplanocine (DZNep). RESULTS: We detected an elevation of global H3K27me3 levels in the TKS4 KO cells, which could be reduced with treatment with DZNep, an EZH2 inhibitor. Inhibition of EZH2 activity reversed the phenotypic effects of the knockout of TKS4, reducing the migration speed and wound healing capacity of the cells as well as decreasing the invasion capacity, while the decrease in cell proliferation became stronger. In addition, inhibition of EZH2 activity also reversed most epithelial and mesenchymal markers. We investigated the wider impact of TKS4 deletion on the gene expression profile of colorectal cancer cells using transcriptome sequencing of wild-type and TKS4 knockout cells, particularly before and after treatment with DZNep. Additionally, we observed changes in the expression of several protein-coding genes and long non-coding RNAs that showed a recovery in expression levels following EZH2 inhibition. CONCLUSIONS: Our results indicate that the removal of TKS4 causes a notable disruption in the gene expression pattern, leading to the disruption of several signal transduction pathways. Inhibiting the activity of EZH2 can restore most of these transcriptomics and phenotypic effects in colorectal carcinoma cells.


Subject(s)
Adenosine , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Enhancer of Zeste Homolog 2 Protein , Epithelial-Mesenchymal Transition , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/deficiency , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Histones/metabolism
4.
Antioxidants (Basel) ; 13(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38539870

ABSTRACT

Sickle cell disease (SCD) is a pathophysiological condition of chronic hemolysis, oxidative stress, and elevated inflammation. The transcription factor Nrf2 is a master regulator of oxidative stress. Here, we report that the FDA-approved oral agent simvastatin, an inhibitor of hydroxymethyl-glutaryl coenzyme A reductase, significantly activates the expression of Nrf2 and antioxidant enzymes. Simvastatin also induces fetal hemoglobin expression in SCD patient primary erythroid progenitors and a transgenic mouse model. Simvastatin alleviates SCD symptoms by decreasing hemoglobin S sickling, oxidative stress, and inflammatory stress in erythroblasts. Particularly, simvastatin increases cellular levels of cystine, the precursor for the biosynthesis of the antioxidant reduced glutathione, and decreases the iron content in SCD mouse spleen and liver tissues. Mechanistic studies suggest that simvastatin suppresses the expression of the critical histone methyltransferase enhancer of zeste homolog 2 to reduce both global and gene-specific histone H3 lysine 27 trimethylation. These chromatin structural changes promote the assembly of transcription complexes to fetal γ-globin and antioxidant gene regulatory regions in an antioxidant response element-dependent manner. In summary, our findings suggest that simvastatin activates fetal hemoglobin and antioxidant protein expression, modulates iron and cystine/reduced glutathione levels to improve the phenotype of SCD, and represents a therapeutic strategy for further development.

5.
Front Neurosci ; 18: 1348478, 2024.
Article in English | MEDLINE | ID: mdl-38449737

ABSTRACT

Fragile X Syndrome (FXS) is a neurological disorder caused by epigenetic silencing of the FMR1 gene. Reactivation of FMR1 is a potential therapeutic approach for FXS that would correct the root cause of the disease. Here, using a candidate-based shRNA screen, we identify nine epigenetic repressors that promote silencing of FMR1 in FXS cells (called FMR1 Silencing Factors, or FMR1- SFs). Inhibition of FMR1-SFs with shRNAs or small molecules reactivates FMR1 in cultured undifferentiated induced pluripotent stem cells, neural progenitor cells (NPCs) and post-mitotic neurons derived from FXS patients. One of the FMR1-SFs is the histone methyltransferase EZH2, for which an FDA-approved small molecule inhibitor, EPZ6438 (also known as tazemetostat), is available. We show that EPZ6438 substantially corrects the characteristic molecular and electrophysiological abnormalities of cultured FXS neurons. Unfortunately, EZH2 inhibitors do not efficiently cross the blood-brain barrier, limiting their therapeutic use for FXS. Recently, antisense oligonucleotide (ASO)-based approaches have been developed as effective treatment options for certain central nervous system disorders. We therefore derived efficacious ASOs targeting EZH2 and demonstrate that they reactivate FMR1 expression and correct molecular and electrophysiological abnormalities in cultured FXS neurons, and reactivate FMR1 expression in human FXS NPCs engrafted within the brains of mice. Collectively, our results establish EZH2 inhibition in general, and EZH2 ASOs in particular, as a therapeutic approach for FXS.

6.
Cytotechnology ; 76(2): 231-246, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495291

ABSTRACT

In several forms of malignant tumors, nuclear enriched abundant transcript 1 (NEAT1), a lncRNA, has been identified to play an important role. NEAT1's regulation patterns in prostate cancer (PCa) are, however, mainly unknown. This study was aimed to evaluate and study the roles and regulatory mechanisms of NEAT1 in PCa. NEAT1, miR-582-5p, and enhancer of zeste homolog 2 (EZH2) expression were detected by qRT-PCR. The PCa cells' invasive, migrative, and proliferative activities in vitro were assessed using transwell migration and invasion, wound-healing, cloning creation, and CCK-8 assays. In the present study, impaired proliferative, migrative, and invasive capacities were observed in the NEAT1-deficient PCa (PC3 and LNCaP) cells. Further mechanistic studies found that NEAT1 performs its function through sponging miR-582-5p. Furthermore, EZH2 was confirmed to be the downstream target gene of miRNA-582-5p. The impaired progression caused by NEAT1 deficiency in PCa cells was significantly restored by the inhibition of miR-582-5p, while these effects were largely abolished by the deletion of EZH2. Finally, the xenograft nude mouse model showed that knocking down the expression of NEAT1 suppressed the growth of PCa. In conclusion, NEAT1 promotes the progression of PCa by controlling the miR-582-5p and miR-582-5p-mediated EZH2. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00612-z.

7.
Article in English | MEDLINE | ID: mdl-38512300

ABSTRACT

Background: Long noncoding RNAs (lncRNAs), as emerging regulators of a wide variety of biological processes via diverse mechanisms, have been demonstrated to be of increasing importance in biology. Genome-wide association studies of tumor samples have identified several lncRNAs as either oncogenes or tumor suppressors in various types of cancers. In recent years, the importance of lncRNAs, especially in endometrioid cancer (EEC), has become increasingly well understood. The lncRNA Forkhead box P4 antisense RNA 1 (FOXP4-AS1) has been reported to fulfill roles in several types of cancers; however, the main biological function and associated underlying molecular mechanism of FOXP4-AS1 in EEC have yet to be fully elucidated. Materials and Methods: The present study therefore aimed to investigate how RNA FOXP4-AS1 may participate in the development and progression of endometrioid carcinoma tissues. To meet this aim, in the present study, the expression level of FOXP4-AS1 was investigated in endometrioid carcinoma tissues and matching nearby normal endometrial tissues collected from patients receiving surgery at the hospital, and a series of molecular biological assays were performed to investigate the effect of FOXP4-AS1 on cell proliferation, cell migration, and cell invasion, and so on. Results: An increased concentration of FOXP4-AS1 was identified in endometrioid carcinoma samples and cell lines compared with the corresponding controls, and this lncRNA was found to be positively correlated with advanced FIGO stages in patients with endometrial cancer. Furthermore, knocking down endogenous FOXP4-AS1 led to a significant reduction in the colony formation number and a significant inhibition of cell proliferation, cell migration, and cell invasion in endometrioid carcinoma cells. Moreover, dual-specificity phosphatase 5 (DUSP5), which is lowly expressed in endometrioid carcinoma tissues cells and negatively modulated by FOXP4-AS1, was identified as the downstream target molecule of FOXP4-AS1. Subsequently, the mechanistic experiments confirmed that, through binding to enhancer of zeste homolog 2 (EZH2; one of the catalytic subunits of polycomb repressive complex 2 [PRC2]), FOXP4-AS1 could epigenetically suppress the expression of DUSP5. Finally, the oncogenic function of the FOXP4-AS1/EZH2/DUSP5 axis in endometrioid carcinoma was confirmed via rescue assays. Conclusions: The findings of the present study have highlighted how FOXP4-AS1 fulfills an oncogenic role in endometrioid carcinoma, and targeting FOXP4-AS1 and its pathway may provide new biomarkers for patients with endometrioid carcinoma.

8.
Exp Ther Med ; 27(4): 145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38476905

ABSTRACT

Thoracic aortic aneurysms (TAAs) are a major cause of death owing to weaker blood vessel walls and higher rupture rates in affected individuals. Vascular smooth muscle cells (VSMCs) are the predominant cell type within the aortic wall and their dysregulation may contribute to TAA progression. Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, is involved in several pathological processes; however, the biological functions and mechanisms underlying VSMC phenotype transition and vascular intimal hyperplasia remain unclear. The present study aimed to determine the involvement of EZH2 in mediating VSMC function in the development of TAAs. The expression of EZH2 was revealed to be elevated in patients with thoracic aortic dissection and TAA mouse model through western blotting and reverse transcription-quantitative PCR experiments. Subsequently, a mouse model was established using ß-aminopropionitrile. In vitro, EdU labeling, Transwell assay, wound healing assay and hematoxylin-eosin staining revealed that knocking down the Ezh2 gene could reduce the proliferation, invasion, migration, and calcification of mouse primary aortic smooth muscle cells. Flow cytometry analysis found that EZH2 deficiency increased cell apoptosis. Depletion of Ezh2 in mouse primary aortic VSMCs promoted the transformation of VSMCs from a synthetic to a contractile phenotype. Using RNA-sequencing analysis, it was demonstrated that Ezh2 regulated a group of genes, including integrin ß3 (Itgb3), which are critically involved in the extracellular matrix signaling pathway. qChIP found Ezh2 occupies the Itgb3 promoter, thereby suppressing the expression of Itgb3. Ezh2 promotes the invasion and calcification of VSMCs, and this promoting effect is partially reversed by co-knocking down Itgb3. In conclusion, the present study identified a previously unrecognized EZH2-ITGB3 regulatory axis and thus provides novel mechanistic insights into the pathophysiological function of EZH2. EZH2 may thus serve as a potential target for the management of TAAs.

9.
Diabetes Metab J ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38408883

ABSTRACT

Background: Diabetes-induced cardiac fibrosis is one of the main mechanisms of diabetic cardiomyopathy. As a common histone methyltransferase, enhancer of zeste homolog 2 (EZH2) has been implicated in fibrosis progression in multiple organs. However, the mechanism of EZH2 in diabetic myocardial fibrosis has not been clarified. Methods: In the current study, rat and mouse diabetic model were established, the left ventricular function of rat and mouse were evaluated by echocardiography and the fibrosis of rat ventricle was evaluated by Masson staining. Primary rat ventricular fibroblasts were cultured and stimulated with high glucose (HG) in vitro. The expression of histone H3 lysine 27 (H3K27) trimethylation, EZH2, and myocardial fibrosis proteins were assayed. Results: In STZ-induced diabetic ventricular tissues and HG-induced primary ventricular fibroblasts in vitro, H3K27 trimethylation was increased and the phosphorylation of EZH2 was reduced. Inhibition of EZH2 with GSK126 suppressed the activation, differentiation, and migration of cardiac fibroblasts as well as the overexpression of the fibrotic proteins induced by HG. Mechanical study demonstrated that HG reduced phosphorylation of EZH2 on Thr311 by inactivating AMP-activated protein kinase (AMPK), which transcriptionally inhibited peroxisome proliferator-activated receptor γ (PPAR-γ) expression to promote the fibroblasts activation and differentiation. Conclusion: Our data revealed an AMPK/EZH2/PPAR-γ signal pathway is involved in HG-induced cardiac fibrosis.

10.
Front Cell Neurosci ; 18: 1334244, 2024.
Article in English | MEDLINE | ID: mdl-38419656

ABSTRACT

Introduction: Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods: We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results: Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion: Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.

11.
Bioorg Chem ; 143: 107078, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181661

ABSTRACT

EZH2 (enhancer of zeste homolog 2) is one of the most important histone methyltransferases (HMTs), and overexpression of EZH2 can lead to proliferation, migration and angiogenesis of tumor cells. But most of EZH2 inhibitors are only effective against some hematologic malignancies and have poor efficacy against solid tumors. Here, we report the design, synthesis, and evaluation of highly potent proteolysis targeting chimeric (PROTACs) small molecules targeting EZH2. We developed a potent and effective EZH2 degrader P4, which effectively induced EZH2 protein degradation and inhibited breast cancer cell growth. Further studies showed that P4 can significantly decrease the degree of H3K27me3 in MDA-MB-231 cell line, induce apoptosis and G0/G1 phase arrest in Pfeiffer and MDA-MB-231 cell lines. Therefore, P4 is a potential anticancer molecule for breast cancer treatment.


Subject(s)
Breast Neoplasms , Enhancer of Zeste Homolog 2 Protein , Proteolysis Targeting Chimera , Female , Humans , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/drug effects , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/pharmacology , Von Hippel-Lindau Tumor Suppressor Protein/pharmacology , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology
12.
Mol Cell Biochem ; 479(4): 831-841, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37199893

ABSTRACT

Metastasis is the cause of poor prognosis in ovarian cancer (OC). Enhancer of Zeste homolog 2 (EZH2), a histone-lysine N-methyltransferase enzyme, promotes OC cell migration and invasion by regulating the expression of tissue inhibitor of metalloproteinase-2 (TIMP2) and matrix metalloproteinases-9 (MMP9). Hence, we speculated that EZH2-targeting therapy might suppress OC migration and invasion. In this study, the expression of EZH2, TIMP2, and MMP9 in OC tissues and cell lines was analyzed using The Cancer Genome Atlas (TCGA) database and western blotting, respectively. The effects of SKLB-03220, an EZH2 covalent inhibitor, on OC cell migration and invasion were investigated using wound-healing assays, Transwell assays, and immunohistochemistry. TCGA database analysis confirmed that the EZH2 and MMP9 mRNA expression was significantly higher in OC tissues, whereas TIMP2 expression was significantly lower than that in normal ovarian tissues. Moreover, EZH2 negatively correlated with TIMP2 and positively correlated with MMP9 expression. In addition to the anti-tumor activity of SKLB-03220 in a PA-1 xenograft model, immunohistochemistry results showed that SKLB-03220 markedly increased the expression of TIMP2 and decreased the expression of MMP9. Additionally, wound-healing and Transwell assays showed that SKLB-03220 significantly inhibited the migration and invasion of both A2780 and PA-1 cells in a concentration-dependent manner. SKLB-03220 inhibited H3K27me3 and MMP9 expression and increased TIMP2 expression in PA-1 cells. Taken together, these results indicate that the EZH2 covalent inhibitor SKLB-03220 inhibits metastasis of OC cells by upregulating TIMP2 and downregulating MMP9, and could thus serve as a therapeutic agent for OC.


Subject(s)
Acrylamides , Enhancer of Zeste Homolog 2 Protein , Ovarian Neoplasms , Humans , Female , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Ovarian Neoplasms/genetics , Cell Line, Tumor , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Matrix Metalloproteinase 9/genetics , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic
13.
Pathol Res Pract ; 253: 154988, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118215

ABSTRACT

Gastrointestinal (GI) cancers continue to be a major cause of mortality and morbidity globally. Understanding the molecular pathways associated with cancer progression and severity is essential for creating effective cancer treatments. In cancer research, there is a notable emphasis on Enhancer of zeste homolog 2 (EZH2), a key player in gene expression influenced by its irregular expression and capacity to attach to promoters and alter methylation status. This review explores the impact of EZH2 signaling on various GI cancers, such as colorectal, gastric, pancreatic, hepatocellular, esophageal, and cholangiocarcinoma. The primary function of EZH2 signaling is to facilitate the accelerated progression of cancer cells. Additionally, EZH2 has the capacity to modulate the reaction of GI cancers to chemotherapy and radiotherapy. Numerous pathways, including long non-coding RNAs and microRNAs, serve as upstream regulators of EZH2 in these types of cancer. EZH2's enzymatic activity enables it to attach to target gene promoters, resulting in methylation that modifies their expression. EZH2 could be considered as an independent prognostic factor, with increased expression correlating with a worse disease prognosis. Additionally, a range of gene therapies including small interfering RNA, and anti-tumor agents are being explored to target EZH2 for cancer treatment. This comprehensive review underscores the current insights into EZH2 signaling in gastrointestinal cancers and examines the prospect of therapies targeting EZH2 to enhance patient outcomes.


Subject(s)
Bile Duct Neoplasms , Gastrointestinal Neoplasms , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/genetics , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/therapy , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
14.
Braz. oral res. (Online) ; 38: e018, 2024. tab, graf
Article in English | LILACS-Express | LILACS, BBO - Dentistry | ID: biblio-1550152

ABSTRACT

Abstract The aim of this study was to evaluate the expression of the EZH2 protein and describe the clinical and microscopic characteristics of adenoid cystic carcinoma (ACC) and pleomorphic adenoma (PA). The study included 16 ACC cases and 12 PA. All ACC and PA cases were positive for EZH2 and the ACC samples showed significantly higher EZH2 expression. The clinical and microscopic covariates were described in relation to EZH2 staining in ACC samples. The highest mean values of EZH2 were observed in cases with local metastasis, recurrence, perineural invasion, and predominantly cribriform growth pattern without solid areas. EZH2 is a potential marker of malignancy.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-999184

ABSTRACT

Fibrosis, a tumor-like lesion between benign tissue and malignant tumor, mostly occurs in the liver, kidney, heart, lung, bone marrow and other organs and tissues. It can affect almost every organ and eventually induce multiple organ failure and cancers, seriously endangering human life. It will be of great importance to prevent cancer if the disease can be opportunely blocked in the fibrotic stage. The pathogenesis of fibrosis is still not completely clear. It is of great clinical significance to study the occurrence, development, and mechanism of fibrosis as well as to screen new therapeutic targets. Enhancer of zeste homolog 2 (EZH2) is mainly located in the nucleus and involved in the formation of the polycomb repressive complex 2. EZH2 is a methyltransferase which makes the lysine on position 27 of histone H3 (H3K27me3) undergo trimethyl modification induces gene silencing through classical or nonclassical actions, so as to inhibit or activate transcription. EZH2 plays a critical role in cell growth, proliferation, differentiation, and apoptosis, which is regulated by different targets and signaling pathways. EZH2 regulates the transformation of myofibroblasts and participates in the fibrosis of multiple organs. Recent studies have shown that EZH2 plays a role in fibrosis-related pathophysiological processes such as epithelial-mesenchymal transition, oxidative stress, and inflammation. EZH2 as the target of fibrosis, EZH2 inhibitors, and EZH2-related traditional Chinese medicine (TCM) formula and active compounds have gradually become hot research directions. EZH2 may be a powerful target for organ fibrosis. Exploring the structure, function, and distribution of EZH2, the role of EZH2 in fibrosis, the EZH2 inhibitors, and TCM formulas and active components targeting EZH2 has great meanings. This paper reviews the research progress in EZH2 and fibrosis, providing new ideas for the diagnosis, treatment, and drug development of fibrosis.

16.
Curr Eye Res ; 48(12): 1122-1132, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37800319

ABSTRACT

PURPOSE: This paper aims to explore the molecular mechanism of Enhancer of Zeste Homolog 2 (EZH2)-mediated H3K27me3 in human corneal endothelial cells (HCEC) apoptosis by inhibiting Heme oxygenase-1 (HO-1) transcription to provide a potential target for the treatment of corneal apoptosis. METHODS: HCECs were cultured in vitro and transfected with si-EZH2, pcDNA3.1-EZH2, pcDNA3.1-HO-1, GSK-J4 (an effective H3K27me3 demethylase inhibitor), and corresponding controls. Western Blot assay was used to detect the levels of EZH2, HO-1, H3K27me3, and apoptosis-related proteins (Bcl-2, Bax, and Cleaved-caspase-3) in HCECs; CCK-8 assay was conducted to detect cell viability and flow cytometry to analyze the apoptosis. HO-1 mRNA levels were detected by RT-qPCR and changes in H3K27me3 levels on the HO-1 promoter were detected by chromatin immunoprecipitation. RESULTS: HCECs transfected with si-EZH2 showed significantly lower EZH2 mRNA and protein levels, higher HCEC viability, lower apoptosis rates, higher antiapoptotic protein Bcl-2 expression, lower proapoptotic protein (Bax and Cleaved-caspase-3) levels, and significantly higher HO-1 expression. HCECs transfected with pcDNA3.1-EZH2 showed the opposite results. EZH2 repressed HO-1 transcription by mediating H3K27me3. H3K27me27 was enriched in the HO-1 promoter and overexpression of EZH2 increased H3K27me27 levels. Promotion of H3K27me3 partially reversed the mitigating effect of si-EZH2 on HCEC apoptosis. Overexpression of HO-1 partially reversed the apoptosis-promoting effects of EZH2 and H3K27me3 on HCECs. CONCLUSIONS: EZH2 promotes HCE cell apoptosis by mediating H3K27me3 to inhibit HO-1 transcription.


Subject(s)
Cornea , Enhancer of Zeste Homolog 2 Protein , Histones , Humans , Apoptosis/genetics , bcl-2-Associated X Protein/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Endothelial Cells/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Histones/genetics , Histones/metabolism , RNA, Messenger , Cornea/metabolism
17.
Eur J Med Chem ; 261: 115825, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37826933

ABSTRACT

EZH2 is overexpressed in multiple types of cancer and high expression level of EZH2 correlates with poor prognosis. Besides the regulation of H3K27 trimethylation, EZH2 itself regulates its downstream proteins in a PRC2- and methylation-independent way. Starting from an approved EZH2 inhibitor EPZ-6438, we used covalent drug design and medicinal chemistry approaches to discover a novel covalent EZH2 degrader 38, which forms a covalent bond with EZH2 Cys663 and showed strong biochemical activities against EZH2 WT and mutants. Compound 38 exhibited potent antiproliferation effects against both B-cell lymphoma and TNBC cell lines by reducing the levels of H3K27me3 and EZH2. The mass spectrometry, washout and competition experiments confirmed the covalent binding of 38 to EZH2. This study demonstrates that covalent EZH2 degraders could provide an opportunity for the development of promising new drug candidates.


Subject(s)
Histones , Lymphoma, B-Cell , Humans , Histones/metabolism , Polycomb Repressive Complex 2 , Enhancer of Zeste Homolog 2 Protein/metabolism
18.
J Cancer Res Ther ; 19(5): 1079-1092, 2023.
Article in English | MEDLINE | ID: mdl-37787267

ABSTRACT

The alteration in the expression of enhancer of zeste homolog-2 (EZH2) gene is very well known in the progression, severity, and aggressiveness of cancer. Hence, it is important to study the genomic variation of the EZH2 gene. Previously, many association-based studies investigated the association between rs2302427C>G and cancer susceptibility. However, the result had been inconsistent. Therefore, our meta-analysis aimed to identify the association between EZH2 rs2302427 and cancer risk. A systematic literature search was done for databases PubMed, Google Scholar, Science Direct, and Cochrane library up to September 2020 and statistical analysis was performed by RevMan v 5.3. A total of six studies comprised 1876 cases and 2555 controls were included in the current meta-analysis. The pooled analysis showed that overall, there is significant association of rs2302427 C>G change with reduced cancer risk (odds ratio = 0.60, 95% confidence interval [0.35-1.03], P = 0.07) but non-significantly. Further, the subgroup analysis also revealed that there is no significant difference between the Asian and European population, and both exhibit the protective nature of rs2302427 with cancer. The present meta-analysis indicated that EZH2 rs2302427 has an association with cancer in reducing the risk but for the Indian population studies are required as the Indian population comprises various sub-population genetically isolated for long.


Subject(s)
Neoplasms , Polymorphism, Genetic , Humans , Alleles , Genetic Predisposition to Disease , Neoplasms/genetics
19.
Respir Res ; 24(1): 222, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37710230

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) bears high mortality due to unclear pathogenesis and limited therapeutic options. Therefore, identifying novel regulators is required to develop alternative therapeutic strategies. METHODS: The lung fibroblasts from IPF patients and Reticulocalbin 3 (RCN3) fibroblast-selective knockdown mouse model were used to determine the importance of Rcn3 in IPF; the epigenetic analysis and protein interaction assays, including BioID, were used for mechanistic studies. RESULTS: Reticulocalbin 3 (RCN3) upregulation is associated with the fibrotic activation of lung fibroblasts from IPF patients and Rcn3 overexpression blunts the antifibrotic effects of pirfenidone and nintedanib. Moreover, repressing Rcn3 expression in mouse fibroblasts ameliorates bleomycin-induced lung fibrosis and pulmonary dysfunction in vivo. Mechanistically, RCN3 promotes fibroblast activation by maintaining persistent activation of TGFß1 signalling via the TGFß1-RCN3-TGFBR1 positive feedback loop, in which RCN3 upregulated by TGFß1 exposure detains EZH2 (an epigenetic methyltransferase) in the cytoplasm through RCN3-EZH2 interaction, leading to the release of the EZH2-H3K27me3 epigenetic repression of TGFBR1 and the persistent expression of TGFBR1. CONCLUSIONS: These findings introduce a novel regulating mechanism of TGFß1 signalling in fibroblasts and uncover a critical role of the RCN3-mediated loop in lung fibrosis. RCN3 upregulation may cause resistance to IPF treatment and targeting RCN3 could be a novel approach to ameliorate pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Animals , Mice , Receptor, Transforming Growth Factor-beta Type I , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Bleomycin/toxicity , Disease Models, Animal , Fibroblasts , Calcium-Binding Proteins
20.
BMC Cardiovasc Disord ; 23(1): 474, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735624

ABSTRACT

BACKGROUND: Diabetes is associated with myocardial fibrosis, while the underlying mechanisms remain elusive. The aim of this study is to investigate the underlying role of calcineurin/nuclear factor of activated T cell 3 (CaN/NFATc3) pathway and the Enhancer of zeste homolog 2 (EZH2) in diabetes-related myocardial fibrosis. METHODS: Streptozotocin (STZ)-injected diabetic rats were randomized to two groups: the controlled glucose (Con) group and the diabetes mellitus (DM) group. Eight weeks later, transthoracic echocardiography was used for cardiac function evaluation, and myocardial fibrosis was visualized by Masson trichrome staining. The primary neonatal rat cardiac fibroblasts were cultured with high-glucose medium with or without cyclosporine A or GSK126. The expression of proteins involved in the pathway was examined by western blotting. The nuclear translocation of target proteins was assessed by immunofluorescence. RESULTS: The results indicated that high glucose treatment increased the expression of CaN, NFATc3, EZH2 and trimethylates lysine 27 on histone 3 (H3K27me3) in vitro and in vivo. The inhibition of the CaN/NFATc3 pathway alleviated myocardial fibrosis. Notably, inhibition of CaN can inhibit the nuclear translocation of NFATc3, and the expression of EZH2 and H3K27me3 protein induced by high glucose. Moreover, treatment with GSK126 also ameliorated myocardial fibrosis. CONCLUSION: Diabetes can possibly promote myocardial fibrosis by activating of CaN/NFATc3/EZH2 pathway.


Subject(s)
Calcineurin , Diabetes Mellitus, Experimental , Animals , Rats , Diabetes Mellitus, Experimental/complications , Enhancer of Zeste Homolog 2 Protein/genetics , Fibroblasts , Glucose , Histones , NFATC Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...