Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 130: 155732, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38776738

ABSTRACT

BACKGROUND: The increase in antimicrobial resistance leads to complications in treatments, prolonged hospitalization, and increased mortality. Glabridin (GLA) is a hydroxyisoflavan from Glycyrrhiza glabra L. that exhibits multiple pharmacological activities. Colistin (COL), a last-resort antibiotic, is increasingly being used in clinic against Gram-negative bacteria. Previous reports have shown that GLA is able to sensitize first line antibiotics such as norfloxacin and vancomycin on Staphylococcus aureus, implying that the use of GLA as an antibiotic adjuvant is a promising strategy for addressing the issue of drug resistance. However, the adjuvant effect on other antibiotics, especially COL, on Gram-negative bacteria such as Escherichia coli has not been studied. PURPOSE: The objective of our study was to investigate the targets of GLA and the synergistic effect of GLA and COL in E. coli, and to provide further evidence for the use of GLA as an antibiotic adjuvant to alleviate the problem of drug resistance. METHODS: We first investigated the interaction between GLA and enoyl-acyl carrier protein reductase, also called "FabI", through enzyme inhibition assay, differential scanning fluorimetry, isothermal titration calorimetry and molecular docking assay. We tested the transmembrane capacity of GLA on its own and combined it with several antibiotics. The antimicrobial activities of GLA and COL were evaluated against six different susceptible and resistant E. coli in vitro. Their interactions were analyzed using checkerboard assay, time-kill curve and CompuSyn software. A series of sensitivity tests was conducted in E. coli overexpressing the fabI gene. The development of COL resistance in the presence of GLA was tested. The antimicrobial efficacy of GLA and COL in a mouse model of urinary tract infection was assessed. The anti-biofilm effects of GLA and COL were investigated. RESULTS: In this study, enzyme kinetic analysis and thermal analysis provided evidence for the interaction between GLA and FabI in E. coli. GLA enhanced the antimicrobial effect of COL and synergistically suppressed six different susceptible and resistant E. coli with COL. Overexpression experiments showed that targeted inhibition of FabI was a key mechanism by which GLA synergistically enhanced COL activity. The combination of GLA and COL slowed the development of COL resistance in E. coli. Combined GLA and COL treatment significantly reduced bacterial load and mitigated urinary tract injury in a mouse model of E. coli urinary tract infection. Additionally, GLA + COL inhibited the formation and eradication of biofilms and the synthesis of curli. CONCLUSION: Our findings indicate that GLA synergistically enhances antimicrobial activities of COL by targeting inhibition of FabI in E. coli. GLA is expected to continue to be developed as an antibiotic adjuvant to address drug resistance issues.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , Drug Synergism , Escherichia coli , Isoflavones , Microbial Sensitivity Tests , Molecular Docking Simulation , Phenols , Isoflavones/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Animals , Phenols/pharmacology , Mice , Escherichia coli Infections/drug therapy , Glycyrrhiza/chemistry
2.
Comput Biol Chem ; 110: 108034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430612

ABSTRACT

Tuberculosis (TB) is one of the life-threatening infectious diseases with prehistoric origins and occurs in almost all habitable parts of the world. TB mainly affects the lungs, and its etiological agent is Mycobacterium tuberculosis (Mtb). In 2022, more than 10 million people were infected worldwide, and 1.3 million were children. The current study considered the in-silico and machine learning (ML) approaches to explore the potential anti-TB molecules from the SelleckChem database against Enoyl-Acyl Carrier Protein Reductase (InhA). Initially, the entire database of ∼ 119000 molecules was sorted out through drug-likeness. Further, the molecular docking study was conducted to reduce the chemical space. The standard TB drug molecule's binding energy was considered a threshold, and molecules found with lower affinity were removed for further analyses. Finally, the molecules were checked for the pharmacokinetic and toxicity studies, and compounds found to have acceptable pharmacokinetic parameters and were non-toxic were considered as final promising molecules for InhA. The above approach further evaluated five molecules for ML-based toxicity and synthetic accessibility assessment. Not a single molecule was found toxic and each of them was revealed as easy to synthesise. The complex between InhA and proposed and standard molecules was considered for molecular dynamics simulation. Several statistical parameters showed the stability between InhA and the proposed molecule. The high binding affinity was also found for each of the molecules towards InhA using the MM-GBSA approach. Hence, the above approaches and findings exposed the potentiality of the proposed molecules against InhA.


Subject(s)
Machine Learning , Molecular Docking Simulation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/toxicity , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure
3.
Phytopathology ; : PHYTO08230272R, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37913555

ABSTRACT

Walnut bacterial blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is one of the most prevalent diseases of walnut (Juglans spp.), causing significant reductions in nut yield and important losses in economy. Enoyl-acyl carrier protein (ACP) reductase (ENR) is one of the key enzymes involved in the biosynthesis of bacterial fatty acids. In this study, we identified a single ENR-encoding gene, RS10040, in the genome of the XajDW3F3 strain. Sequence alignment analysis suggested RS10040 as a candidate fabV gene in Xaj. Expression of XajfabV restored the growth of the Escherichia coli fabI temperature-sensitive mutant under a nonpermissive growth condition. In vitro assays demonstrated that XajFabV catalyzed enoyl-ACPs of various chain lengths to acyl-ACPs, demonstrating its role in de novo fatty acid biosynthesis. Furthermore, we confirmed that XajfabV is an essential gene for growth, as no XajfabV deletion mutant could be obtained, although XajfabV in the chromosome could be deleted after compensating with a functional ENR-encoding gene via an exogenous plasmid. The fabV replacement mutants showed similar growth characteristic and fatty acid compositions. Our data further identified that fabV conferred Xaj with tolerance to various environmental stresses. Although XajFabV conferred Xaj with triclosan resistance, the resistance of Xaj was weaker than that found for Pseudomonas aeruginosa. Moreover, triclosan exhibited a control effect against infection of the ΔfabV/EcfabI to its host walnut. This study revealed the function of XajFabV and laid a theoretical foundation for the fatty acid synthesis mechanism of Xaj.

4.
J Biomol Struct Dyn ; : 1-15, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37526169

ABSTRACT

The emergence of superbugs of multi-drug resistant (MDR/RR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb) strains at a faster rate is posing a serious threat to Tuberculosis (TB) control worldwide. Mtb enoyl-acyl carrier protein reductase (InhA) is a well-established target of the front-line anti-TB prodrug Isoniazid (INH), which requires activation by Catalase-peroxidase enzyme (KatG) in order to inhibit InhA enzyme, that is crucial for the biosynthesis of the mycobacterial cell wall. Currently, due to widespread resistance to this drug, it is necessary to identify new clinical candidates that directly inhibit InhA enzyme and do not require activation by KatG, thereby circumventing most of the resistance mechanisms. In the present study, high-throughput virtual screening of ASINEX database was carried out to identify potential direct inhibitors of Mtb InhA. Best twenty compounds with good binding energies ranging between -12.36 and -9.27 kcal/mol were selected as promising virtual screening hits. These molecules were subjected to ADME study followed by toxicity prediction. Finally, four top-ranked molecules which are structurally diverse and possess best binding affinity than the co-crystalized ligand have been chosen for MD simulation studies followed by MM-GBSA analysis to validate and ensure the stability of hits in the active site of the enzyme. Based on the 100 ns MD simulation studies and binding free energy estimates, three hit molecules B244, B369, and B310 could be considered as potential inhibitors for Mtb InhA, which are likely to be potent against INH-resistant Mtb strains after successful experimental validation.Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; 41(5): 2002-2015, 2023 03.
Article in English | MEDLINE | ID: mdl-35043754

ABSTRACT

Plasmodium falciparum is counted as one of the deadly species causing malaria. In that respect, enoyl acyl carrier protein reductase is recognized as one of the attractive druggable targets for the identification of antimalarials. Thus, from the structural proteome of ENR, common feature pharmacophores were constructed. To identify the representative models, all the hypotheses were subjected to validation methods, like, test set, enrichment factor, and Güner-Henry method, and the selected representative hypotheses were used to screen out the drug-like natural products. Further, the screened candidates were advanced to molecular docking calculations. Based on the docking score criteria and presence of essential interaction with Tyr277, seven candidates were shortlisted to conduct the HYDE and QSAR assessment. Further, the stability of these complexes was evaluated by employing molecular dynamics simulations, molecular mechanics-generalized born surface area approach-based free binding energy calculations with the residue-wise contribution of PfENR to the total binding free energy of the complex. On comparing the root mean square deviation, and fluctuation plots of the docked candidates with the reference, all the candidates displayed stable behavior, and the same outcome was depicted from the secondary structure element. However, from the free energy calculations, and residue-wise contribution conducted after dynamics, it was observed that out of seven, only five candidates sustain the binding with Tyr277 and cofactor of PfENR. Therefore, in the current work, the hybrid study of screening and stability lead to the identification of five structurally diverse candidates that can be employed for the design of novel antimalarials.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antimalarials , Biological Products , Malaria , Humans , Molecular Docking Simulation , Antimalarials/pharmacology , Antimalarials/chemistry , Pharmacophore , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Molecular Dynamics Simulation , Plasmodium falciparum/metabolism
6.
Drug Dev Res ; 83(6): 1292-1304, 2022 09.
Article in English | MEDLINE | ID: mdl-35769019

ABSTRACT

The recent emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) has complicated and significantly slowed efforts to eradicate and/or reduce the worldwide incidence of life-threatening acute and chronic cases of tuberculosis. To overcome this setback, researchers have increased the intensity of their work to identify new small-molecule compounds that are expected to remain efficacious antimicrobials against Mtb. Here, we describe our effort to apply the principles of molecular hybridization to synthesize 16 compounds carrying thiophene and thiazole rings beside the core urea functionality (TTU1-TTU16). Following extensive structural characterization, the obtained compounds were initially evaluated for their antimycobacterial activity against Mtb H37Rv. Subsequently, three derivatives standing out with their anti-Mtb activity profiles and low cytotoxicity (TTU5, TTU6, and TTU12) were tested on isoniazid-resistant clinical isolates carrying katG and inhA mutations. Additionally, due to their pharmacophore similarities to the well-known InhA inhibitors, the molecules were screened for their enoyl acyl carrier protein reductase (InhA) inhibitory potentials. Molecular docking studies were performed to support the experimental enzyme inhibition data. Finally, drug-likeness of the selected compounds was established by theoretical calculations of physicochemical descriptors.


Subject(s)
Bacterial Proteins , Urea , Antitubercular Agents/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Urea/pharmacology
7.
Bioorg Chem ; 121: 105688, 2022 04.
Article in English | MEDLINE | ID: mdl-35189443

ABSTRACT

A series of new spirothiazolidinone derivatives with a mandelic acid moiety were synthesized and subsequently tested in growth inhibition assays against Mycobacterium tuberculosis strain H37Rv. Compound 16 displayed the highest inhibition value of 98% at lower than 6.25 µg/mL concentration. A single crystal X-ray analysis was conducted on this compound to confirm the structure and determine its absolute configuration. Afterwards, reverse docking and molecular dynamics simulations of this specific stereoisomer were performed against a selection of 10 putative targets of M. tuberculosis to suggest possible mechanisms of action. Our results suggest HadAB, Pks13, DprE1, FadD32 and InhA as possible target proteins for the observed antimycobacterial activity of compound 16.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Humans , Mandelic Acids , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship
8.
Bioorg Chem ; 115: 105242, 2021 10.
Article in English | MEDLINE | ID: mdl-34392175

ABSTRACT

Enoyl acyl carrier protein reductase (InhA) is a key enzyme involved in fatty acid synthesis mainly mycolic acid biosynthesis that is a part of NADH dependent acyl carrier protein reductase family. The aim of the present literature is to underline the different scaffolds or enzyme inhibitors that inhibit mycolic acid biosynthesis mainly cell wall synthesis by inhibiting enzyme InhA. Various scaffolds were identified based on the screening technologies like high throughput screening, encoded library technology, fragment-based screening. The compounds studied include indirect inhibitors (Isoniazid, Ethionamide, Prothionamide) and direct inhibitors (Triclosan/Diphenyl ethers, Pyrrolidine Carboxamides, Pyrroles, Acetamides, Thiadiazoles, Triazoles) with better efficacy against drug resistance. Out of the several scaffolds studied, pyrrolidine carboxamides were found to be the best molecules targeting InhA having good bioavailability properties and better MIC. This review provides with a detailed information, analysis, structure activity relationship and useful insight on various scaffolds as InhA inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Drug Discovery , Inhibins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Dose-Response Relationship, Drug , Humans , Inhibins/metabolism , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
9.
J Biomol Struct Dyn ; 39(16): 6056-6069, 2021 10.
Article in English | MEDLINE | ID: mdl-32762412

ABSTRACT

The emergence of increased resistance to the available drugs has created a situation that demands to find out more specific molecular drug targets for Leishmaniasis. The enoyl acyl carrier protein reductase (ENR), a regulatory enzyme in type II fatty acid synthesis, was confirmed as a novel drug target and triclosan as its specific inhibitor in many microorganisms. In this study, the triclosan was tested for the leishmanicidal property against Leishmania donovani (L. donovani) and the results of in vitro and ex vivo drug assays on promastigotes and amastigotes showed that triclosan possessed antileishmanial activity with a half minimal inhibitory concentration (IC50) of 30 µM. Consequently, adopting in silico approach, we have tested the triclosan's ability to bind with the L. donovani enoyl acyl carrier protein reductase (LdENR). The 3D structure of LdENR was modelled, triclosan and cofactors were docked in LdENR model and molecular dynamic simulations were performed to observe the protein-ligands interactions, stability, compactness and binding energy calculation of the ligands-LdENR complexes. The observation showed that triclosan stably interacted with LdENR in presence of both the cofactors (NADPH and NADH), however, simulation results favor NADH as a preferred co-factor for LdENR. These results support that the reduction of L. donovani growth in the in vitro and ex vivo drug assays may be due to the interaction of triclosan with LdENR, which should be confirmed through enzymatic assays. The results of this study suggest that LdENR could be a potential drug target and triclosan as a lead for Leishmaniasis.Communicated by Ramaswamy H. Sarma.


Subject(s)
Leishmania donovani , Pharmaceutical Preparations , Acyl Carrier Protein , Computer Simulation , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism
10.
Antibiotics (Basel) ; 9(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878018

ABSTRACT

In the present investigation, the parent compound 4-amino-5-(4-fluoro-3-phenoxyphenyl)-4H-1,2,4-triazole-3-thiol (1) and its Schiff bases 2, 3, and 4 were subjected to whole-cell anti-TB against H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by resazurin microtiter assay (REMA) plate method. Test compound 1 exhibited promising anti-TB activity against H37Rv and MDR strains of MTB at 5.5 µg/mL and 11 µg/mL, respectively. An attempt to identify the suitable molecular target for compound 1 was performed using a set of triazole thiol cellular targets, including ß-ketoacyl carrier protein synthase III (FABH), ß-ketoacyl ACP synthase I (KasA), CYP121, dihydrofolate reductase, enoyl-acyl carrier protein reductase, and N-acetylglucosamine-1-phosphate uridyltransferase. MTB ß-ketoacyl ACP synthase I (KasA) was identified as the cellular target for the promising anti-TB parent compound 1 via docking and molecular dynamics simulation. MM(GB/PB)SA binding free energy calculation revealed stronger binding of compound 1 compared with KasA standard inhibitor thiolactomycin (TLM). The inhibitory mechanism of test compound 1 involves the formation of hydrogen bonding with the catalytic histidine residues, and it also impedes access of fatty-acid substrates to the active site through interference with α5-α6 helix movement. Test compound 1-specific structural changes at the ALA274-ALA281 loop might be the contributing factor underlying the stronger anti-TB effect of compound 1 when compared with TLM, as it tends to adopt a closed conformation for the access of malonyl substrate to its binding site.

11.
Eur J Med Chem ; 208: 112757, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32883635

ABSTRACT

Development of new anti-bacterial agents acting upon underexploited targets and thus evading known mechanisms of resistance is the need of the hour. The highly conserved and distinct bacterial fatty acid biosynthesis pathway (FAS-II), presents a validated and yet relatively underexploited target for drug discovery. FabI and its isoforms (FabL, FabK, FabV and InhA) are essential enoyl-ACP reductases present in several microorganisms. In addition, the components of the FAS-II pathway are distinct from the multi-enzyme FAS-I complex found in mammals. Thus, inhibition of FabI and its isoforms is anticipated to result in broad-spectrum antibacterial activity. Several research groups from industry and academic laboratories have devoted significant efforts to develop effective FabI-targeting antibiotics, which are currently in various stages of clinical development for the treatment of multi-drug resistant bacterial infections. This review summarizes all the natural as well as synthetic inhibitors of gram-positive and gram-negative enoyl ACP reductases (FabI). The knowledge of the reported inhibitors can aid in the development of broad-spectrum antibacterials specifically targeting FabI enzymes from S. aureus, S. epidermidis, B. anthracis, B. cereus, E. coli, P. aeruginosa, P. falciparum and M. tuberculosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Organic Chemicals/pharmacology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Bacteria/enzymology , Cell Line, Tumor , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Enzyme Inhibitors/chemistry , Fatty Acid Synthase, Type II/chemistry , Humans , Organic Chemicals/chemistry
12.
Int J Mycobacteriol ; 9(1): 12-17, 2020.
Article in English | MEDLINE | ID: mdl-32474482

ABSTRACT

Background: Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (mtInhA) is involved in the biosynthesis of mycolic acids, a major component of mycobacterial cell walls, and has been targeted in the development of anti-tuberculosis (TB) drugs. In our previous in silico structure-based drug screening study, we identified KES4, a novel class of mtInhA inhibitor. KES4 is composed of four ring structures (A-D-rings) and molecular dynamic simulation predicted that the D-ring is essential for the interaction with mtInhA. Methods: The structure-activity relationship study of the D-ring was attempted and aided by in silico docking simulations to improve the mtInhA inhibitory activity of KES4. A virtual chemical library of the D-ring-modified KES4 was then constructed and subjected to in silico docking simulation against mtInhA using the GOLD program. The candidate compound showing the highest GOLD score, referred to as KEN1, was synthesized, and its biological properties were compared with those of the lead compound KES4. Results: We achieved the synthesis of KEN1 and evaluated its effects on InhA activity, mycobacterial growth, and cytotoxicity. The antimycobacterial activity of KEN1 was comparable to that of the lead compound (KES4), although it exhibited superior activity in mtInhA inhibition. \. Conclusions: We obtained a KES4 derivative with high mtInhA inhibitory activity by in silico docking simulation with a chemical library consisting of a series of D-ring-modified KES4.


Subject(s)
Acyl Carrier Protein/antagonists & inhibitors , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Acyl Carrier Protein/chemistry , Animals , Antitubercular Agents/chemistry , Cell Line, Tumor , Dogs , Drug Evaluation, Preclinical/methods , Humans , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Oxidation-Reduction , Oxidoreductases/chemistry , Small Molecule Libraries , Structure-Activity Relationship
13.
J Biol Chem ; 295(22): 7635-7652, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32317282

ABSTRACT

Enoyl-acyl carrier protein reductase (FabI) catalyzes a rate-controlling step in bacterial fatty-acid synthesis and is a target for antibacterial drug development. A phylogenetic analysis shows that FabIs fall into four divergent clades. Members of clades 1-3 have been structurally and biochemically characterized, but the fourth clade, found in members of phylum Bacteroidetes, is uncharacterized. Here, we identified the unique structure and conformational changes that distinguish clade 4 FabIs. Alistipes finegoldii is a prototypical Bacteroidetes inhabitant of the gut microbiome. We found that A. finegoldii FabI (AfFabI) displays cooperative kinetics and uses NADH as a cofactor, and its crystal structure at 1.72 Å resolution showed that it adopts a Rossmann fold as do other characterized FabIs. It also disclosed a carboxyl-terminal extension that forms a helix-helix interaction that links the protomers as a unique feature of AfFabI. An AfFabI·NADH crystal structure at 1.86 Å resolution revealed that this feature undergoes a large conformational change to participate in covering the NADH-binding pocket and establishing the water channels that connect the active site to the central water well. Progressive deletion of these interactions led to catalytically compromised proteins that fail to bind NADH. This unique conformational change imparted a distinct shape to the AfFabI active site that renders it refractory to a FabI drug that targets clade 1 and 3 pathogens. We conclude that the clade 4 FabI, found in the Bacteroidetes inhabitants of the gut, have several structural features and conformational transitions that distinguish them from other bacterial FabIs.


Subject(s)
Bacterial Proteins/chemistry , Bacteroidetes/enzymology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Gastrointestinal Microbiome , NAD/chemistry , Binding Sites , Crystallography, X-Ray , Humans
14.
FEBS J ; 287(21): 4710-4728, 2020 11.
Article in English | MEDLINE | ID: mdl-32112503

ABSTRACT

The synthetic biocide triclosan targets enoyl-acyl carrier protein reductase(s) (ENR) in bacterial type II fatty acid biosynthesis. Screening and sequence analyses of the triclosan resistome from the soil metagenome identified a variety of triclosan-resistance ENRs. Interestingly, the mode of triclosan resistance by one hypothetical protein was elusive, mainly due to a lack of sequence similarity with other proteins that mediate triclosan resistance. Here, we carried out a structure-based function prediction of the hypothetical protein, herein referred to as FabMG, and in vivo and in vitro functional analyses. The crystal structure of FabMG showed limited structural homology with FabG and FabI, which are also involved in type II fatty acid synthesis. In vivo complementation and in vitro activity assays indicated that FabMG is functionally a FabI-type ENR that employs NADH as a coenzyme. Variations in the sequence and structure of FabMG are likely responsible for inefficient binding of triclosan, resulting in triclosan resistance. These data unravel a previously uncharacterized FabMG, which is prevalent in various microbes in triclosan-contaminated environments and provide mechanistic insight into triclosan resistance.


Subject(s)
Bacteria/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Metagenome/genetics , Triclosan/pharmacology , Amino Acid Sequence , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biocatalysis/drug effects , Crystallography, X-Ray , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/classification , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Fatty Acid Synthesis Inhibitors/pharmacology , Models, Molecular , Phylogeny , Protein Conformation , Sequence Homology, Amino Acid , Soil Microbiology
15.
Med Chem ; 16(2): 256-270, 2020.
Article in English | MEDLINE | ID: mdl-30848207

ABSTRACT

BACKGROUND: The well-known antibacterial agent Triclosan (TCL) that targets bacterial enoylacyl protein reductase has been described to inhibit human fatty acid synthase (FASN) via the enoylacyl reductase domain. A Literature survey indicates that TCL is selectively toxic to cancer cells and furthermore might indeed reduce cancer incidence in vivo. A recent study found that TCL inhibits FASN by acting as an allosteric protein-protein interface (PPI) inhibitor. It induces dimer orientation changes that effect in a downstream reorientation of catalytic residues in the NADPH binding site proposing TCL as a viable scaffold to design a superior molecule that might have more inhibitory potential. This unveils tons of potential interaction space to take advantage of future inhibitor design. OBJECTIVES: Synthesis of TCL mimicking novel diphenyl ether derivatives, biological evaluation as potential antiproliferative agents and molecular docking and molecular dynamics simulation studies. METHODS: A series of novel N-(1-(3-hydroxy-4-phenoxyphenyl)-3-oxo-3-phenylpropyl)acetamides (3a-n) and N-(3(3-hydroxy-4phenoxyphenyl)-3-oxo-1-phenylpropyl) acetamides (6a-n) were designed, synthesized, characterized and evaluated against HepG2, A-549, MCF-7 and Vero cell lines. The induction of antiproliferative activity of selected compounds (3d and 6c) was done by AO/EB (acridine orange/ethidium bromide) nuclear staining method, DNA fragmentation study, and cell cycle analysis was performed by flow cytometry. Molecular docking and dynamics simulation study was also performed. RESULTS: Among the tested compounds, compound 3d was most active (IC50 13.76 ± 0.43 µM) against A-549 cell line. Compounds 3d and 3g were found to be moderately active with IC50 30.56 ± 1.1 µM and 25.05 ± 0.8 µM respectively against MCF-7 cell line. Morphological analysis of A-549 cells treated with 3d and 6c clearly demonstrated the reduction of cell viability and induction of apoptosis. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Further, cell cycle analysis by flow cytometry confirmed that compounds 3d and 6c significantly arrested the cell cycle at the G0/G1 phase. Molecular docking study demonstrated that these compounds exhibit high affinity for the human fatty acid synthase (hFASN) target. Molecular dynamics simulation study of the most active compound 3d was performed for calculating binding free energies using Molecular Mechanics-Generalized Born Surface Area (MM/GBSA). CONCLUSION: Compound 3d (IC50 13.76 ± 0.43 µM) has been identified as a potential lead molecule for anticancer activity against A-549 cells followed by 3l, 6c, and 3g. Thus, the design of diphenyl ether derivatives with enhanced affinity to the binding site of hER may lead to the discovery of potential anticancer agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Molecular Dynamics Simulation , Phenyl Ethers/chemical synthesis , Phenyl Ethers/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Chemistry Techniques, Synthetic , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/metabolism , Humans , Molecular Docking Simulation , Phenyl Ethers/chemistry , Phenyl Ethers/metabolism , Protein Conformation
16.
Curr Med Chem ; 27(5): 745-759, 2020.
Article in English | MEDLINE | ID: mdl-30501592

ABSTRACT

BACKGROUND: The enzyme trans-enoyl-[acyl carrier protein] reductase (InhA) is a central protein for the development of antitubercular drugs. This enzyme is the target for the pro-drug isoniazid, which is catalyzed by the enzyme catalase-peroxidase (KatG) to become active. OBJECTIVE: Our goal here is to review the studies on InhA, starting with general aspects and focusing on the recent structural studies, with emphasis on the crystallographic structures of complexes involving InhA and inhibitors. METHOD: We start with a literature review, and then we describe recent studies on InhA crystallographic structures. We use this structural information to depict protein-ligand interactions. We also analyze the structural basis for inhibition of InhA. Furthermore, we describe the application of computational methods to predict binding affinity based on the crystallographic position of the ligands. RESULTS: Analysis of the structures in complex with inhibitors revealed the critical residues responsible for the specificity against InhA. Most of the intermolecular interactions involve the hydrophobic residues with two exceptions, the residues Ser 94 and Tyr 158. Examination of the interactions has shown that many of the key residues for inhibitor binding were found in mutations of the InhA gene in the isoniazid-resistant Mycobacterium tuberculosis. Computational prediction of the binding affinity for InhA has indicated a moderate uphill relationship with experimental values. CONCLUSION: Analysis of the structures involving InhA inhibitors shows that small modifications on these molecules could modulate their inhibition, which may be used to design novel antitubercular drugs specific for multidrug-resistant strains.


Subject(s)
Mycobacterium tuberculosis , Acyl Carrier Protein , Antitubercular Agents , Bacterial Proteins , Isoniazid , Oxidoreductases
17.
ChemMedChem ; 14(23): 1995-2004, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31670463

ABSTRACT

Enoyl-acyl carrier protein reductase (FabI) is the limiting step to complete the elongation cycle in type II fatty acid synthase (FAS) systems and is a relevant target for antibacterial drugs. E. coli FabI has been employed as a model to develop new inhibitors against FAS, especially triclosan and diphenyl ether derivatives. Chemical similarity models (CSM) were used to understand which features were relevant for FabI inhibition. Exhaustive screening of different CSM parameter combinations featured chemical groups, such as the hydroxy group, as relevant to distinguish between active/decoy compounds. Those chemical features can interact with the catalytic Tyr156. Further molecular dynamics simulation of FabI revealed the ionization state as a relevant for ligand stability. Also, our models point the balance between potency and the occupancy of the hydrophobic pocket. This work discusses the strengths and weak points of each technique, highlighting the importance of complementarity among approaches to elucidate EcFabI inhibitor's binding mode and offers insights for future drug discovery.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Escherichia coli Proteins/antagonists & inhibitors , Triclosan/analogs & derivatives , Triclosan/chemical synthesis , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Binding Sites , Drug Evaluation, Preclinical , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Enzyme Inhibitors/pharmacology , Escherichia coli/chemistry , Escherichia coli Proteins/metabolism , Fatty Acid Synthase, Type II/antagonists & inhibitors , Fatty Acid Synthase, Type II/metabolism , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship , Triclosan/pharmacology
18.
Front Microbiol ; 10: 2044, 2019.
Article in English | MEDLINE | ID: mdl-31551979

ABSTRACT

Staphylococcus aureus small-colony variants (SCVs) are associated with chronic, persistent, and relapsing courses of infection and are characterized by slow growth combined with other phenotypic and molecular traits. Although certain mechanisms have been described, the genetic basis of clinical SCVs remains often unknown. Hence, we adapted an episomal tool for rapid identification and investigation of putative SCV phenotype-associated genes via antisense gene silencing based on previously described Tnl0-encoded tet-regulatory elements. Targeting the SCV phenotype-inducing enoyl-acyl-carrier-protein reductase gene (fabI), plasmid pSN1-AS'fabI' was generated leading to antisense silencing, which was proven by pronounced growth retardation in liquid cultures, phenotype switch on solid medium, and 200-fold increase of antisense 'fabI' expression. A crucial role of TetR repression in effective regulation of the system was demonstrated. Based on the use of anhydrotetracycline as effector, an easy-to-handle one-plasmid setup was set that may be applicable to different S. aureus backgrounds and cell culture studies. However, selection of the appropriate antisense fragment of the target gene remains a critical factor for effectiveness of silencing. This inducible gene expression system may help to identify SCV phenotype-inducing genes, which is prerequisite for the development of new antistaphylococcal agents and future alternative strategies to improve treatment of therapy-refractory SCV-related infections by iatrogenically induced phenotypic switch. Moreover, it can be used as controllable phenotype switcher to examine important aspects of SCV biology in cell culture as well as in vivo.

19.
Parasitol Res ; 118(10): 3001-3010, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31486947

ABSTRACT

Neospora caninum is an apicomplexan parasite considered one of the main causes of abortion in cattle worldwide; thus, there is an urgent need to develop novel therapeutic agents to control the neosporosis. Enoyl acyl carrier protein reductase (ENR) is a key enzyme of the type II fatty acid synthesis pathway (FAS II), which is essential for apicomplexan parasite survival. The antimicrobial agent triclosan has been shown to be a very potent inhibitor of ENR. In this study, we identified an E. coli ENR-like protein in N. caninum. Multiple sequence alignment showed all the requisite features of ENR existed in this protein, so we named this protein NcENR. Swiss-Model analysis showed NcENR interacts with triclosan. We observed that ENR is localized in the apicoplast, a plastid-like organelle. Similar to the potent inhibition of triclosan on other apicomplexa parasites, this compound markedly inhibits the growth of N. caninum at low concentrations. Further research showed that triclosan attenuated the invasion ability and proliferation ability of N. caninum at low concentrations. The results from in vivo studies in the mouse showed that triclosan attenuated the virulence of N. caninum in mice mildly and reduced the parasite burden in the brain significantly. Taken together, triclosan inhibits the growth of N. caninum both in vitro and in vivo at low concentrations.


Subject(s)
Coccidiosis/parasitology , Coccidiostats/pharmacology , Neospora/drug effects , Triclosan/pharmacology , Animals , Brain/parasitology , Coccidiosis/drug therapy , Coccidiostats/metabolism , Coccidiostats/therapeutic use , Disease Models, Animal , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Mice , Neospora/growth & development , Neospora/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Triclosan/metabolism , Triclosan/therapeutic use
20.
Int J Mol Sci ; 20(19)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554227

ABSTRACT

BACKGROUND: During the previous decade a new class of benzamide-based inhibitors of 2-trans enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (Mt) with unusual binding mode have emerged. Here we report in silico design and evaluation of novel benzamide InhA-Mt inhibitors with favorable predicted pharmacokinetic profiles. METHODS: By using in situ modifications of the crystal structure of N-benzyl-4-((heteroaryl)methyl) benzamide (BHMB)-InhA complex (PDB entry 4QXM), 3D models of InhA-BHMBx complexes were prepared for a training set of 19 BHMBs with experimentally determined inhibitory potencies (half-maximal inhibitory concentrations IC50exp). In the search for active conformation of the BHMB1-19, linear QSAR model was prepared, which correlated computed gas phase enthalpies of formation (∆∆HMM) of InhA-BHMBx complexes with the IC50exp. Further, taking into account the solvent effect and entropy changes upon ligand, binding resulted in a superior QSAR model correlating computed complexation Gibbs free energies (∆∆Gcom). The successive pharmacophore model (PH4) generated from the active conformations of BHMBs served as a virtual screening tool of novel analogs included in a virtual combinatorial library (VCL) of compounds containing benzamide scaffolds. The VCL filtered by Lipinski's rule-of-five was screened by the PH4 model to identify new BHMB analogs. RESULTS: Gas phase QSAR model: -log10(IC50exp) = pIC50exp = -0.2465 × ∆∆HMM + 7.95503, R2 = 0.94; superior aqueous phase QSAR model: pIC50exp = -0.2370 × ∆∆Gcom + 7.8783, R2 = 0.97 and PH4 pharmacophore model: p IC 50 exp = 1.0013 × p IC 50 exp - 0.0085, R2 = 0.95. The VCL of more than 114 thousand BHMBs was filtered down to 73,565 analogs Lipinski's rule. The five-point PH4 screening retained 90 new and potent BHMBs with predicted inhibitory potencies IC50pre up to 65 times lower than that of BHMB1 (IC50exp = 20 nM). Predicted pharmacokinetic profile of the new analogs showed enhanced cell membrane permeability and high human oral absorption compared to current anti-tuberculotics. CONCLUSIONS: Combined use of QSAR models that considered binding of the BHMBs to InhA, pharmacophore model, and ADME properties helped to recognize bound active conformation of the benzamide inhibitors, permitted in silico screening of VCL of compounds sharing benzamide scaffold and identification of new analogs with predicted high inhibitory potencies and favorable pharmacokinetic profiles.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Benzamides/chemistry , Benzamides/pharmacology , Drug Design , Models, Molecular , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Binding Sites , Computer Simulation , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...