ABSTRACT
We assess the element pollution level of water reservoir sediments using environmental magnetism techniques as a novel approach. Although "La Purísima" Water Reservoir is an important source for multiple activities (e.g. recreational, fishing and agricultural) in Guanajuato state, it has been receiving for the last centuries a high load of pollutants by mining extraction, urbanization and land-use change from the Guanajuato Hydrological Basin. The analyses of environmental magnetism, geochemistry, X-ray energy dispersive spectroscopy, scanning electron microscopy and multivariate methods were applied to study sediments from the reservoir and basin. Accordingly, they indicate the presence of iron oxides (magnetite and hematite) and iron sulfides (pyrite and greigite), which evidences relevant differences in particle size and concentration within the water reservoir (median mass-specific magnetic susceptibility χâ¯=â¯23.2â¯×â¯10-8â¯m3/kg), as well as with respect to the river basin sediments (median χâ¯=â¯88.8â¯×â¯10-8â¯m3/kg). The highest enrichment factor EF values (median values of EFâ¯=â¯2-10 for As, Co, Ba, Cu, Cd, Ni and EFâ¯>â¯20 for S) are mainly associated with historical mining activities that have led to an enrichment of potentially toxic elements on these water reservoir sediments. We propose the use of concentration and grain size dependent magnetic parameters, i.e. χ, remanent magnetizations and anhysteretic ratios ARM/SIRM and χARM/χ, as proxies for Ba, Co, Cr, Ni, P and Pb pollution in these river and water reservoir sediments. Such parameters allow to evaluate this sedimentary environment, and similar ones, through useful and convenient proxies.
ABSTRACT
The purpose of the present work was to combine several tools for assessing metal pollution in marine sediments from Cienfuegos Bay. Fourteen surface sediments collected in 2013 were evaluated. Concentrations of As, Cu, Ni, Zn and V decreased respect to those previous reported. The metal contamination was spatially distributed in the north and south parts of the bay. According to the contamination factor (CF) enrichment factor (EF) and index of geoaccumulation (Igeo), Cd and Cu were classified in that order as the most contaminated elements in most sediment. Comparison of the total metal concentrations with the threshold (TELs) and probable (PELs) effect levels in sediment quality guidelines suggested a more worrisome situation for Cu, of which concentrations were occasional associated with adverse biological effects in thirteen sediments, followed by Ni in nine sediments; while adverse effects were rarely associated with Cd. Probably, Cu could be considered as the most dangerous in the whole bay because it was classified in the high contamination levels by all indexes and, simultaneously, associated to occasional adverse effects in most samples. Despite the bioavailability was partially evaluated with the HCl method, the low extraction of Ni (<3% in all samples) and Cu (<55%, except sample 3) and the relative high extraction of Cd (50% or more, except sample 14) could be considered as an attenuating (Ni and Cu) or increasing (Cd) factor in the risk assessment of those element.