Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 452
Filter
1.
Pharmaceutics ; 16(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39065598

ABSTRACT

Enrofloxacin (ENR), a member of the fluoroquinolone class of antibiotics, is widely used in veterinary medicine to treat bacterial infections. Like many antibiotics, ENR has limited water solubility and low bioavailability. To address these challenges, drug formulations using solid dispersions, nanosuspensions, surfactants, cocrystal/salt formation, and inclusion complexes with cyclodextrins may be employed. The approach described herein proposes the development of ENR formulations by co-electrospinning ENR with custom-prepared cyclodextrin-oligolactide (CDLA) derivatives. This method benefits from the high solubility of these derivatives, enabling polymer-free electrospinning. The electrospinning parameters were optimized to incorporate significant amounts of ENR into the CDLA nanofibrous webs, reaching up to 15.6% by weight. The obtained formulations were characterized by FTIR and NMR spectroscopy methods and evaluated for their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This study indicates that the presence of CDLA derivative does not inhibit the antibacterial activity of ENR, recommending these formulations for further development.

2.
J Hazard Mater ; 476: 135151, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39002484

ABSTRACT

The increasing use and abuse of antibiotics in agriculture and aquaculture necessitates a more thorough risk assessment. We first advocate a precise assessment that subdivides the assessment scope from interspecies to intraspecific levels. Differences in ENR residues and degradation within the intraspecific category were simultaneously explored. This study chose red and GIFT tilapia, both belonging to the intra-specific category of tilapia, for an enrofloxacin (ENR) exposure experiment. Red tilapia had a lower area under the curve (AUC) representing drug accumulation, indicating a notably shorter withdrawal period (7 days) compared to GIFT tilapia (31.4 days) in the edible parts. While four potential transformation pathways were proposed for ENR in tilapia, red tilapia had fewer detected degradation products (6 items) than GIFT tilapia (10 items), indicating a simpler transformation pathway in red tilapia. Predictive assessments using the Toxtree model revealed that of the four extra degradation products in GIFT tilapia, two may possess carcinogenic and mutagenic properties. Overall, differences were observed in ENR residues and degradation within the intraspecific category, with red tilapia presenting lower risks than GIFT tilapia. This work suggests a new strategy to perfect the methodology for antibiotic risk assessment and facilitate systematic antibiotic administration management in the future.

3.
Article in English | MEDLINE | ID: mdl-39017865

ABSTRACT

Microalgae can promote antibiotic removal, which has attracted growing attention. However, its synergistic removal performance with bacteria in antibiotic pollutants is still poorly understood. In this study, firstly, we selected two green algae (Dictyosphaerium sp. and Chlorella sp.) and exposed them to Enrofloxacin (ENR) to observe their extracellular polysaccharides (EPS) concentration dynamic and the removal of antibiotics. Secondly, EPS was extracted and added to in situ lake water (no algae) to investigate its combined effect with bacteria. The results indicate that both Dictyosphaerium sp. and Chlorella sp. exhibited high tolerance to ENR stress. When the biomass of microalgae was low, ENR could significantly stimulate algae to produce EPS. The removal rates of Dictyosphaerium sp. and Chlorella sp. were 15.8% and 10.5%, respectively. The addition of EPS can both alter the microbial community structure in the lake water and promote the removal of ENR. The LEfSe analysis showed that there were significant differences in the microbial marker taxa, which promoted the increase of special functional bacteria for decomposing ENR, between the EPS-added group and the control group. The EPS of Dictyosphaerium sp. increased the abundance of Moraxellaceae and Spirosomaceae, while the EPS of Chlorella sp. increased the abundance of Sphingomonadaceae and Microbacteriaceae. Under the synergistic effect, Chlorella sp. achieved a maximum removal rate of 24.2%, while Dictyosphaerium sp. achieved a maximum removal rate of 28.9%. Our study provides new insights into the removal performance and mechanism of antibiotics by freshwater microalgae in water bodies and contribute to the development of more effective water treatment strategies.

4.
Vet Res Commun ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052188

ABSTRACT

Enrofloxacin (EF) is a broad-spectrum and highly efficient antibiotic commonly used for treating diseases in aquatic animals. However, its abuse in aquaculture applications often leads to excess residue in tissues of grass carp (Ctenopharyngodon idella). Hence, this study aimed to estimate the withdrawal time (WT) of EF and its metabolite of ciprofloxacin (CF) administered medicated feed in natural culture environments and conduct a risk assessment. Plasma and tissue samples were gathered at appropriate time points and detected by high-performance liquid chromatography. The data homogeneity was evaluated by Bartlett's test and Cochran's test. The linearity of the regressed line was evaluated by visual inspection and F test. Outliers were estimated on a normal probability scale by plotting the standardized residual versus their cumulative frequency distribution. Finally, the WT was calculated to be 51 days in muscle + skin based on the maximum residue limit of 100 µg/kg. After 51 days, the concentration of EF and CF fell below 10 µg/kg. The estimated daily intake was calculated to be 0.009 µg/kg/d. Hazard quotient was computed to be 0.002, which was far below one. These results suggested that calculated WT of EF could ensure the safety of products from grass carp for humans.

5.
Front Microbiol ; 15: 1414412, 2024.
Article in English | MEDLINE | ID: mdl-39027093

ABSTRACT

Introduction: Pseudomonas aeruginosa is a leading cause of canine otitis externa. Enrofloxacin is often applied topically to treat this condition, although recalcitrant and recurring infections are common. There is evidence that exposure to blue light (400-470 nm) has a bactericidal effect on P. aeruginosa and other microorganisms. Methods: In the present study, we tested the biocidal effect of blue light (375-450 nm), alone or in combination with enrofloxacin, against six isolates of P. aeruginosa from dogs with otitis externa (5 of which were resistant to enrofloxacin). Results: Treatment of planktonic cell cultures with blue light resulted in significant (p < 0.5) reductions in Colony Forming Units (CFU) for all seven strains tested, in some cases below the limit of detection. The greatest bactericidal effect was observed following exposure to light at 405 nm wavelength (p < 0.05). Exposure to blue light for 20 min usually resulted in a greater reduction in Pseudomonas aeruginosa than enrofloxacin treatment, and combination treatment typically resulted in the largest reductions in CFU. Analysis of the genome sequences of these strains established that enrofloxacin resistance was likely the result of a S466F substitution in GyrB. However, there was no clear association between genotype and susceptibility to blue light treatment. Discussion: These results suggest that blue light treatment, particularly at 405 nm wavelength, and especially in combination with enrofloxacin therapy, could be an effective treatment for otherwise recalcitrant canine otitis externa caused by Pseudomonas aeruginosa. It may also provide a way of extending the usefulness of enrofloxacin therapy which would otherwise be ineffective as a sole therapeutic agent.

6.
Food Chem X ; 22: 101504, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38855097

ABSTRACT

The presence of veterinary drug residues in aquatic products represents a significant challenge to food safety. The current detection methods, limited in both scope and sensitivity, underscore the urgent need for more advanced techniques. This research introduces a swift and potent screening technique using high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and a refined QuEChERS protocol, allowing simultaneous qualitative and semi-quantitative analysis of 192 residues. A comprehensive database, employing full scan mode and data-dependent secondary mass spectroscopy, enhances screening accuracy. The method involves efficient extraction using 90% acetonitrile, dehydration with Na2SO4, and acetic acid, followed by cleanup using dispersive solid-phase extract sorbent primary secondary amine. It is suitable for samples with varying fat content, offering detection limits ranging from 0.5 to 10 µg/kg, high recovery rates (60-120%), and low relative standard deviations (<20%). Practical application has validated its effectiveness for multi-residue screening, marking a significant advancement in food safety evaluation.

7.
Bioelectrochemistry ; 160: 108750, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38852385

ABSTRACT

Overuse of enrofloxacin (ENR) has posed a potential threat to ecosystems and public health, so it is critical to sensitive and accurate determination of ENR residues. In this work, a novel ultra-sensitive and specific electrochemical aptasensor was fabricated based on the cobalt diselenide loaded gold and platinum nanoflowers (Au@Pt NFs/ CoSe2) and Exonuclease III (Exo III)-assisted cycle amplification strategy for the detection of ENR. Au@Pt NFs/ CoSe2 nanosheets as the substrate material, with large surface area, accelerate electron transfer and attach more DNA probes on the electrode substrate, have effectively enhanced the electrochemical performance of the electrode. With the existence of Enrofloxacin (ENR), the aptamer recognizes and binds to ENR, thus the signal probe cDNA was released and immobilized onto the electrode surface to hybridized with methylene blue (MB) labelled DNA (MB-DNA), thereby triggering the Exo III-assisted cycle for further signal amplification. As expected, the prepared aptasensor demonstrated excellent sensitivity and selectivity, with a wide linear range from 5.0 × 10-6 ng/mL to 1.0 × 10-2 ng/mL for ENR, a low detection limit of 1.59 × 10-6 ng/mL. Consequently, this strategy provided a promising avenue for ultrasensitive and accurate detection of ENR in milk samples.

8.
Food Chem ; 456: 139972, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38852445

ABSTRACT

A widely applicable original gas chromatography-tandem mass spectrometry (GC-MS/MS) method was explored to qualitatively and quantitatively measure enrofloxacin and ofloxacin residues in chicken tissues and pork. The experimental samples were processed based on liquid-liquid extraction (LLE) and solid-phase extraction (SPE). Trimethylsilyl diazomethane (TMSD) was chosen to react derivatively with enrofloxacin and ofloxacin. In total, 78.25% âˆ¼ 90.56% enrofloxacin and 78.43% âˆ¼ 91.86% ofloxacin was recovered from the blank fortified samples. The limits of detection (LODs) were 0.7-1.0 µg/kg and 0.1-0.2 µg/kg, respectively. The limits of quantitation (LOQs) were 1.6-1.9 µg/kg and 0.3-0.4 µg/kg, respectively. It was verified that various experimental data met the requirements of the FAO & WHO (2014) for the detection of veterinary drug residues. Real samples obtained from local markets were analysed using the established method, and no residues of enrofloxacin or ofloxacin were detected in the samples.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Residues , Enrofloxacin , Food Contamination , Gas Chromatography-Mass Spectrometry , Meat , Ofloxacin , Solid Phase Extraction , Tandem Mass Spectrometry , Animals , Enrofloxacin/analysis , Drug Residues/analysis , Drug Residues/chemistry , Swine , Solid Phase Extraction/methods , Food Contamination/analysis , Meat/analysis , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Ofloxacin/analysis , Anti-Bacterial Agents/analysis , Liquid-Liquid Extraction/methods , Fluoroquinolones/analysis
9.
Poult Sci ; 103(8): 103868, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833743

ABSTRACT

Klebsiella pneumoniae is a serious pathogenic bacterium that poses a significant threat to young poultry and the cause of significant chick mortality and economic loss. We investigated the therapeutic efficacy of enrofloxacin in treating K. pneumoniae infections in chicks and employed an in vivo pharmacokinetic/pharmacodynamic (PK/PD) model. In vivo efficacy was evaluated using 6 multiple-dose groups (oral administration once a day for 3 d) and 2 single-dose groups (oral administration once only). The PK and PD parameters of plasma and lung were analyzed using PK/PD fitting analysis. K. pneumoniae administered intratracheally (108 CFU/mL in 0.4 mL saline) was used to establish a model for pulmonary infection. The plasma protein binding of enrofloxacin was 20.18%. Enrofloxacin displayed T1/2ß values of 4.78 ± 0.69 h and 4.78 ± 1.02 h in plasma and lung of infected chicks, respectively. When the dosage in the multiple-dose group was > 10 mg/kg, bactericidal activity was found and complete eradication was not achieved when the dosage was ≤ 40 mg/kg. When TMSW was set at 20%, the calculated dosage and bacterial reduction (E) based on plasma free drug data were 4.03 mg/kg and -1.982 Log10 CFU/mL, respectively. In the calculation of PK/PD parameters for reducing 3 Log10 CFU/mL and using Cmax/MIC, AUC72h/MIC and TMSW of free drug in plasma values at 9.479, 379.691, and 44.395%, respectively, the value of AUC72h/MIC based on the concentration of drug in lung was 530.800. According to the fitting correlation R2, the PK/PD fitting results of free drug in plasma were better. The corresponding enrofloxacin dosage for AUC72h/MIC of the plasma free drug concentration was 14.16 mg/kg. The administration regimen corresponding to these dosages was once daily for 3 d. This dosage regimen (14.16 mg/kg) was relatively high compared to the clinically recommended dosage in China (7.5 mg/kg) when treating infections caused by K. pneumoniae with MIC ≥ 0.125 µg/mL, so careful consideration is needed.


Subject(s)
Anti-Bacterial Agents , Chickens , Enrofloxacin , Klebsiella Infections , Klebsiella pneumoniae , Poultry Diseases , Animals , Klebsiella pneumoniae/drug effects , Enrofloxacin/pharmacokinetics , Enrofloxacin/administration & dosage , Enrofloxacin/pharmacology , Klebsiella Infections/veterinary , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Poultry Diseases/drug therapy , Poultry Diseases/microbiology , Dose-Response Relationship, Drug , Administration, Oral , Male
10.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791259

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes a variety of infections outside the intestine. The treatment of these infections is becoming increasingly difficult due to the emergence of multi-drug resistant (MDR) strains, which can also be a direct or indirect threat to humans as consumers of poultry products. Therefore, alternative antimicrobial agents are being sought, which could be essential oils, either administered individually or in interaction with antibiotics. Sixteen field isolates of E. coli (originating from 1-day-old broilers) and the ATCC 25922 reference strain were tested. Commercial cinnamon bark, clove bud, lavender flower essential oils (EOs) and enrofloxacin were selected to assess the sensitivity of the selected E. coli strains to antimicrobial agents. The checkerboard method was used to estimate the individual minimum inhibitory concentration (MIC) for each antimicrobial agent as well as to determine the interactions between the selected essential oil and enrofloxacin. In the case of enrofloxacin, ten isolates were resistant at MIC ≥ 2 µg/mL, three were classified as intermediate (0.5-1 µg/mL) and three as sensitive at ≤0.25 µg/mL. Regardless of the sensitivity to enrofloxacin, the MIC for cinnamon EO was 0.25% v/v and for clove EO was 0.125% v/v. All MDR strains had MIC values for lavender EO of 1% v/v, while drug-sensitive isolates had MIC of 0.5% v/v. Synergism between enrofloxacin and EO was noted more frequently in lavender EO (82.35%), followed by cinnamon EO (64.7%), than in clove EO (47.1%). The remaining cases exhibited additive effects. Owing to synergy, the isolates became susceptible to enrofloxacin at an MIC of ≤8 µg/mL. A time-kill study supports these observations. Cinnamon and clove EOs required for up to 1 h and lavender EO for up to 4 h to completely kill a multidrug-resistant strain as well as the ATCC 25922 reference strain of E. coli. Through synergistic or additive effects, blends with a lower than MIC concentration of enrofloxacin mixed with a lower EO content required 6 ± 2 h to achieve a similar effect.


Subject(s)
Chickens , Cinnamomum zeylanicum , Drug Resistance, Multiple, Bacterial , Enrofloxacin , Escherichia coli , Lavandula , Microbial Sensitivity Tests , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Escherichia coli/drug effects , Enrofloxacin/pharmacology , Chickens/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Cinnamomum zeylanicum/chemistry , Lavandula/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Drug Synergism , Plant Oils/pharmacology , Plant Oils/chemistry , Poultry Diseases/microbiology
11.
J Hazard Mater ; 472: 134555, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38728864

ABSTRACT

This study aimed to isolate marine bacteria to investigate their stress response, inhibition mechanisms, and degradation processes under high-load conditions of salinity and enrofloxacin (ENR). The results demonstrated that marine bacteria exhibited efficient pollutant removal efficiency even under high ENR stress (up to 10 mg/L), with chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN) and ENR removal efficiencies reaching approximately 88%, 83%, 61%, and 73%, respectively. The predominant families of marine bacteria were Bacillaceae (50.46%), Alcanivoracaceae (32.30%), and Rhodobacteraceae (13.36%). They responded to ENR removal by altering cell membrane properties, stimulating the activity of xenobiotic-metabolizing enzymes and antioxidant systems, and mitigating ENR stress through the secretion of extracellular polymeric substance (EPS). The marine bacteria exhibited robust adaptability to environmental factors and effective detoxification of ENR, simultaneously removing carbon, nitrogen, phosphorus, and antibiotics from the wastewater. The attapulgite carrier enhanced the bacteria's resistance to the environment. When treating actual mariculture wastewater, the removal efficiencies of COD and TN exceeded 80%, TP removal efficiency exceeded 90%, and ENR removal efficiency approached 100%, significantly higher than reported values in similar salinity reactors. Combining the constructed physical and mathematical models of tolerant bacterial, this study will promote the practical implementation of marine bacterial-based biotechnologies in high-loading saline wastewater treatment.


Subject(s)
Anti-Bacterial Agents , Enrofloxacin , Nitrogen , Phosphorus , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Enrofloxacin/metabolism , Water Pollutants, Chemical/metabolism , Anti-Bacterial Agents/metabolism , Phosphorus/metabolism , Phosphorus/chemistry , Nitrogen/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Aquaculture , Waste Disposal, Fluid/methods
12.
ACS Appl Mater Interfaces ; 16(21): 27028-27039, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38755114

ABSTRACT

The fate and effects of fluoroquinolone antibacterial (FQ) on the environment are important since there appears to be a surge in FQ resistance like enrofloxacin (ENR) in both environmental and clinical organisms. Numerous reports indicate that the sensing capabilities of these antibiotics need to be improved. Here, we have investigated the interaction of ENR with our synthesized pentacenequinone-modulated gadolinium-tin (GdSn-PQ) nanosheets and the formation of intermolecular interactions that caused the occurrence of aggregation-induced emission enhancement. The concept for designing hybrid metallic nanosheets comes from the unique features inherited from the parent organic precursor. Due to the distinct interaction between ENR and GdSn-PQ, the interstate conversion (ISC) between GdSn-PQ and ENR induces a significant wavelength shift in photoluminescence (PL), improving reliability, selectivity, and visibility compared to quenching- or AIEE-based methods without peak shifts, allowing for highly sensitive and visually detectable analyses. The fluorescence signal of GdSn-PQ exhibited a linear relationship (R2 = 0.9911), with the added ENR concentrations ranging from 5 to 90 nM, with a detection limit of 0.10 nM. We have demonstrated its potential and wide use in the detection of ENR in biological samples (human urine and blood serum) and environmental samples (tap water and seawater) with a recovery rate of 98- 108%. The current approach has demonstrated that the 2D GdSn-PQ nanosheet is a novel and powerful platform for future biological and environmental studies.


Subject(s)
Enrofloxacin , Fluorescent Dyes , Enrofloxacin/analysis , Enrofloxacin/blood , Enrofloxacin/urine , Fluorescent Dyes/chemistry , Gadolinium/chemistry , Nanostructures/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/urine , Humans , Limit of Detection , Spectrometry, Fluorescence , Naphthacenes/chemistry
13.
Antibiotics (Basel) ; 13(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667031

ABSTRACT

Enrofloxacin is a broad-spectrum antimicrobial agent, but the study of its pharmacokinetics/pharmacodynamics (PKs/PDs) in donkeys is rarely reported. The present study aimed to investigate the pharmacokinetics of enrofloxacin administered intragastrically, and to study the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in plasma, urine, and feces, and the PK/PD parameters were investigated to provide a rationale for enrofloxacin treatment in donkeys. A total of five healthy donkeys were selected for intragastric administration of 7.5 mg·kg-1 BW of enrofloxacin by gavage, and blood, urine, and fecal samples were collected. The results showed that the elimination half-life of plasma enrofloxacin was 11.40 ± 6.40 h, Tmax was 0.55 ± 0.12 h, Cmax was 2.46 ± 0.14 mg·L-1, AUC0-∞ was 10.30 ± 3.37 mg·L-1·h, and mean residence time (MRT) was 7.88 ± 1.26 h. The Tmax of plasma ciprofloxacin was 0.52 ± 0.08 h, Cmax was 0.14 ± 0.03 mg·L-1, and AUC0-∞ was 0.24 ± 0.16 mg·L-1·h. Urinary Cmax was 38.18 ± 8.56 mg·L-1 for enrofloxacin and 15.94 ± 4.15 mg·L-1 for ciprofloxacin. The total enrofloxacin and ciprofloxacin recovered amount in urine was 7.09 ± 2.55% of the dose for 144 h after dosing. The total enrofloxacin and ciprofloxacin recovered amount in feces was 25.73 ± 10.34% of the dose for 144 h after dosing. PK/PD parameters were also examined in this study, based on published MICs. In conclusion, 7.5 mg/kg BW of enrofloxacin administered intragastrically to donkeys was rapidly absorbed, widely distributed, and slowly eliminated in their bodies, and was predicted to be effective against bacteria with MICs < 0.25 mg·L-1.

14.
Chemosphere ; 356: 141971, 2024 May.
Article in English | MEDLINE | ID: mdl-38604519

ABSTRACT

The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 µg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.


Subject(s)
Anti-Bacterial Agents , Enrofloxacin , Gastrointestinal Microbiome , Neurotransmitter Agents , Zebrafish , Animals , Neurotransmitter Agents/metabolism , Gastrointestinal Microbiome/drug effects , Enrofloxacin/toxicity , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Water Pollutants, Chemical/toxicity , Brain/drug effects , Brain/metabolism , Malondialdehyde/metabolism , Lipopolysaccharides
15.
Sci Total Environ ; 928: 172540, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38636854

ABSTRACT

Antibiotics are extensively utilized in aquaculture to mitigate diseases and augment the productivity of aquatic commodities. However, to date, there have been no reports on the presence and associated risks of antibiotics in the emergent rice-crayfish rotation (RCR) system. This study investigated the occurrence, temporal dynamics, prioritization, sources, and potential for resistance development of 15 antibiotics within the RCR ecosystem. The findings revealed that during the crayfish breeding and rice planting periods, florfenicol (FFC) predominated in the RCR's surface water, with peak and average concentrations of 1219.70 ng/L and 57.43 ng/L, and 1280.70 ng/L and 52.60 ng/L, respectively. Meanwhile, enrofloxacin (ENX) was the primary antibiotic detected in RCR soil and its maximum and average concentrations were 624.73 ng/L and 69.02 ng/L in the crayfish breeding period, and 871.27 ng/L and 45.89 ng/L in the rice planting period. Throughout the adjustment period, antibiotic concentrations remained relatively stable in both phases. Notably, antibiotic levels in surface water and soil escalated during the crayfish breeding period and subsided during the rice planting period, with these fluctuations predominantly influenced by FFC and ENX. Source analysis indicated that the antibiotics in RCR predominantly originated from aquaculture activities, supplemented by water exchange processes. Utilizing the entropy utility function and a resistance development model, FFC, clarithromycin (CLR), and roxithromycin (ROX) in surface water, along with ENX, CLR, and ROX in soil, were identified as priority antibiotics. FFC, ENX, and ROX exhibited a medium risk for resistance development. Consequently, this study underscores the necessity to intensify antibiotic usage control during the crayfish breeding period in the RCR system to mitigate environmental risks.


Subject(s)
Anti-Bacterial Agents , Aquaculture , Astacoidea , Environmental Monitoring , Oryza , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/analysis , Astacoidea/physiology , Water Pollutants, Chemical/analysis
16.
ACS Appl Mater Interfaces ; 16(17): 22704-22714, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640487

ABSTRACT

Balancing the accuracy and simplicity of aptasensors is a challenge in their construction. This study addresses this issue by leveraging the remarkable loading capacity and peroxidase-like catalytic activity of PtPdCu trimetallic nanoparticles, which reduces the reliance on precious metals. A dual-signal readout aptasensor for enrofloxacin (ENR) detection is designed, incorporating DNA dynamic network cascade reactions to further amplify the output signal. Exploiting the strong loading capacity of PtPdCu nanoparticles, they are self-assembled with thionine (Thi) to form a signal label capable of generating signals in two independent modes. The label exhibits excellent enzyme-like catalytic activity and enhances electron transfer capabilities. Differential pulse voltammetry (DPV) and square-wave voltammetry (SWV) are employed to independently read signals from the oxidation-reduction reaction of Thi and the catalytic oxidation of hydroquinone (HQ) to benzoquinone (BQ) by H2O2. The introduced DNA dynamic network cascade reaction modularizes sample processing and electrode surface signal generation, avoiding electrode contamination and efficiently increasing the output of the catalyzed hairpin assembly (CHA) cycle. Under optimized conditions, the developed aptasensor demonstrates detection limits of 0.112 (DPV mode) and 0.0203 pg/mL (SWV mode). Additionally, the sensor successfully detected enrofloxacin in real samples, expanding avenues for designing dual-mode signal amplification strategies.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Copper , Enrofloxacin , Metal Nanoparticles , Platinum , Enrofloxacin/analysis , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Copper/chemistry , Platinum/chemistry , Ruthenium/chemistry , Electrochemical Techniques/methods , Limit of Detection , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Catalysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry
17.
Res Sq ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38659948

ABSTRACT

The use of antimicrobial drugs in food-producing animals increases the selection pressure on pathogenic and commensal bacteria to become resistant. This study aims to evaluate the existence of trade-offs between treatment effectiveness, cost, and the dissemination of resistance in gut commensal bacteria. We developed a within-host ordinary differential equation model to track the dynamics of antimicrobial drug concentrations and bacterial populations in the site of infection (lung) and the gut. The model was parameterized to represent enrofloxacin treatment for bovine respiratory disease (BRD) caused by Pastereulla multocida in cattle. Three approved enrofloxacin dosing regimens were compared for their effects on resistance on P. multocida and commensal E. coli: 12.5 mg/kg and 7.5 mg/kg as a single dose, and 5 mg/kg as three doses. Additionally, we explored non-approved regimes. Our results indicated that both 12.5 mg/kg and 7.5 mg/kg as a single dose scenario increased the most the treatment costs and prevalence of P. multocida resistance in the lungs, while 5 mg/kg as three doses increased resistance in commensal E. coli bacteria in the gut the most out of the approved scenarios. A proposed scenario (7.5 mg/kg, two doses 24 hours apart) showed low economic costs, minimal P. multocida, and moderate effects on resistant E. coli. Overall, the scenarios that decrease P. multocida, including resistant P. multocida did not coincide with the scenarios that decrease resistant E. coli the most, suggesting a trade-off between both outcomes. The sensitivity analysis indicates that bacterial populations were the most sensitive to drug conversion factors into plasma (ß), elimination of the drug from the colon (υ), fifty percent sensitive bacteria (P. multocida) killing effect (Ls50), fifty percent of bacteria (E. coli) above ECOFF killing effect (Cr50), and net drug transfer rate in the lung (γ) parameters.

18.
Foods ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38540931

ABSTRACT

Enrofloxacin (ENR) is widely used as a synthetic fluoroquinolone antibiotic for disease control in aquatic animals. ENR aptamers were screened in this study using the magnetic bead-SELEX method, and a graphene oxide fluorescent sensor was developed to detect the ENR residues in aquatic products. Firstly, ENR was conjugated to amino magnetic beads by amidation reaction, and then the aptamer sequences showing high affinity to ENR were screened step by step by using the SELEX screening method. Finally, after 10 rounds of SELEX screening, six candidate aptamers with high affinity were obtained. Among these, ENR-Apt 6 was selected based on its secondary structure features, high affinity (Kd = 35.08 nM), and high specificity to ENR. Furthermore, a fluorescent sensor was prepared using graphene oxide and ENR-Apt 6. The results showed that the linear range of the sensor could reach 600 nM (R2 = 0.986), while its optimal linear range was 1-400 nM (R2 = 0.991), with the lowest detection limit of 14.72 nM. The prepared sensor was successfully used for the detection of ENR in real samples, with a recovery range of 83.676-114.992% and a relative standard deviation < 10% for most of the samples.

19.
Article in English | MEDLINE | ID: mdl-38483763

ABSTRACT

Whether advanced biological waste treatment technologies, such as hydrothermal pretreatment (HTP) integrated anaerobic digestion (AD), could enhance the removal of different antibiotics remains unclear. This study investigated the outcome of antibiotics and methane productivity during pig manure treatment via HTP, AD, and HTP + AD. Results showed improved removal efficiency of sulfadiazine (SDZ), oxytetracycline (OTC), and enrofloxacin (ENR) with increased HTP temperatures (70, 90, 120, 150, and 170 °C). OTC achieved the highest removal efficiency of 86.8% at 170 °C because of its high sensitivity to heat treatment. For AD, SDZ exhibited resistance with a removal efficiency of 52.8%. However, OTC and ENR could be removed completely within 30 days. When HTP was used prior to AD, OTC and ENR could achieve complete removal. However, residual SDZ levels reduced to 20% and 16% at 150 and 170 °C, respectively. The methanogenic potential showed an overall upward trend as the HTP temperature increased. Microbial analysis revealed the antibiotics-induced enrichment of specific microorganisms during AD. Firmicutes were the dominant bacterial phylum, with their abundance positively correlated with the addition of antibiotics. Methanobacterium and Methanosarcina emerged as the dominant archaea that drove methane production during AD. Thus, HTP can be a potential pretreatment before AD to reduce antibiotic-related risks in manure waste handling.

20.
Int Microbiol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506947

ABSTRACT

A novel enrofloxacin-degrading fungus was isolated from a rhizosphere sediment of the submerged macrophyte Vallisneria spiralis L.. The isolate, designated KC0924g, was identified as a member of the genus Humicola based on morphological characteristics and tandem conserved sequence analysis. The optimal temperature and pH for enrofloxacin degradation by strain KC0924g were 28 °C and 9.0, respectively. Under such condition, 98.2% of enrofloxacin with an initial concentration of 1 mg L-1 was degraded after 72 h of incubation, with nine possible degradation products identified. Four different metabolic pathways were proposed, which were initiated by cleavage of the piperazine moiety, hydroxylation of the aromatic ring, oxidative decarboxylation, or defluorination. In addition to enrofloxacin, strain KC0924g also degraded other fluoroquinolone antibiotics (ciprofloxacin, norfloxacin, and ofloxacin), malachite green (an illegal additive in aquaculture), and leucomalachite green. Pretreatment of cells of strain KC0924g with Cu2+ accelerated ENR degradation. Furthermore, it was speculated that a flavin-dependent monooxygenase was involved in ENR degradation, based on the increased transcriptional levels of these two genes after Cu2+ induction. This work enriches strain resources for enrofloxacin remediation and, more importantly, would facilitate studies on the molecular mechanism of ENR degradation with degradation-related transcriptome available.

SELECTION OF CITATIONS
SEARCH DETAIL
...