Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 627
Filter
1.
Front Public Health ; 12: 1380609, 2024.
Article in English | MEDLINE | ID: mdl-38952726

ABSTRACT

Introduction: Studies have analyzed the effects of industrial installations on the environment and human health in Taranto, Southern Italy. Literature documented associations between different variables and dementia mortality among both women and men. The present study aims to investigate the associations between sex, environment, age, disease duration, pandemic years, anti-dementia drugs, and death rate. Methods: Data from the regional medication registry were used. All women and men with an anti-dementia medication between 2015 and 2021 were included and followed-up to 2021. Bayesian mixed effects logistic and Cox regression models with time varying exposures were fitted using integrated nested Laplace approximations and adjusting for patients and therapy characteristics. Results: A total of 7,961 person-years were observed. Variables associated with lower prevalence of acetylcholinesterase inhibitors (AChEIs) medication were male sex (OR 0.63, 95% CrI 0.42-0.96), age 70-79 years (OR 0.17, 95% CrI 0.06-0.47) and ≥ 80 years (OR 0.08, 95% CrI 0.03-0.23), disease duration of 2-3 years (OR 0.43, 95% CrI 0.32-0.56) and 4-6 years (OR 0.21, 95% CrI 0.13-0.33), and pandemic years 2020 (OR 0.50, 95% CrI 0.37-0.67) and 2021 (OR 0.47, 95% CrI 0.33-0.65). Variables associated with higher mortality were male sex (HR 2.14, 95% CrI 1.75-2.62), residence in the contaminated site of national interest (SIN) (HR 1.25, 95% CrI 1.02-1.53), age ≥ 80 years (HR 6.06, 95% CrI 1.94-18.95), disease duration of 1 year (HR 1.50, 95% CrI 1.12-2.01), 2-3 years (HR 1.90, 95% CrI 1.45-2.48) and 4-6 years (HR 2.21, 95% CrI 1.60-3.07), and pandemic years 2020 (HR 1.38, 95% CrI 1.06-1.80) and 2021 (HR 1.56, 95% CrI 1.21-2.02). Variables associated with lower mortality were therapy with AChEIs alone (HR 0.69, 95% CrI 0.56-0.86) and in combination with memantine (HR 0.54, 95% CrI 0.37-0.81). Discussion: Male sex, age, disease duration, and pandemic years appeared to be associated with lower AChEIs medications. Male sex, residence in the SIN of Taranto, age, disease duration, and pandemic years seemed to be associated with an increased death rate, while AChEIs medication seemed to be associated with improved survival rate.


Subject(s)
Bayes Theorem , Dementia , Humans , Male , Female , Italy/epidemiology , Aged , Dementia/mortality , Dementia/drug therapy , Aged, 80 and over , Sex Factors , Cholinesterase Inhibitors/therapeutic use , Survival Analysis , Cohort Studies , COVID-19/mortality , COVID-19/epidemiology , Middle Aged , Registries
2.
Mar Pollut Bull ; 205: 116598, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38885576

ABSTRACT

The concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.

3.
J Contam Hydrol ; 265: 104379, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38851130

ABSTRACT

During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.

4.
Microorganisms ; 12(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38930449

ABSTRACT

Environmental decontamination and water disinfection practices are hallmarks of disease prevention and control in agricultural and public health settings. Informed fit-to-purpose biocontainment is thus dependent on methodologies accurately assessing microbial burden and viability. Also, rigorous evaluation of the efficacy of biocontrol measures implies monitoring microbial inactivation after decontamination/disinfection procedures. In this study, we used flow cytometry coupled with a resuscitation protocol to monitor the metabolic inactivation of bacteria capable of entering non-cultivable states, after the application of a chlorine-based water disinfectant. For this purpose, we used Mycobacterium bovis BCG as a model of slow-growing bacteria able to enter dormancy and representing a multi-host pathogen in a zoonotic disease system-animal tuberculosis-thriving both across temperate and semi-arid regions and involving environmental contamination. The biocide activity of a commercial sodium dichloroisocyanurate (NaDCC) disinfectant against M. bovis BCG was evaluated through mock environmental matrix tests. Using the manufacturer-recommended dosage of NaDCC, BCG cells were apparently inactivated after 24 h upon exposure. However, we show via flow cytometry that, upon exposure to optimal growth conditions, mycobacterial cells were able to regain metabolic activity shortly after, highlighting a sublethal effect of NaDCC at the recommended commercial dosage due to reversible BCG cell damage. In contrast, increasing twice the disinfectant dosage completely inactivated BCG cells after 24 h of exposure, with full irreversible loss of metabolic activity. Methodological workflows based on conventional culture or PCR would have missed the detection of these dormant subpopulations that were in fact able to resume growth when following the recommendations of a commercial disinfectant. This study highlights the superior, high-resolution value of single-cell approaches, such as flow cytometry, to accurately assess the activity of biocides against metabolically heterogeneous and dormant pathogenic bacteria with environmental cycles, supporting data-driven prioritization of environmental management and disinfection options in contaminated vulnerable settings.

5.
Environ Sci Technol ; 58(24): 10482-10493, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38829656

ABSTRACT

Microplastics (MPs) are ubiquitous in global ecosystems and may pose a potential risk to human health. However, critical information on MP exposure and risk to female reproductive health is still lacking. In this study, we characterized MPs in human endometrium and investigated their size-dependent entry mode as well as potential reproductive toxicity. Endometrial tissues of 22 female patients were examined, revealing that human endometrium was contaminated with MPs, mainly polyamide (PA), polyurethane (PU), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyethylene (PE), ranging from 2-200 µm in size. Experiments conducted in mice demonstrated that the invasion of the uterus by MPs was modulated either through diet-blood circulation (micrometer-sized particles) or via the vagina-uterine lacuna mode (larger particles reaching a size of 100 µm. Intravenous exposure to MPs resulted in reduced fertility and abnormal sex ratio in mouse offspring (P < 0.05). After 3.5 months of intragastric exposure, there was a significant inflammatory response in the endometrium (P < 0.05), confirmed by embryo transfer as a uterine factor leading to decreased fertility. Furthermore, human endometrial organoids cultured with MPs in vitro exhibited significantly apoptotic responses and disrupted growth patterns (P < 0.01). These findings raise significant concerns regarding MP contamination in the human uterus and its potential effects on reproductive health.


Subject(s)
Microplastics , Reproductive Health , Uterus , Humans , Female , Microplastics/toxicity , Uterus/drug effects , Animals , Mice
6.
AIMS Microbiol ; 10(2): 415-448, 2024.
Article in English | MEDLINE | ID: mdl-38919713

ABSTRACT

Here, phytoremediation studies of toxic metal and organic compounds using plants augmented with plant growth-promoting bacteria, published in the past few years, were summarized and reviewed. These studies complemented and extended the many earlier studies in this area of research. The studies summarized here employed a wide range of non-agricultural plants including various grasses indigenous to regions of the world. The plant growth-promoting bacteria used a range of different known mechanisms to promote plant growth in the presence of metallic and/or organic toxicants and thereby improve the phytoremediation ability of most plants. Both rhizosphere and endophyte PGPB strains have been found to be effective within various phytoremediation schemes. Consortia consisting of several PGPB were often more effective than individual PGPB in assisting phytoremediation in the presence of metallic and/or organic environmental contaminants.

7.
J Hosp Infect ; 149: 22-25, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705474

ABSTRACT

BACKGROUND: The role of the healthcare environment in the transmission of clinical pathogens is well established. EN 17126:2018 was developed to address the need for regulated sporicidal product testing and includes a realistic medical soil to enable validation of products that claim combined cleaning and disinfection efficacy. AIM: To investigate the chemical stability and sporicidal efficacy of oxidizing disinfectant products in the presence of simulated clean and medical dirty conditions. METHODS: Disinfectant stability and sporicidal efficacy were evaluated in like-for-like ratios of soil:product. Disinfectants were exposed to simulated test soils and free chlorine, chlorine dioxide or peracetic acid concentrations were measured using standard colorimetric methods. Efficacy of disinfectants against C. difficile R027 endospores was assessed as per EN 17126:2018. Comparisons of performance between clean and medical dirty conditions were performed using one-way analysis of variance. Correlation analysis was performed using Pearson product-moment correlation. FINDINGS: Performance of chlorine-releasing agents (sodium dichloroisocyanurate, chlorine dioxide and hypochlorous acid) was concentration dependent, with 1000 ppm chlorine showing reduced stability and efficacy in dirty conditions. By contrast, peracetic acid product demonstrated stability and consistently achieved efficacy in dirty conditions. CONCLUSION: These results have implications for clinical practice, as ineffective environmental decontamination may increase the risk of transmission of pathogens that can cause healthcare-associated infections.


Subject(s)
Chlorine Compounds , Disinfectants , Oxides , Peracetic Acid , Spores, Bacterial , Disinfectants/pharmacology , Chlorine Compounds/pharmacology , Oxides/pharmacology , Peracetic Acid/pharmacology , Spores, Bacterial/drug effects , Clostridioides difficile/drug effects , Humans , Disinfection/methods , Triazines/pharmacology , Hypochlorous Acid/pharmacology
8.
J Environ Radioact ; 276: 107448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749215

ABSTRACT

Among environment contaminants, 210Pb and 210Po have gained significant research attention due to their radioactive toxicity. Moss, with its exceptional adsorption capability for these radionuclides, serves as an indicator for environmental 210Pb and 210Po pollution. The paper reviews a total of 138 articles, summarizing the common methods and analytical results of 210Pb and 210Po research in moss. It elucidates the accumulation characteristics of 210Pb and 210Po in moss, discusses current research challenges, potential solutions, and future prospects in this field. Existing literature indicates limitations in common measurement techniques for 210Pb and 210Po in moss, characterized by high detection limits or lengthy sample processing. The concentration of 210Pb and 210Po within moss display substantial variations across different regions worldwide, ranging from

Subject(s)
Bryophyta , Lead Radioisotopes , Polonium , Radiation Monitoring , Lead Radioisotopes/analysis , Polonium/analysis , Bryophyta/chemistry , Radiation Monitoring/methods
9.
Environ Monit Assess ; 196(6): 516, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710964

ABSTRACT

Trace metal soil contamination poses significant risks to human health and ecosystems, necessitating thorough investigation and management strategies. Researchers have increasingly utilized advanced techniques like remote sensing (RS), geographic information systems (GIS), geostatistical analysis, and multivariate analysis to address this issue. RS tools play a crucial role in collecting spectral data aiding in the analysis of trace metal distribution in soil. Spectroscopy offers an effective understanding of environmental contamination by analyzing trace metal distribution in soil. The spatial distribution of trace metals in soil has been a key focus of these studies, with factors influencing this distribution identified as soil type, pH levels, organic matter content, land use patterns, and concentrations of trace metals. While progress has been made, further research is needed to fully recognize the potential of integrated geospatial imaging spectroscopy and multivariate statistical analysis for assessing trace metal distribution in soils. Future directions include mapping multivariate results in GIS, identifying specific anthropogenic sources, analyzing temporal trends, and exploring alternative multivariate analysis tools. In conclusion, this review highlights the significance of integrated GIS and multivariate analysis in addressing trace metal contamination in soils, advocating for continued research to enhance assessment and management strategies.


Subject(s)
Environmental Monitoring , Metals , Remote Sensing Technology , Soil Pollutants , Soil , Environmental Monitoring/methods , Soil Pollutants/analysis , Multivariate Analysis , Soil/chemistry , Metals/analysis , Geographic Information Systems , Trace Elements/analysis
10.
Am J Infect Control ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761850

ABSTRACT

BACKGROUND: We describe the investigations for control of two consecutive Serratia marcescens outbreaks in neonatology unit of Singapore General Hospital. METHODS: Epidemiological investigations, environmental sampling and risk-factors analysis were performed to guide infection control measures. Active surveillance sampling of nasopharyngeal aspirate and/or stool from neonates was conducted during both outbreaks. Whole-genome-sequencing was done to determine clonal links. Retrospective case-control study was conducted for second outbreak to identify risk factors for S marcescens acquisition. RESULTS: In 2022, two genetically unrelated S marcescens outbreaks were managed involving five neonates in March 2022 (outbreak 1) and eight neonates in November 2022 (outbreak 2). A link to positive isolates from sinks in intensive care units and milk preparation room was identified during outbreak 1. Neonatal jaundice (aOR, 16.46; p-value= 0.023) and non-formula milk feeding (aOR, 13.88; p-value= 0.02) were identified as risk factors during second outbreak. Multiple interventions adopted were cohorting of positive cases, carriage-screening, enhanced environmental cleaning, and emphasis on alcohol-based handrubs for hand-hygiene. CONCLUSION: The two outbreaks were likely due to infection prevention practices lapses and favourable environmental conditions. Nosocomial S marcescens outbreaks in neonatology units are difficult to control and require multidisciplinary approach with strict infection prevention measures to mitigate risk factors.

11.
Mar Pollut Bull ; 203: 116395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703626

ABSTRACT

In 2019, one of Brazil's most significant environmental disasters occurred, involving an oil spill that directly affected Pernambuco state. Contamination along the coast was evaluated by the quantification of polycyclic aromatic hydrocarbons (PAHs) in fifty seawater samples collected in the summer and winter of 2021. Analysis using fluorescence spectroscopy revealed that for all the samples, levels of dissolved/dispersed petroleum hydrocarbons (DDPHs) were higher than the regional baseline for tropical western shores of the Atlantic Ocean. GC-MS analyses quantified 17 PAHs in the samples, with highest total PAHs concentrations of 234 ng L-1 in summer and 33.3 ng L-1 in winter, which were consistent with the highest risks observed in ecotoxicity assays. The use of diagnostic ratios showed that the coast was impacted by a mixture of PAHs from petrogenic and pyrolytic sources. The results indicated the need for continuous monitoring of the regions affected by the 2019 spill.


Subject(s)
Environmental Monitoring , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons , Seawater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Brazil , Seawater/chemistry , Water Pollutants, Chemical/analysis , Petroleum/analysis , Atlantic Ocean , Gas Chromatography-Mass Spectrometry
12.
J Hazard Mater ; 472: 134473, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703681

ABSTRACT

Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.


Subject(s)
Mycobacterium bovis , Phylogeny , Whole Genome Sequencing , Mycobacterium bovis/genetics , Animals , Genome, Bacterial , Tuberculosis, Bovine/transmission , Tuberculosis, Bovine/microbiology , Tuberculosis/transmission , Tuberculosis/microbiology , Cattle , Environmental Microbiology , Animals, Wild/microbiology
13.
J Environ Manage ; 359: 121008, 2024 May.
Article in English | MEDLINE | ID: mdl-38703654

ABSTRACT

Despite the high potential of seagrass restoration to reverse the trend of marine ecosystem degradation, there are still many limitations, especially when ecosystems are severely degraded. In particular, it is not known whether restoring polluted ecosystems can lead to potentially harmful effects associated with contaminant remobilisation. Here, we aimed to investigate the role of P. oceanica transplanted from a pristine meadow to a polluted site (Augusta Bay, Italy, Mediterranean Sea) in two seasons of the year, as a sink or source of trace elements to the environment. The main results showed i) higher accumulation of chromium (Cr), copper (Cu) and total mercury (THg) in plants transplanted in summer than in winter, as well as an increase in Cr and THg in plants from sites with higher trace element loads; ii) an increase in leaf phenolics and a decrease in rhizome soluble carbohydrates associated with As and THg accumulation, suggesting the occurrence of defence strategies to cope with pollution stress; iii) a different partitioning of trace elements between below- and above-ground tissues, with arsenic (As) and Cr accumulating in roots, whereas Cu and THg in both roots and leaves. These results suggest that P. oceanica transplanted to polluted sites can act as both a sink and a source, sequestering trace elements in the below-ground tissues thus reducing their bioavailability, but also potentially remobilising them. However, the amount of trace elements potentially exported from P. oceanica to the environment through transfer into food webs via leaves and detritus appeared to be low under the specific conditions of the study site. Although further research into seagrass restoration of polluted sites would improve current knowledge to support effective ecosystem-based coastal management, the benefits of restoring polluted sites through seagrass transplantation appear to outweigh the potential costs of inaction over time.


Subject(s)
Alismatales , Ecosystem , Trace Elements , Trace Elements/analysis , Mediterranean Sea , Water Pollutants, Chemical , Italy , Arsenic/analysis
14.
Sci Total Environ ; 927: 172250, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599404

ABSTRACT

Understanding the geochemistry and contamination of rivers affected by anthropogenic activities is paramount to water resources management. The Asopos river basin in central Greece is facing environmental quality deterioration threats due to industrial, urban and agricultural activities. Here, the geochemistry of river sediments and adjacent soil in terms of major and trace elements (Al, Ca, Mg, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and the geochemical composition of surface water in terms of major ions, trace elements and nutrients along the Asopos river basin were determined. In addition, this study characterized potential nitrate sources through the analysis of stable isotope composition of NO3- (δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-). Results indicated that specific chemical constituents including nutrients (NO2-, NH4+, PO43-) and major ions (Na+, Cl-) were highest in the urban, industrialized and downstream areas. On the other hand, nitrate (NO3-) concentration in river water (median 7.9 mg/L) showed a decreasing trend from the upstream agricultural sites to the urban area and even more in the downstream of the urban area sites. Ionic ratios (NO3-/Cl-) and δ15Ν-ΝΟ3- values (range from +10.2 ‰ to +15.7 ‰), complemented with a Bayesian isotope mixing model, clearly showed the influence of organic wastes from septic systems and industries operating in the urban area on river nitrate geochemistry. The interpretation of geochemical data of soil and river sediment samples demonstrated the strong influence of local geology on Cr, Fe, Mn and Ni content, with isolated samples showing elevated concentrations of Cd, Cu, Pb and Zn, mostly within the industrialized urban environment. The calculation of enrichment factors based on the national background concentrations provided limited insights into the origin of geogenic metals. Overall, this study highlighted the need for a more holistic approach to assess the impact of the geological background and anthropogenic activities on river waters and sediments.

15.
Int J Environ Health Res ; : 1-4, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572838

ABSTRACT

Colistin resistance is a global health concern, with antibiotics being the last treatment for Gram-negative bacteria infections. We aimed to identify colistin-resistant enterobacteria on environmental surfaces of a long-term care facility (LTCF) for the elderly in southern Brazil. Samples were collected and screened on MacConkey agar plus colistin, followed by API20E identification and PCR. Two isolates were founded and identified as Klebsiella pneumoniae and Providencia stuartii harboring mcr-1 gene with MICs > 128 µg mL-1 for colistin. This is the first isolation of microorganisms resistant to colistin in the environment of a LTCF for the elderly in south Brazil, urging monitoring programs to reduce environmental contamination by multiresistant microorganisms.

16.
BMC Oral Health ; 24(1): 417, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580933

ABSTRACT

BACKGROUND: Many instruments used in dentistry are rotary, such as handpieces, water syringes, and ultrasonic scalers that produce aerosols. The spray created by these instruments can carry, in addition to water, droplets of saliva, blood, and microorganisms, which can pose a risk of infections for healthcare professionals and patients. Due to the COVID-19 pandemic, this gained attention. OBJECTIVE: The aim was to carry out a systematic review of the evidence of the scope of the aerosol produced by ultrasonic scaler in environmental contamination and the influence of the use of intraoral suction reduction devices. DESIGN: Scientific literature was searched until June 19, 2021 in 6 databases: Pubmed, EMBASE, Web of science, Scopus, Virtual Health Library and Cochrane Library, without restrictions on language or publication date. Studies that evaluated the range of the aerosol produced by ultrasonic scaler during scaling/prophylaxis and the control of environmental contamination generated by it with the use of low (LVE) and high (HVE) volume evacuation systems were included. RESULTS: Of the 1893 potentially relevant articles, 5 of which were randomized controlled trials (RCTs). The meta-analysis of 3 RCTs showed that, even at different distances from the patient's oral cavity, there was a significant increase in airborne bacteria in the dental environment with the use of ultrasonic scaler. In contrast, when meta-analysis compared the use of HVE with LVE, there was no significant difference (P = 0.40/CI -0.71[-2.37, 0.95]) for aerosol produced in the environment. CONCLUSIONS: There is an increase in the concentration of bioaerosol in the dental environment during the use of ultrasonic scaler in scaling/prophylaxis, reaching up to 2 m away from the patient's mouth and the use of LVE, HVE or a combination of different devices, can be effective in reducing air contamination in the dental environment, with no important difference between different types of suction devices.


Subject(s)
Ultrasonic Therapy , Humans , Ultrasonics , Respiratory Aerosols and Droplets , Aerosols/adverse effects , Water , Dental Scaling
17.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570374

ABSTRACT

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Subject(s)
Eucalyptus , Herbicides , Oryza , Quinolines , Sasa , Soil Pollutants , Triazines , Charcoal , Soil , Adsorption , Environmental Monitoring , Herbicides/analysis , Soil Pollutants/analysis
18.
Water Res ; 255: 121481, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38520776

ABSTRACT

Fecal-orally transmitted gastroenteritis viruses, particularly human noroviruses (HuNoVs), are a public health concern. Viral transmission risk through contaminated water results underexplored as they have remained largely unculturable until recently and the robust measuring of gastroenteritis viruses infectivity in a single cell line is challenging. This study primarily aimed to test the feasibility of the human intestinal enteroids (HIE) model to demonstrate the infectivity of multiple gastroenteritis viruses in wastewater. Initially, key factors affecting viral replication in HIE model were assessed, and results demonstrated that the reagent-assisted disruption of 3D HIE represents an efficient alternative to syringe pass-through, and the filtering of HuNoV stool suspensions could be avoided. Moreover, comparable replication yields of clinical strains of HuNoV genogroup I (GI), HuNoV GII, rotavirus (RV), astrovirus (HAstV), and adenoviruses (HAdV) were obtained in single and multiple co-infections. Then, the optimized HIE model was used to demonstrate the infectivity of multiple naturally occurring gastroenteritis viruses from wastewater. Thus, a total of 28 wastewater samples were subjected to (RT)-qPCR for each virus, with subsequent testing on HIE. Among these, 16 samples (57 %) showed replication of HuNoVs (n = 3), RV (n = 5), HAstV (n = 8), and/or HAdV (n = 5). Three samples showed HuNoV replication, and sequences assigned to HuNoV GI.3[P13] and HuNoV GII.4[P16] genotypes. Concurrent replication of multiple gastroenteritis viruses occurred in 4 wastewater samples. By comparing wastewater concentrate and HIE supernatant sequences, diverse HAstV and HAdV genotypes were identified in 4 samples. In summary, we successfully employed HIE to demonstrate the presence of multiple infectious human gastroenteritis viruses, including HuNoV, in naturally contaminated wastewater samples.

20.
Int J Parasitol ; 54(7): 321-332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460722

ABSTRACT

Key parasite transmission parameters are difficult to obtain from elusive wild animals. For Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), the red fox is responsible for most of the environmental contamination in Europe. The identification of individual spreaders of E. multilocularis environmental contamination is crucial to improving our understanding of the ecology of parasite transmission in areas of high endemicity and optimising the effectiveness of prevention and control measures in the field. Genetic faecal sampling appears to be a feasible method to gain information about the faecal deposition of individual animals. We conducted a 4 year faecal sampling study in a village that is highly endemic for E. multilocularis, to assess the feasibility of individual identification and sexing of foxes to describe individual infection patterns. Individual fox identification from faecal samples was performed by obtaining reliable genotypes from 14 microsatellites and one sex locus, coupled with the detection of E. multilocularis DNA, first using captive foxes and then by environmental sampling. From a collection of 386 fox stools collected between 2017 and 2020, tested for the presence of E. multilocularis DNA, 180 were selected and 124 samples were successfully genotyped (68.9%). In total, 45 unique individual foxes were identified and 26 associated with at least one sample which tested positive for E. multilocularis (Em(+)). Estimation of the population size showed the fox population to be between 29 and 34 individuals for a given year and 67 individuals over 4 years. One-third of infected individuals (9/26 Em(+) foxes) deposited 2/3 of the faeces which tested positive for E. multilocularis (36/60 Em(+) stools). Genetic investigation showed a significantly higher average number of multiple stools for females than males, suggesting that the two sexes potentially defecated unequally in the studied area. Three partially overlapping clusters of fox faeces were found, with one cluster concentrating 2/3 of the total E. multilocularis-positive faeces. Based on these findings, we estimated that 12.5 million E. multilocularis eggs were produced during the study period, emphasizing the high contamination level of the environment and the risk of exposure faced by the parasite hosts.


Subject(s)
Echinococcosis , Echinococcus multilocularis , Feces , Foxes , Genotype , Animals , Foxes/parasitology , Echinococcus multilocularis/isolation & purification , Echinococcus multilocularis/genetics , Feces/parasitology , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis/transmission , Female , Male , Microsatellite Repeats
SELECTION OF CITATIONS
SEARCH DETAIL
...