Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 587
Filter
1.
Sci Total Environ ; : 174862, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038680

ABSTRACT

Manganese is an indispensable metal widely used in various fields. China ranks as the fourth-largest producer of manganese ore and the largest producer of electrolytic manganese metal (EMM). However, EMM production is linked to high energy consumption and pollution. This study conducts a life cycle assessment (LCA) of EMM production in the Manganese Triangle region of China to comprehensively evaluate its environmental impact. Results show that Human carcinogenic toxicity, mainly from electricity generation (65.3 %) and mining activities (24.4 %), is the most significant environmental impact. Chromium (VI) is identified as the predominant hazardous substance, contributing up to 91 % to Human carcinogenic toxicity. Endpoint results estimate that the production of 1 t of EMM results in 1.01E-02 DALY of harm to human health, 1.97E-05 species.yr of harm to the ecosystem, and $227.15 worth of resource depletion. Simulation scenarios demonstrate that replacing thermal power with hydropower can reduce environmental pollution by over 90 %. Finally, based on the findings, technical measures for promoting clean production of EMM were proposed.

2.
Heliyon ; 10(12): e32515, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994086

ABSTRACT

Ocean currents are emerging as key contributors to renewable energy generation. However, technologies for harvesting tidal current energy are still in the early stages of development. In this context, environmental and economic studies on tidal energy converters (TECs) are crucial to further advance tidal technology and facilitate its entry into the market. This article presents a life cycle and economic assessment of a 34.5 MW tidal farm project comprising 23 second-generation tidal devices, each with a rated power of 1.5 MW. The tidal system was simulated using primary data from the full-scale floating platform Atir. The Atir is a pre-commercial tidal device designed with a steel trimaran and a submerged section for TEC installation. An assessment of 18 environmental impact categories was conducted using the ReCiPe 2016 MidPoint method, with process flow systems modelled using SimaPro v9.2.0.1 software. The environmental assessment indicates emissions of 42.11 g CO2eq per kWh, primarily stemming from manufacturing processes that demand substantial amounts of steel. The economic analysis reveals a Levelized Cost of Electricity (LCOE) of 0.125 EUR/kWh, consistent with European Commission projections. Although the platform structure represents a high initial investment, the lower maintenance costs of the Atir device provide long-term savings and, overall, result in a competitive LCOE. The study also introduces a methodological framework for harmonised environmental and economic assessments in tidal energy projects, proving crucial in supporting decision-making processes.

3.
Sci Total Environ ; 948: 174697, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019280

ABSTRACT

The fate of black biodegradable mulch film (MF) based on starch and poly(butylene-adipate-co-terephthalate) (PBAT) in agricultural soil is investigated herein. Pristine (BIO-0) and UV-aged film samples (BIO-A192) were buried for 16 months at an experimental field in southern Italy. Visual, physical, chemical, morphological, and mechanical analyses were carried out before and after samples burial. Film residues in the form of macro- and microplastics in soil were analyzed at the end of the trial. Progressive deterioration of both pristine and UV-aged samples, with surface loss and alterations in mechanical properties, occurred from 42 days of burial. After 478 days, the apparent surface of BIO-0 and BIO-A192 films decreased by 57 % and 66 %, respectively. Burial determined a rapid depletion of starch from the polymeric blend, especially for the BIO-A192, while the degradation of the polyester phase was slower. Upon burial, an enrichment of aromatic moieties of PBAT in the film residues was observed, as well as microplastics release to soil. The analysis of the MF degradation products extracted from soil (0.006-0.008 % by mass in the soil samples) revealed the predominant presence of adipate moieties. After 478 days of burial, about 23 % and 17 % of the initial amount of BIO-0 and BIO-A192, respectively, were extracted from the soil. This comprehensive study underscores the complexity of biodegradation phenomena that involve the new generation of mulch films in the field. The different biodegradability of the polymeric components, the climate, and the soil conditions that did not strictly meet the parameters required for the standard test method devised for MFs, have significantly influenced their degradation rate. This finding further emphasizes the importance of implementing field experiments to accurately assess the real effects of biodegradable MFs on soil health and overall agroecosystem sustainability.

4.
Heliyon ; 10(12): e32843, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988552

ABSTRACT

The urgent need to shift to renewable energy is highlighted by rising global energy use and environmental issues like global warming from fossil fuel dependency. Perovskite solar cells (PSCs) stand out as a promising option, providing high efficiency and potential for cost-effective production. This study delves into the environmental concerns and viable solutions linked with metal-halide PSCs (M-PSCs) and carbon-based electrode PCSs (C-PSCs). It showcases the swift progress in PSC technology, highlighting its potential to deliver efficient and economical renewable energy options. Yet, the environmental implications of these technologies, especially the utilization of toxic lead (Pb) in M-PSCs and the issues of stability and degradation in C-PSCs, represent considerable hurdles for their broad application and sustainability. The paper details the recent advances in PSCs, focusing on enhancements in device efficiency and stability through innovative material combinations and device designs. Nonetheless, the environmental hazards linked to the dispersal of toxic substances from compromised or deteriorating PSCs into the ecosystem raise significant concerns. In particular, the risk of Pb from M-PSCs contaminating soil and aquatic ecosystems is a pressing issue for human and environmental health, spurring investigations into alternative materials and methods to diminish these impacts. The authors examine several strategies, including the introduction of Pb-free perovskites, encapsulation methods to block the escape of hazardous substances, and the recycling of PSC elements. The study stresses the necessity of aligning technological innovations with considerations for the environment and health, calling for ongoing research into PSC technologies that are sustainable and safe. This review highlights the need for detailed assessments of PSC technologies, focusing on their renewable energy contributions, environmental impacts, and strategies to mitigate these effects. The authors call for a cohesive strategy to develop PSCs that are efficient, cost-effective, eco-friendly, and safe for widespread use.

5.
ACS Nano ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051973

ABSTRACT

The significance of synthetic foams as insulative materials stems from their mechanical and water resistance as well as their cost-effectiveness. Broadly, the design of building envelopes should also consider fire and mold resistance and the impacts on the environment (end of life and compostability). This study addresses these issues considering the ever-increasing demand for sustainable sources to develop highly porous insulative materials. We introduce a versatile strategy based on wet-foam laying of cellulosic fibers that leads to hierarchical structures whose performance is tailored by the surface incorporation of betulin (BT), a bioactive molecule extracted from tree bark, combined with poly(dimethylsiloxane) (PDMS) after installation of urethane linkages. As such, we introduce an eco-friendly alternative to traditional polyurethane foams with competitive mechanical and thermal insulation performance. The modification of the fiber foams at low BT loading simultaneously endows superhydrophobicity (water contact angle >150°), fire retardancy (self-extinguish within 10 s), microbial resistance, and durability (no degradation in soil conditions after 3 months). BT plays a critical role as an antimicrobial and hydrophobic agent that synergizes with PDMS to achieve fire resistance. The life cycle assessment of the BT-modified foams reveals a significant reduction in greenhouse gas emission and human toxicity compared with rigid polyurethane foams by 96 and 92%, respectively. Overall, the valorization of the bark-derived BT is demonstrated by considering the scalability and cost-effectiveness of solid foams designed to substitute petroleum-derived counterparts.

6.
Waste Manag ; 187: 167-178, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032438

ABSTRACT

Understanding the current state of food waste is the basis for effective interventions. Based on field research conducted for 133 days, from March to August 2022, and for 25 days in November 2022, totaling 158 days, this study obtained first-hand data on the waste and consumption of 103 food items in ten categories at sample restaurants in different regions and city levels, and of different operation sizes in China. A total of 7759 consumers were part of this study, of whom 10 % them were children. The food delivered to a total of 2538 tables was counted as part of this study, and the average number of people per table in this study was three. The research objective was to measure the quantity, composition, and environmental impacts of post-consumer waste in the food service industry at the national level. It was discovered that: (1) Food waste generated by post-consumers in China totaled 7.57 Mt, or 43.98 g per capita per meal in 2022. (2) Fruit was the most important type of waste at 1.51 Mt. (3) Roots and tubers had the highest food waste rate (53 %). (4) The annual food waste resulted in a carbon footprint of 30.67 Mt CO2-eq, a nitrogen footprint of 393.94 million kilograms (Mkg N), a phosphorus footprint of 53.87 Mkg P, a water footprint of 17.09 million litres, and a land footprint of 4.36 million hectares (Mha).

7.
Lancet Reg Health West Pac ; 48: 101115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006230

ABSTRACT

Background: Health systems have a dual imperative to take action on climate change. First, they must develop climate resilient health services in response to the direct and indirect impacts of climate change on health. Second, they must reduce their own carbon footprint since health systems are a significant contributor to global greenhouse gas emissions. Methods: An environmentally-extended multi-region input-output analysis was carried out, incorporating National Accounts data for Australia and annual expenditure data from WA Health for financial year 2019-20. Expenditure data were categorised to one of 344 economic sectors and by location of the provider of goods or services purchased. Findings: WA Health contributes 8% of WA's total carbon footprint, driven by expenditure on chemicals (23.8% of total), transport (20.2% of total), and electricity supply (19.7% of total). These 3 sectors represent 63.7% of WA Health's carbon footprint, but only 10.8% of its total expenditure. Interpretation: Reducing emissions related to health service provision in WA will require a holistic approach that leverages carbon footprinting insights and integrates them into organisational decision-making across all health programs. The high carbon-intensity of the transport and chemicals sectors supports previous research calling for a reduction in unnecessary pathology testing and the transition to delivery of non-urgent health care via sustainable models of telehealth. The impact of WA's size and location presents challenges, with a predominantly non-renewable energy supply and reliance on transport and supply chains from other states adding significantly to emissions. Funding: The study received funding from the Australian Research Council, The University of Sydney, and the WA Department of Health. The full list of funding information can be found in Acknowledgements.

8.
J Anim Sci ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031085

ABSTRACT

The traditional approach to formulating pig diets is based only on minimizing cost while meeting nutritional requirements and thus does not consider the environmental impacts associated with producing feed ingredients. To reduce the overall environmental impact of pork production, that of feed ingredients can be considered to formulate environmentally friendly diets. However, their potential effects on pig performance could decrease environmental benefits at the farm gate. The objective of this study was to quantify the effects of such eco-friendly pig diets on nitrogen (N) and energy (E) balances, the components of heat production (HP) and the performance of growing pigs. Digestibility coefficients of dry matter (84.5% vs 88.2%, P < 0.01) and N (80.4% vs 86.3%, P < 0.01) were significantly lower for the eco-friendly diet than the Control-diet (a commercial diet used in France). N excretion in feces was significantly higher for the group of pigs fed the eco-friendly diet than for the group fed the Control-diet (9.8 vs 6.9 g/d, respectively, P = 0.01), while the N retention tended to be lower (27.8 vs 30.3 g/d, respectively; P = 0.06). The metabolizable E:digestible E ratio did not differ between diets, but total HP was significantly lower for the eco-friendly diet group than for the Control-diet group (1340 vs 1388 kJ/kg body weight (BW)0.60/d, respectively, P = 0.03). Using feed ingredients with lower environmental impacts, such as locally produced protein or co-products from wheat processing, is an effective way to decrease environmental impacts of pig production. However, the nutritional composition of these eco-friendly ingredients could be overestimated, in particular the true digestibility of amino acids. This indicates the need to better estimate and consider the true digestibility of eco-friendly diets to decrease environmental impacts of livestock production without decreasing animal performance.

9.
Sci Total Environ ; 948: 174526, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972402

ABSTRACT

A growing body of scientific literature stresses the need to advance current environmental risk assessment (ERA) methodologies and associated regulatory frameworks to better address the landscape-scale and long-term impact of pesticide use on biodiversity and the ecosystem. Moreover, more collaborative and integrative approaches are needed to meet sustainability goals. The One Health approach is increasingly applied by the European Food Safety Authority (EFSA) to support the transition towards safer, healthier and more sustainable food. To this end, EFSA commissioned the development of a roadmap for action to establish a European Partnership for next-generation, systems-based Environmental Risk Assessment (PERA). Here, we summarise the main conclusions and recommendations reported in the 2022 PERA Roadmap. This roadmap highlights that fragmentation of data, knowledge and expertise across regulatory sectors results in suboptimal processes and hinders the implementation of integrative ERA approaches needed to better protect the environment. To advance ERA, we revisited the underlying assumptions of the current ERA paradigm; that chemical risks are generally assessed and managed in isolation with a substance-by-substance, realistic worst-case and tiered approach. We suggest optimising the use of the vast amount of information and expertise available with pesticides as a pilot area. It is recommended to as soon as possible adopt a systems-based approach, i.e. within the current regulatory framework, to spark a step-wise transition towards an ERA framed at a system level of ecological and societal relevance. Tangible systems-based and integrative steps are available. For instance, the rich sources of existing data for prospective and retrospective ERA of pesticides could be used to reality-benchmark existing and new ERA methods. To achieve these goals, collaboration among stakeholders across scientific disciplines and regulatory sectors must be strengthened.

10.
Environ Health ; 23(1): 59, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943149

ABSTRACT

An under-recognised aspect of the current humanitarian catastrophe in Gaza is the impact of the war on the environment and the associated risks for human health. This commentary contextualises these impacts against the background of human suffering produced by the overwhelming violence associated with the use of military force against the general population of Gaza. In calling for an immediate cessation to the violence, the authors draw attention to the urgent need to rebuild the health care system and restore the physical and human infrastructure that makes a liveable environment possible and promotes human health and well-being, especially for the most vulnerable in the population. Environmental remediation should therefore form one of the most important parts of international efforts to assist reconstruction, through which we hope Palestinians and Israelis will achieve lasting peace, health, and sustainable development, all as part of accepted international human rights obligations.


Subject(s)
Public Health , Humans , Middle East , Violence/statistics & numerical data , Environmental Restoration and Remediation , Environmental Health
11.
Polymers (Basel) ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891471

ABSTRACT

The widespread and increasing use of plastic-based goods in the present-day world has been raising many concerns about the formation of microplastics, their release, their impacts on the environment and, ultimately, on living organisms. These concerns are even greater regarding nanoplastics, i.e., nanosized microplastics, which may have even greater impacts. In this brief review, although without any claim or intention to exhaustively cover all the aspects of such a complex and many-sided issue, the very topical problem of the formation of microplastics, and the even more worrisome nanoplastics, from polymer-based products was considered. The approach is focused on a terse, straightforward, and easily accessible analysis oriented to the main technological engineering aspects regarding the sources of microplastics and nanoplastics released into the environment, their nature, some of the consequences arising from the release, the different polymers involved, their technological form (i.e., products or processes, with particular attention towards unintentional release), the formation mechanisms, and some possible mitigation pathways.

12.
Reprod Toxicol ; 128: 108628, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848930

ABSTRACT

Bisphenol A (BPA), a widespread environmental contaminant, poses concerns due to its disruptive effects on physiological functions of the uterine endometrium. In contrast, melatonin (MT) and Resveratrol (RSV) are under scrutiny for their potential protective roles against BPA-induced damage. For the efficacy and ethical concerns in the animal test, endometrial organoids, three-dimensional models mimicking endometrium, serve as crucial tools for unraveling the impact of environmental factors on reproductive health. This study aimed to comprehensively characterize the morphological, molecular and metabolic responses of porcine endometrial organoids to BPA and assess the potential protective effects of MT and RSV. Porcine uteri were prepared, digested with collagenase, mixed with Matrigel, and incubated at 38°C with 5 % CO2. Passaging involved dissociation through trypsin-EDTA treatment and subculturing. The culture medium was refreshed every 2-3 days. To investigate the environmental impact on reproductive health, endometrial organoids were treated with BPA (0.5 µM), MT (with/without BPA at 0.1 µM), and/or RSV (10 µM). Various molecular screening using gene expression, western blotting, immunofluorescence staining, and metabolites profiling were assessed the effects of BPA, MT, and RSV in terms of cell viability, morphology, reproductivity, and metabolism alteration in the endometrial organoids. As expected, BPA induced structural and molecular disruptions in organoids, affecting cytoskeletal proteins, Wnt/ß-catenin signaling, and epithelial/mesenchymal markers. It triggered oxidative stress and apoptotic pathways, altered miRNA expression, and disrupted the endocannabinoid system. The level of glucose, galactose, and essential amino acids were increased or decreased by approximately 1.5-3 times in BPA-treated groups compared to the control groups (p-value < 0.05), indicating metabolic changes. Moreover, MT and RSV treated groups exhibited protective effects, mitigating BPA-induced disruptions across multiple pathways. For the first time, our study models endometrial organoids, advancing understanding of environmental impacts on reproductive health.

13.
J Environ Manage ; 362: 121275, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833932

ABSTRACT

The depletion of fossil energy reserves and the environmental pollution caused by these sources highlight the need to harness renewable energy sources from the oceans, such as waves and tides, due to their high potential. On the other hand, the large-scale deployment of ocean energy converters to meet future energy needs requires the use of large farms of these converters, which may have negative environmental impacts on the ocean ecosystem. In the meantime, a very important point is the volume of data produced by different methods of collecting data from the ocean for their analysis, which makes the use of advanced tools such as different machine learning algorithms even more colorful. In this article, some environmental impacts of ocean energy devices have been analyzed using machine learning and quantum machine learning. The results show that quantum machine learning performs better than its classical counterpart in terms of calculation accuracy. This approach offers a promising new method for environmental impact assessment, especially in a complex environment such as the ocean.


Subject(s)
Machine Learning , Oceans and Seas , Ecosystem , Environment , Algorithms , Environmental Monitoring/methods , Renewable Energy
14.
Article in English | MEDLINE | ID: mdl-38874269

ABSTRACT

Effective resource allocation in the agri-food sector is essential in mitigating environmental impacts and moving toward circular food supply chains. The potential of integrating life cycle assessment (LCA) with machine learning has been highlighted in recent studies. This hybrid framework is valuable not only for assessing food supply chains but also for improving them toward a more sustainable system. Yet, an essential step in the optimization process is defining the optimization boundaries, or minimum and maximum quantities for the variables. Usually, the boundaries for optimization variables in these studies are obtained from the minimum and maximum values found through interviews and surveys. A deviation in these ranges can impact the final optimization results. To address this issue, this study applies the Delphi method for identifying variable optimization boundaries. A hybrid environmental assessment framework linking LCA, multilayer perceptron artificial neural network, the Delphi method, and genetic algorithm was used for optimizing the pomegranate production system. The results indicated that the suggested framework holds promise for achieving substantial mitigation in environmental impacts (potential reduction of global warming by 46%) within the explored case study. Inclusion of the Delphi method for variable boundary determination brings novelty to the resource allocation optimization process in the agri-food sector. Integr Environ Assess Manag 2024;00:1-11. © 2024 SETAC.

15.
Sci Total Environ ; 945: 174109, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908579

ABSTRACT

Conventional sewage management is expensive and inefficient, putting the environment and public health at risk, making access to sewage services difficult for everyone. Reusing sewage waste has agricultural and economic potential, but can contain harmful contaminants if not treated properly. This review is based on the hypothesis that the destination of sewage waste generates environmental and social externalities, which have not yet been widely compared. With the aim of identifying, from the literature, the socio-environmental externalities generated by different sewage waste management approaches, a systematic review of the literature was carried out, including 244 documents, with 50 % of these discussing impacts of conventional treatment and 37 % analyzing the reuse of waste. The main impacts and externalities were evaluated in three situations: untreated sewage, treated sewage, and reused waste. The results indicate that sewage waste has an underutilized economic value and can generate revenue, reduce operational costs and electricity expenses. Six negative externalities generated by conventional sewage treatment were identified: health costs; environmental cleaning; carbon offsetting; damage to tourism; damage to fishing and agriculture; and real estate depreciation. In reuse, there is a risk of two negative externalities: health costs and environmental cleaning, but two positive externalities were also identified: the reduction of phosphate rock mining and the neutralization of carbon credits. The complexity of the transition to sustainable sewage treatment practices is highlighted given the lack of consensus on the safe use of sewage waste, the lack of regulatory standardization, implementation costs and differences in regional parameters, highlighting the need for preliminary experimentation in a multidisciplinary and contextualized approach, considering comparative externalities among the available sewage waste management possibilities.


Subject(s)
Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Waste Management/methods , Environment , Recycling
16.
Ann Pathol ; 2024 Jun 26.
Article in French | MEDLINE | ID: mdl-38937204

ABSTRACT

While digitization and artificial intelligence represent the future of our specialty, future is also constrained by global warming and overstepping of planetary limits, threatening human health and the functioning of the healthcare system. The report by the Délégation ministérielle du numérique en santé and the French government's ecological planning of the healthcare system confirm the need to control the environmental impact of digital technology. Indeed, despite the promises of dematerialization, digital technology is a very material industry, generating greenhouse gas emissions, problematic consumption of water and mineral resources, and social impacts. The digital sector is impacting at every stage: (i) manufacture of equipment; (ii) use; and (iii) end-of-life of equipment, which, when recycled, can only be recycled to a very limited extent. This is a fast-growing sector, and the digitization of our specialty is part of its acceleration and its impact. Understanding the consequences of digitalization and artificial intelligence, and phenomena such as the rebound effect, is an essential prerequisite for the implementation of a sober, responsible, and sustainable digital pathology. The aim of this update is to help pathologists better understand the environmental impact of digital technology. As healthcare professionals, we have a responsibility to combine technological advances with an awareness of their impact, within a systemic vision of human health.

17.
Int J Biometeorol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869702

ABSTRACT

This paper provides an overview of the HEAT (Healthy Environments for AthleTes) project, which aims to understand the impact of environmental conditions on athlete health and performance during major sporting events such as long-distance running, cycling, and triathlons. In collaboration with the SAFER (Strategies to reduce Adverse medical events For the ExerciseR) initiative, the HEAT project carried out a field campaign at the 2022 Comrades Marathon in the KwaZulu-Natal province of South Africa. The measurement campaign deployed seven weather stations, seven PM2.5 monitors and one spore trap along the 90 km route to capture spatially representative measurements of complex micro-climates, allergenic aerospora, and particulate matter exposure. The results indicate that runners were exposed to moderate risk heat stress conditions. Novel findings from this initial campaign shows elevated and potentially harmful PM2.5 levels at spectator areas, possibly coinciding with small fire events around the race day festivities. Our findings show values PM2.5 levels over the WHO 24-h guidelines at all stations, while 2000 µg/m3 at two stations. However, the lack of an acute exposure standard means direct health impacts cannot be quantified in the context of a sport event. The HEAT project highlights important aspects of race day monitoring; regional scale climatology has an impact on the race day conditions, the microclimatic conditions (pollution and meteorology) are not necessarily captured by proximity instruments and direct environmental measurements are required to accurately capture conditions along the route.

18.
Environ Sci Pollut Res Int ; 31(25): 36938-36957, 2024 May.
Article in English | MEDLINE | ID: mdl-38758437

ABSTRACT

Natural disasters and human demolition create vast amounts of construction and demolition waste (CDW), with a substantial portion being concrete waste. Managing this concrete waste is a daunting challenge for developing countries with limited resources, aiming to mitigate its harmful environmental effects. Therefore, the proposed approach involves using recycled fine aggregates (RFA) instead of fresh fine aggregates (FFA) in concrete, which aligns closely with achieving sustainable environmental objectives. Extensive laboratory tests were conducted to assess the effects of adding RFA to concrete. The influence of 0 to 100% RFA replacement and different curing times was investigated on compressive strength, tensile strength, resistance against chloride ion penetration and chemicals exposure, and quality of aggregates. So, around 30%, 35%, 20%, and 79% reductions in compression strength, tensile strength, modulus of elasticity, and workability were estimated when 100% RFA was used in recycled aggregate concrete (RAC). However, according to results analyses, the performance of RAC is reliable up to 50% of RFA in proposed conditions and mix design. In addition, major environmental impacts such as global warming potential, aquatic eutrophication, and aquatic acidification were reduced by 47%, 40%, and 18%, respectively, for concrete having 50% RFA than concrete having 100% FFA.


Subject(s)
Construction Materials , Recycling , Environment , Tensile Strength
19.
J Environ Manage ; 359: 121043, 2024 May.
Article in English | MEDLINE | ID: mdl-38723497

ABSTRACT

Fertilizer-intensive agriculture leads to emissions of reactive nitrogen (Nr), posing threats to climate via nitrous oxide (N2O) and to air quality and human health via nitric oxide (NO) and ammonia (NH3) that form ozone and particulate matter (PM) downwind. Adding nitrification inhibitors (NIs) to fertilizers can mitigate N2O and NO emissions but may stimulate NH3 emissions. Quantifying the net effects of these trade-offs requires spatially resolving changes in emissions and associated impacts. We introduce an assessment framework to quantify such trade-off effects. It deploys an agroecosystem model with enhanced capabilities to predict emissions of Nr with or without the use of NIs, and a social cost of greenhouse gas to monetize the impacts of N2O on climate. The framework also incorporates reduced-complexity air quality and health models to monetize associated impacts of NO and NH3 emissions on human health downwind via ozone and PM. Evaluation of our model against available field measurements showed that it captured the direction of emission changes but underestimated reductions in N2O and overestimated increases in NH3 emissions. The model estimated that, averaged over applicable U.S. agricultural soils, NIs could reduce N2O and NO emissions by an average of 11% and 16%, respectively, while stimulating NH3 emissions by 87%. Impacts are largest in regions with moderate soil temperatures and occur mostly within two to three months of N fertilizer and NI application. An alternative estimate of NI-induced emission changes was obtained by multiplying the baseline emissions from the agroecosystem model by the reported relative changes in Nr emissions suggested from a global meta-analysis: -44% for N2O, -24% for NO and +20% for NH3. Monetized assessments indicate that on an annual scale, NI-induced harms from increased NH3 emissions outweigh (8.5-33.8 times) the benefits of reducing NO and N2O emissions in all agricultural regions, according to model-based estimates. Even under meta-analysis-based estimates, NI-induced damages exceed benefits by a factor of 1.1-4. Our study highlights the importance of considering multiple pollutants when assessing NIs, and underscores the need to mitigate NH3 emissions. Further field studies are needed to evaluate the robustness of multi-pollutant assessments.


Subject(s)
Agriculture , Fertilizers , Nitrification , Nitrous Oxide , Fertilizers/analysis , Nitrous Oxide/analysis , Air Pollutants/analysis , Ozone/analysis , Ammonia/analysis , Reactive Nitrogen Species/analysis , Nitrogen/analysis , Air Pollution/analysis
20.
Environ Technol ; : 1-17, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820568

ABSTRACT

This study aimed to create a comprehensive evaluation method for sewage sludge (SS) treatment and disposal technologies, considering carbon emission and environmental impacts. Life cycle assessment (LCA) were conducted on six SS treatment and disposal technologies in China. The assessments used the IPCC emission factor approach to calculate carbon emissions and the CML2001 method to determine environmental impact factors. Additionally, a colour-coded method was implemented to quantify the evaluation results. The study found that S1 (anaerobic digestion + land application) had the lowest carbon emissions and environmental impact, making it the optimal technology. The S1 scenario had carbon emissions of 669 kg CO2(t DS)-1 and environmental impacts of 5.20E-10. A sensitivity analysis was conducted to show the impacts of each unit in the six technologies on total carbon emissions and environmental impacts. The results showed that landfilling has a high sensitivity to carbon emissions and environmental impacts. Therefore, controlling greenhouse gases and toxic substances in sludge landfills is crucial for reducing carbon emissions and environmental pollution.

SELECTION OF CITATIONS
SEARCH DETAIL
...