Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
Anal Chim Acta ; 1314: 342799, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38876521

ABSTRACT

BACKGROUND: As a core enzyme in the base excision repair system, uracil DNA glycosylase (UDG) is indispensable in maintaining genomic integrity and normal cell cycles. Its abnormal activity intervenes in cancers and neurodegerative diseases. Previous UDG assays based on isothermal amplification and Clustered Regularly Interspaced Short Palindromic Repeats/Cas (CRISPR/Cas) system were fine in sensitivity, but exposed to complications in assay flow, time, and probe design. After isothermal amplification, a CRISPR/Cas reagent should be separately added with extra manual steps and its guide RNA (gRNA) should be designed, considering the presence of protospacer adjacent motif (PAM) site. RESULTS: We herein describe a UDG-REtarded CRISPR Amplification assay, termed 'URECA'. In URECA, isothermal nucleic acid (NA) amplification and CRISPR/Cas12a system were tightly combined to constitute a one-pot, isothermal CRISPR amplification system. Isothermal NA amplification for a UDG substrate (US) with uracil (U) bases was designed to activate and boost CRISPR/Cas12a reaction. Such scheme enabled us to envision that UDG would halt the isothermal CRISPR amplification reaction by excising U bases and messing up the US. Based on this principle, the assay detected the UDG activity down to 9.17 x 10-4 U/mL in 50 min. With URECA, we fulfilled the recovery test of UDG activities in plasma and urine with high precision and reproducibility and reliably determined UDG activities in cell extracts. Also, we verified its capability to screen candidate UDG inhibitors, showing its potentials in practical application as well as drug discovery. SIGNIFICANCE: URECA offers further merits: i) the assay is seamless. Following target recognition, the reactions proceed in one-step without any intervening steps, ii) probe design is simple. Unlike the conventional CRISPR/Cas12a-based assays, URECA does not consider the PAM site in probe design as Cas12a activation relies on instantaneous gRNA binding to single-stranded DNA strands. By rationally designing an enzyme substrate probe to be specific to other enzymes, while keeping a role as a template for isothermal CRISPR amplification, the detection principle of URECA will be expanded to devise biosensors for various enzymes of biological, clinical significance.


Subject(s)
CRISPR-Cas Systems , DNA Repair , Nucleic Acid Amplification Techniques , Uracil-DNA Glycosidase , Uracil-DNA Glycosidase/metabolism , Uracil-DNA Glycosidase/genetics , Humans , Nucleic Acid Amplification Techniques/methods , CRISPR-Cas Systems/genetics , Enzyme Assays/methods , Excision Repair
2.
Methods Mol Biol ; 2792: 51-75, 2024.
Article in English | MEDLINE | ID: mdl-38861078

ABSTRACT

Mitochondrial dihydrolipoamide dehydrogenase (mtLPD1) is a central enzyme in primary carbon metabolism, since its function is required to drive four multienzymes involved in photorespiration, the tricarboxylic acid (TCA) cycle, and the degradation of branched-chain amino acids. However, in illuminated, photosynthesizing tissue a vast amount of mtLPD1 is necessary for glycine decarboxylase (GDC), the key enzyme of photorespiration. In light of the shared role, the functional characterization of mtLPD1 is necessary to understand how the three pathways might interact under different environmental scenarios. This includes the determination of the biochemical properties and all potential regulatory mechanisms, respectively. With regards to the latter, regulation can occur through multiple levels including effector molecules, cofactor availability, or posttranslational modifications (PTM), which in turn decrease or increase the activity of each enzymatic reaction. Gaining a comprehensive overview on all these aspects would ultimately facilitate the interpretation of the metabolic interplay of the pathways within the whole subcellular network or even function as a proof of concept for genetic engineering approaches. Here, we describe the typical workflow how to clone, express, and purify plant mtLPD1 for biochemical characterization and how to analyze potential redox regulatory mechanisms in vitro and in planta.


Subject(s)
Dihydrolipoamide Dehydrogenase , Oxidation-Reduction , Dihydrolipoamide Dehydrogenase/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/enzymology , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Cloning, Molecular/methods
3.
Talanta ; 276: 126276, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38796995

ABSTRACT

Ribonuclease A (RNase A) plays significant roles in several physiological and pathological conditions and can be used as a valuable diagnostic biomarker for human diseases such as myocardial infarction and cancer. Hence, it is of great importance to develop a rapid and cost-effective method for the highly sensitive detection of RNase A. The significance of RNase A assay is further enhanced by the growing attention from the biotechnology and pharmaceutical industries to develop RNA-based vaccines and drugs in large part as a result of the successful development of mRNA vaccines in the COVID-19 pandemic. Herein, we report a label-free method for the detection of RNase A by monitoring its proteolytic cleavage of an RNA substrate in a nanopore. The method is ultra-sensitive with the limit of detection reaching as low as 30 fg per milliliter. Furthermore, sensor selectivity and the effects of temperature, incubation time, metal ion, salt concentration on sensor sensitivity were also investigated.


Subject(s)
Nanopores , Ribonuclease, Pancreatic , Ribonuclease, Pancreatic/analysis , Ribonuclease, Pancreatic/metabolism , Ribonuclease, Pancreatic/chemistry , Humans , Limit of Detection , Biosensing Techniques/methods , SARS-CoV-2 , Enzyme Assays/methods , COVID-19/virology , COVID-19/diagnosis
4.
Article in English | MEDLINE | ID: mdl-38747227

ABSTRACT

INTRODUCTION/BACKGROUND: Because of the well-established link between angiogenesis and tumor development, the use of antiangiogenic therapeutics, such as those targeting VEGFR-2, presents a promising approach to cancer treatment. In the current study, a set of five hydrazine-1-- carbothioamide (compounds 3a-e) and three hydrazine-1-carboxamide derivatives (compounds 4a-c) were successfully synthesized from 3-phenoxybenzoic acid. These compounds were specially created as antiproliferative agents with the goal of targeting cancer cells by inhibiting VEGFR-2 tyrosine kinase. MATERIALS AND METHODS: The new derivatives were synthesized by conventional organic methods, and their structure was versified by IR, 1HNMR, 13CNMR, and mass spectroscopy. In silico investigation was carried out to identify the compounds' target, molecular similarity, ADMET, and toxicity profile. The cytotoxic activity of the prepared compounds was evaluated in vitro against three human cancer cell lines (DLD1 colorectal adenocarcinoma, HeLa cervical cancer, and HepG2 hepatocellular carcinoma). The effects of the leading compound on cell cycle progression and apoptosis induction were investigated by flow cytometry, and the specific apoptotic pathway triggered by the treatment was evaluated by RT-PCR and immunoblotting. Finally, the inhibitory activities of the new compounds against VEGFR-2 was measured. RESULTS: The designed derivatives exhibited comparable binding positions and interactions to the VEGFR-2 binding site to that of sorafenib (a standard VEGFR-2 tyrosine kinase inhibitor), as determined by molecular docking analysis. Compound 4b was the most cytotoxic compound, achieving the lowest IC50 against HeLa cells. Compound 4b, a strong representative of the synthesized series, induced cell cycle arrest at the G2/M phase, increased the proportion of necrotic and apoptotic HeLa cells, and activated caspase 3. The EC50 value of compound 4b against VEGFR-2 kinase activity was comparable to sorafenib's. CONCLUSION: Overall, the findings suggest that compound 4b has a promising future as a starting point for the development of new anticancer drugs.

5.
Biochem Biophys Res Commun ; 709: 149822, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38547604

ABSTRACT

Aromatic nitriles are of considerable environmental concern, because of their hazardous impacts on the health of both humans and wildlife. In the present study, Burkholderia sp. strain BC1 was observed to be capable of utilizing toxic benzonitrile and hydroxybenzonitrile isomers singly, as sole carbon and energy sources. The results of chromatographic and spectrometric analyses in combination with oxygen uptake and enzyme activity studies, revealed the metabolism of benzonitrile as well as 2-, 3-, and 4-hydroxybenzonitriles by nitrile hydratase-amidase to the corresponding carboxylates. These carboxylates were further metabolized via central pathways, namely benzoate-catechol, salicylate-catechol, 3-hydroxybenzoate-gentisate and 4-hydroxybenzoate-protocatechute pathways in strain BC1, ultimately leading to the TCA cycle intermediates. Studies also evaluated substrate specificity profiles of both nitrile hydratase and amidase(s) involved in the denitrification of the nitriles. In addition, a few metabolic crosstalk events due to the induction of multiple operons by central metabolites were appraised in strain BC1. The present study illustrates the broad degradative potential of strain BC1, harboring diverse catabolic machinery of biotechnological importance, elucidating pathways for the assimilation of benzonitrile and that of hydroxybenzonitrile isomers for the first time.


Subject(s)
Burkholderia , Humans , Nitriles/chemistry , Amidohydrolases/metabolism , Catechols , Biodegradation, Environmental
6.
Biosens Bioelectron ; 253: 116174, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38432074

ABSTRACT

We herein present a novel ultrasensitive RNase H assay based on phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) reaction. The detection probe employed as a key component in this technique serves as a substrate for RNase H and triggers the PS-THSP reaction upon the RNase H-mediated degradation of the probe. As a consequence, a large number of long concatemeric amplification products could be produced and used to identify the RNase H activity through the fluorescence signals produced by the nucleic acid-specific fluorescent dye, SYTO 9. Importantly, the use of the gp32 protein allowed the PS-THSP reaction to be performed at 37 °C, ultimately enabling an isothermal one-step RNase H assay. Based on this sophisticated design principle, the RNase H activity was very sensitively detected, down to 0.000237 U mL-1 with high specificity. We further verified its practical applicability through its successful application to the screening of RNase H inhibitors. With its operational convenience and excellent analytical performance, this technique could serve as a new platform for RNase H assay in a wide range of biological applications.


Subject(s)
Biosensing Techniques , Nucleic Acids , Ribonuclease H , Biosensing Techniques/methods , Fluorescent Dyes
7.
J Biol Chem ; 300(4): 107121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417795

ABSTRACT

Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.


Subject(s)
Congenital Disorders of Glycosylation , Fluorescence Resonance Energy Transfer , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Animals , Humans , Male , Rats , Aging/metabolism , Brain/metabolism , Congenital Disorders of Glycosylation/diagnosis , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency
8.
Cell Rep Methods ; 4(3): 100710, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38401540

ABSTRACT

Ferroptosis, a regulated cell death hallmarked by unrestrained lipid peroxidation, plays a pivotal role in the pathophysiology of various diseases, making it a promising therapeutic target. Glutathione peroxidase 4 (GPX4) prevents ferroptosis by reducing (phospho)lipid hydroperoxides, yet evaluation of its actual activity has remained arduous. Here, we present a tangible method using affinity-purified GPX4 to capture a snapshot of its native activity. Next to measuring GPX4 activity, this improved method allows for the investigation of mutational GPX4 activity, exemplified by the GPX4U46C mutant lacking selenocysteine at its active site, as well as the evaluation of GPX4 inhibitors, such as RSL3, as a showcase. Furthermore, we apply this method to the second ferroptosis guardian, ferroptosis suppressor protein 1, to validate the newly identified ferroptosis inhibitor WIN62577. Together, these methods open up opportunities for evaluating alternative ferroptosis suppression mechanisms.


Subject(s)
Ferroptosis , Regulated Cell Death , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Lipid Peroxidation/physiology , Lipid Peroxides
9.
Molecules ; 29(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398599

ABSTRACT

Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity.


Subject(s)
Cytoskeletal Proteins , NAD , Humans , Chromatography, High Pressure Liquid , Armadillo Domain Proteins
10.
Extremophiles ; 28(1): 15, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300354

ABSTRACT

Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.


Subject(s)
Basidiomycota , Saccharomyces cerevisiae , Arginase/genetics , Basidiomycota/genetics , Arginine , Escherichia coli
11.
Chemosphere ; 350: 141137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199494

ABSTRACT

Cover crops (CCs) are increasingly used in viticulture because they benefit the soil and the environment in many ways. This study investigated the extent to which the incorporation of CC residues altered organic matter (OM) and Cu dynamics in a Cu-contaminated vineyard topsoil. A 92-day incubation period was used to monitor changes over time in carbon mineralization, carbon hydrolytic enzyme activity, concentration and optical properties of dissolved organic matter (DOM), and Cu solubility after the addition (or not) of two CC residues, oat or faba bean. The results revealed that adding CCs transitorily increased the concentration of DOM in soil solution, as well as the activity of C hydrolytic enzymes and C mineralization rates. DOM content was approximately two orders of magnitude higher in CC-amended soils than in the control soil on day 0, after which it gradually decreased to reach concentrations similar to those measured in the control soil on day 92. Analyses of DOM optical properties showed that its molecular weight and degree of humification increased over time with a decrease in its concentration. The close relationship between DOM and Cu concentrations in the soil solution suggests that degradation of CCs releases soluble forms of C capable of complexing and solubilizing Cu, and hence that incorporating CC residues can transitorily increase the solubility of Cu in vineyard topsoils. Despite their different C:N ratios, oat and faba bean had almost the same effect on Cu dynamics, implying that C inputs played a prominent role in explaining the interactions between OM and Cu within the timeframe of our experiment. In conclusion, this study enabled recommendations on how to mitigate the risk of Cu ecotoxicity associated with incorporating CCs in Cu-contaminated vineyard soils.


Subject(s)
Copper , Soil Pollutants , Copper/chemistry , Soil/chemistry , Farms , Solubility , Soil Pollutants/analysis , Adsorption , Dissolved Organic Matter , Carbon/analysis
12.
Proteomics ; 24(3-4): e2200471, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38282202

ABSTRACT

Enzymatic catalysis is one of the fundamental processes that drives the dynamic landscape of post-translational modifications (PTMs), expanding the structural and functional diversity of proteins. Here, we assessed enzyme specificity using a top-down ion mobility spectrometry (IMS) and tandem mass spectrometry (MS/MS) workflow. We successfully applied trapped IMS (TIMS) to investigate site-specific N-ε-acetylation of lysine residues of full-length histone H4 catalyzed by histone lysine acetyltransferase KAT8. We demonstrate that KAT8 exhibits a preference for N-ε-acetylation of residue K16, while also adding acetyl groups on residues K5 and K8 as the first degree of acetylation. Achieving TIMS resolving power values of up to 300, we fully separated mono-acetylated regioisomers (H4K5ac, H4K8ac, and H4K16ac). Each of these separated regioisomers produce unique MS/MS fragment ions, enabling estimation of their individual mobility distributions and the exact localization of the N-ε-acetylation sites. This study highlights the potential of top-down TIMS-MS/MS for conducting enzymatic assays at the intact protein level and, more generally, for separation and identification of intact isomeric proteoforms and precise PTM localization.


Subject(s)
Ion Mobility Spectrometry , Tandem Mass Spectrometry , Ion Mobility Spectrometry/methods , Histones/metabolism , Protein Processing, Post-Translational , Acetylation
13.
Insect Biochem Mol Biol ; 165: 104061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151136

ABSTRACT

Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.


Subject(s)
Coleoptera , Weevils , Animals , Coleoptera/metabolism , Weevils/metabolism , Gene Expression Profiling , Terpenes/metabolism , Gene Expression
14.
Front Plant Sci ; 14: 1157455, 2023.
Article in English | MEDLINE | ID: mdl-38078109

ABSTRACT

The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.

15.
Biol Methods Protoc ; 8(1): bpad026, 2023.
Article in English | MEDLINE | ID: mdl-37965492

ABSTRACT

Human asparagine synthetase (ASNS) catalyzes the conversion of aspartate to asparagine in an ATP-dependent reaction that utilizes glutamine as a nitrogen source while generating glutamate, AMP, and pyrophosphate as additional products. Asparagine Synthetase Deficiency (ASNSD) is an inborn error of metabolism in which children present with homozygous or compound heterozygous mutations in the ASNS gene. These mutations result in ASNS variant protein expression. It is believed that these variant ASNS proteins have reduced enzymatic activity or stability resulting in a lack of sufficient asparagine production for cell function. Reduced asparagine production by ASNS appears to severely hinder fetal brain development. Although a variety of approaches for assaying ASNS activity have been reported, we present here a straightforward method for the in vitro enzymatic analysis by detection of AMP production. Our method overcomes limitations in technical feasibility, signal detection, and reproducibility experienced by prior methods like high-performance liquid chromatography, ninhydrin staining, and radioactive tracing. After purification of FLAG-tagged R49Q, G289A, and T337I ASNS variants from stably expressing HEK 293T cells, this method revealed a reduction in activity of 90, 36, and 96%, respectively. Thus, ASNS protein expression and purification, followed by enzymatic activity analysis, has provided a relatively simple protocol to evaluate structure-function relationships for ASNS variants reported for ASNSD patients.

16.
J Microbiol Methods ; 215: 106861, 2023 12.
Article in English | MEDLINE | ID: mdl-38030086

ABSTRACT

As the most abundant biopolymer on earth, cellulose undergoes degradation by a diverse set of enzymes with varying specificities that act in synergism. An assay protocol was developed to detect and quantify activity of cellulose 1,4-ß-cellobiosidase (EC 3.2.1.91) in soil. The optimum pH and temperature for ß-cellobiosidase activity were approximately pH 5.5 and 60 °C, respectively. In the tested six soils, the Michaelis constants (Km) ranged from 0.08 to 0.51 mM, and maximum velocity (Vmax) ranged from 71.5 to 318.1 µmol kg soil-1 h-1. The temperature coefficient (Q10) ranged from 1.72 to 1.99 at non-denaturing temperatures from 10 to 50 °C, and the activation energy (Ea) ranged from 42.5 to 53.7 kJ mol-1. The assay procedure provided reproducible results with a coefficient of variance ≤4.7% and demonstrated a limit of quantification (LOQ) of 50.9 µmol p-nitrophenol release kg-1 soil h-1 for ß-cellobiosidase activity in soil. Notably, the developed assay protocol offers reproducibility and precision comparable to bench-scale assays while reducing costs associated with reagents, supplies, and labor.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase , Cellulose , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Reproducibility of Results , Temperature , Soil , Kinetics
17.
Molecules ; 28(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37836816

ABSTRACT

The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb3+ detection was developed. The biotinylated aptamer A10 was hybridized with its complementary biotinylated oligonucleotide T10 and then immobilized on the surface of polysterene microplate wells. Streptavidin labeled with horseradish peroxidase (HRP) bound to the biotin of a complementary complex and transformed the 3,3',5,5'-tetramethylbenzidine substrate, generating an optical signal. Sb3+ presenting in the sample bounded to an A10 aptamer, thus releasing T10, preventing streptavidin-HRP binding and, as a result, reducing the optical signal. This effect allowed for the detection of Sb3+ with a working range from 0.09 to 2.3 µg/mL and detection limit of 42 ng/mL. It was established that the presence of Ag+ at the stage of A10/T10 complex formation promoted dehybridization of the aptamer A10 and the formation of the A10/Sb3+ complex. The working range of the Ag+-enhanced microplate apta-enzyme assay for Sb3+ was determined to be 8-135 ng/mL, with a detection limit of 1.9 ng/mL. The proposed enhanced approach demonstrated excellent selectivity against other cations/anions, and its practical applicability was confirmed through an analysis of drinking and spring water samples with recoveries of Sb3+ in the range of 109.0-126.2% and 99.6-106.1%, respectively.


Subject(s)
Aptamers, Nucleotide , Silver , Humans , Streptavidin , Oligonucleotides , Cations , Enzyme Assays/methods , Horseradish Peroxidase , Water , Limit of Detection
18.
J Agric Food Chem ; 71(47): 18227-18238, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37567224

ABSTRACT

Herbicides are effective tools to manage weeds and enable food production and sustainable agriculture. Corteva Agriscience R&D has recently discovered new diphenyl-ether compounds displaying excellent postemergent efficacy on important weed species along with corn safety. Here, we describe the chemistry, biology, biochemistry, and computational modeling research that led to the discovery and elucidation of the primary mode of action for these compounds. The target protein was found to be acetolactate synthase (ALS), a key enzyme in the biosynthesis of branched chain amino acids (valine, leucine, and isoleucine). While weed resistance evolution to ALS herbicides is widespread, the molecular interaction of the diphenyl-ether compounds at the active site of the ALS enzyme differs significantly from that of some commercial ALS inhibitors. The unique biochemical profile of these molecules along with their excellent herbicidal activity and corn selectivity make them a noteworthy development in the pursuit of novel, safe, and sustainable weed control solutions.


Subject(s)
Acetolactate Synthase , Herbicides , Herbicides/pharmacology , Herbicides/chemistry , Acetolactate Synthase/chemistry , Herbicide Resistance , Ethers
19.
Bioorg Med Chem ; 91: 117415, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37459673

ABSTRACT

Growing antibiotic resistance by pathogenic bacteria has led to a global crisis. The bacterial enzyme N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) provides a very attractive target for the discovery of a new class of antibiotics, as it resides exclusively in many pathogenic bacterial strains and is a key enzyme in the lysine biosynthetic pathway. This pathway is responsible for the production of lysine as well as meso-diaminopimelate (m-DAP), both of which are required for peptidoglycan cell-wall synthesis, and lysine for peptide synthesis. The enzyme DapE catalyzes the hydrolysis of N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) to succinate and l,l-diaminopimelic acid (l,l-DAP), and due to its absence in humans, inhibition of DapE avoids mechanism-based side effects. We have executed the asymmetric synthesis of N,N-dimethyl-SDAP, an l,l-SDAP substrate analog and an analog of the synthetic substrate of our previously described DapE assay. Previous modeling studies advocated that N,N-dimethyl-SDAP might function as an inhibitor, however the compound behaves as a substrate, and we have demonstrated the use of N,N-dimethyl-SDAP as the substrate in a modified ninhydrin-based DapE assay. Thermal shift experiments of DapE in the presence of N,N-dimethyl-SDAP are consistent with a melt temperature (Tm) shifted by succinate, the product of enzymatic hydrolysis.


Subject(s)
Lysine , Succinates , Humans , Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Drug Resistance, Bacterial
20.
Int J Biol Macromol ; 242(Pt 1): 124674, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37137348

ABSTRACT

N-acetylglucosamine kinase (NAGK), a major enzyme of sugar-kinase/Hsp70/actin superfamily, catalyses the conversion of N-acetylglucosamine to N-acetylglucosamine-6-phosphate, the first step leading to the salvage synthesis of uridine diphosphate N-acetylglucosamine. Here, we present the first report on identification, cloning, recombinant expression and functional characterisation of NAGK from Helicoverpa armigera (HaNAGK). The purified soluble HaNAGK exhibited a molecular mass of ∼39 kDa with monomeric conformation. It catalysed the sequential transformation of GlcNAc into UDP-GlcNAc, indicating its role as the initiator of UDP-GlcNAc salvage pathway. HaNAGK exhibited ubiquitous expressions across all the developmental stages and major tissues of H. armigera. The gene was significantly upregulated (80 %; p < 0.01) by the moulting hormone 20-hydroxyecdysone and significantly downregulated (89 %; p < 0.001) by the chitin synthesis inhibitor novaluron, indicating its involvement in ecdysis and chitin metabolism. Furthermore, RNAi of HaNAGK caused poor weight gain, deformed insect bodies, aberrant metamorphosis and pronounced wing abnormalities in >55 % of surviving adults, while recording 7.79 ± 1.52 % and 24.25 ± 7.21 % mortality during larval and pupal stages, respectively. Altogether, the present findings suggest that HaNAGK plays a crucial role in the growth and development of H. armigera and thus, could be considered as a compelling gene of interest while formulating novel pest management strategies.


Subject(s)
Acetylglucosamine , Moths , Animals , Acetylglucosamine/metabolism , Moths/metabolism , Larva/metabolism , Uridine Diphosphate/metabolism , Chitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...