Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Methods Mol Biol ; 2842: 449-460, 2024.
Article in English | MEDLINE | ID: mdl-39012610

ABSTRACT

Heterogeneity in gene expression largely stems from the discontinuous nature of transcription, with transcripts being produced in bursts with defined frequencies. This cell-to-cell variability in transcription within isogenic cell populations is a known phenomenon across numerous genes. Multiple gene regulatory and epigenetic factors have been identified as key contributors to this pulsatile gene activity. Understanding the effects of epigenetic modulation on transcriptional cell-to-cell variability and kinetics of transcriptional activity is crucial for interpreting changes in treatment responsiveness. We present a detailed protocol that guides the assessment of fluctuations in gene expression induced by epigenetic modulation using single-molecule RNA in situ hybridization (smRNA FISH) combined with confocal microscopy imaging, data analysis, and quantification in breast cancer cells. Through smRNA FISH labeling, both mature and nascent transcripts are identified. Subsequently, the number of mature transcripts and the intensity and frequency of nascent transcripts are quantified, and these measurements are used to calculate the burst size and frequency for the labeled gene. By following this step-by-step methodology, insights are obtained into the intricate relationship between epigenetic alterations and the dynamic nature of gene expression in breast cancer cells.


Subject(s)
Epigenesis, Genetic , In Situ Hybridization, Fluorescence , Single Molecule Imaging , Transcription, Genetic , Humans , Single Molecule Imaging/methods , In Situ Hybridization, Fluorescence/methods , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Microscopy, Confocal , Gene Expression Regulation, Neoplastic , Female
2.
Front Pharmacol ; 15: 1381168, 2024.
Article in English | MEDLINE | ID: mdl-38720770

ABSTRACT

Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.

3.
Life Sci ; 346: 122639, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615747

ABSTRACT

Chromatin undergoes dynamic regulation through reversible histone post-translational modifications (PTMs), orchestrated by "writers," "erasers," and "readers" enzymes. Dysregulation of these histone modulators is well implicated in shaping the cancer epigenome and providing avenues for precision therapies. The approval of six drugs for cancer therapy targeting histone modulators, along with the ongoing clinical trials of numerous candidates, represents a significant advancement in the field of precision medicine. Recently, it became apparent that histone PTMs act together in a coordinated manner to control gene expression. The intricate crosstalk of histone PTMs has been reported to be dysregulated in cancer, thus emerging as a critical factor in the complex landscape of cancer development. This formed the foundation of the swift emergence of co-targeting different histone modulators as a new strategy in cancer therapy. This review dissects how histone PTMs, encompassing acetylation, phosphorylation, methylation, SUMOylation and ubiquitination, collaboratively influence the chromatin states and impact cellular processes. Furthermore, we explore the significance of histone modification crosstalk in cancer and discuss the potential of targeting histone modification crosstalk in cancer management. Moreover, we underscore the significant strides made in developing dual epigenetic inhibitors, which hold promise as emerging candidates for effective cancer therapy.


Subject(s)
Histones , Neoplasms , Precision Medicine , Protein Processing, Post-Translational , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Histones/metabolism , Precision Medicine/methods , Animals , Epigenesis, Genetic , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Acetylation , Chromatin/metabolism
4.
Ann Hematol ; 103(5): 1435-1454, 2024 May.
Article in English | MEDLINE | ID: mdl-37581713

ABSTRACT

Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.


Subject(s)
Lymphoma , Neoplasms , Humans , DNA Methylation , Epigenesis, Genetic , Neoplasms/drug therapy , Lymphoma/drug therapy , Lymphoma/genetics , Prognosis
5.
Int J Cancer ; 154(6): 1029-1042, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37947765

ABSTRACT

Non-small cell lung cancer (NSCLC) patients are often elderly or unfit and thus cannot tolerate standard aggressive therapy regimes. In our study, we test the efficacy of the DNA-hypomethylating agent decitabine (DAC) in combination with all-trans retinoic acid (ATRA), which has been shown to possess little systemic adverse effects. Screening a broad panel of 56 NSCLC cell lines uncovered a decrease in cell viability after the combination treatment in 77% of the cell lines. Transcriptomics, proteomics, proliferation and migration profiling revealed that fast proliferating and slowly migrating cell lines were more sensitive to the drug combination. The comparison of mutational profiles found oncogenic KRAS mutations only in sensitive cells. Additionally, different cell lines showed a heterogeneous gene expression response to the treatment pointing to diverse mechanisms of action. Silencing KRAS, RIG-I or RARB partially reversed the sensitivity of KRAS-mutant NCI-H460 cells. To study resistance, we generated two NCI-H460 cell populations resistant to ATRA and DAC, which migrated faster and proliferated slower than the parental sensitive cells and showed signs of senescence. In summary, this comprehensive dataset uncovers a broad sensitivity of NSCLC cells to the combinatorial treatment with DAC and ATRA and indicates that migration and proliferation capacities correlate with and could thus serve as determinants for drug sensitivity in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Tretinoin/pharmacology , Tretinoin/therapeutic use , Decitabine/pharmacology , Decitabine/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Cell Proliferation
6.
Viruses ; 15(12)2023 11 25.
Article in English | MEDLINE | ID: mdl-38140556

ABSTRACT

There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/physiology , Hepatitis B, Chronic/drug therapy , Hepatitis B/drug therapy , Hepatitis B/genetics , DNA, Circular/genetics , DNA, Viral/genetics , Virus Replication/genetics
7.
Life Sci ; 334: 122173, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37907154

ABSTRACT

AIMS: The aim of our study was to determine the effect of histone deacetylase (HDAC) inhibitors (HDACis) on somatostatin type-2 receptor (SSTR2) expression and [111In]In-/[177Lu]Lu-DOTA-TATE uptake in vitro and in vivo. MATERIALS AND METHODS: The human cell lines NCI-H69 (small-cell lung carcinoma) and BON-1 (pancreatic neuroendocrine tumor) were treated with HDACis (i.e. entinostat, mocetinostat (MOC), LMK-235, CI-994 or panobinostat (PAN)), and SSTR2 mRNA expression levels and [111In]In-DOTA-TATE uptake were measured. Furthermore, vehicle- and HDACi-treated NCI-H69 and BON-1 tumor-bearing mice were injected with radiolabeled DOTA-TATE followed by biodistribution studies. Additionally, SSTR2 and HDAC mRNA expression of xenografts, and of NCI-H69, BON-1, NCI-H727 (human pulmonary carcinoid) and GOT1 (human midgut neuroendocrine tumor) cells were determined. KEY FINDINGS: HDACi treatment resulted in the desired effects in vitro. However, no significant increase in tumoral DOTA-TATE uptake was observed after HDACi treatment in NCI-H69 tumor-bearing animals, whereas tumoral SSTR2 mRNA and/or protein expression levels were significantly upregulated after treatment with MOC, CI-994 and PAN, i.e. a maximum of 2.1- and 1.3-fold, respectively. Analysis of PAN-treated BON-1 xenografts solely demonstrated increased SSTR2 mRNA expression levels. Comparison of HDACs and SSTR2 expression in BON-1 and NCI-H69 xenografts showed a significantly higher expression of 6/11 HDACs in BON-1 xenografts. Of these HDACs, a significant inverse correlation was found between HDAC3 and SSTR2 expression (Pearson r = -0.92) in the studied cell lines. SIGNIFICANCE: To conclude, tumoral uptake levels of radiolabeled DOTA-TATE were not enhanced after HDACi treatment in vivo, but, depending on the applied inhibitor, increased SSTR2 expression levels were observed.


Subject(s)
Receptors, Somatostatin , Somatostatin , Humans , Mice , Animals , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Tissue Distribution , Somatostatin/metabolism , Cell Line, Tumor , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Pharmacol Ther ; 251: 108547, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838219

ABSTRACT

Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.


Subject(s)
Histones , Liver Diseases, Alcoholic , Humans , Histones/metabolism , Epigenesis, Genetic , Protein Processing, Post-Translational , DNA Methylation , Liver Diseases, Alcoholic/genetics , Ethanol
9.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511510

ABSTRACT

Amino acid metabolism has been implicated in tumorigenesis and tumor progression. Alterations in intracellular and extracellular metabolites associated with metabolic reprogramming in cancer have profound effects on gene expression, cell differentiation, and tumor immune microenvironment. However, the prognostic significance of amino acid metabolism in head and neck cancer remains to be further investigated. In this study, we identified 98 differentially expressed genes related to amino acid metabolism in head and neck cancer in The Cancer Genome Atlas. Using batch univariate Cox regression and Lasso regression, we extracted nine amino acid metabolism-related genes. Based on that, we developed the amino acid metabolism index. The prognostic value of this index was validated in two Gene Expression Omnibus cohorts. The results show that this model can help predict tumor recurrence and prognosis. The infiltration of immune cells in the tumor microenvironment was analyzed, and it was discovered that the high index is associated with an immunosuppressive microenvironment. In addition, this study demonstrated the impact of the amino acid metabolism index on clinical indicators, survival of patients with head and neck cancer, and the prediction of treatment response to immune checkpoint inhibitors. We conducted several cell experiments and demonstrated that epigenetic drugs could affect the index and enhance tumor immunity. In conclusion, our study demonstrates that the index not only has important prognostic value in head and neck cancer patients but also facilitates patient stratification for immunotherapy.


Subject(s)
Head and Neck Neoplasms , Neoplasm Recurrence, Local , Humans , Prognosis , Head and Neck Neoplasms/genetics , Carcinogenesis , Immunosuppressive Agents , Amino Acids , Tumor Microenvironment/genetics
10.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446319

ABSTRACT

The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy.


Subject(s)
DNA-Binding Proteins , Rhabdoid Tumor , Humans , DNA-Binding Proteins/genetics , Immunotherapy, Adoptive , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/therapy , Rhabdoid Tumor/pathology
11.
Pathol Res Pract ; 248: 154688, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37494800

ABSTRACT

Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.

12.
Front Cell Infect Microbiol ; 13: 1199646, 2023.
Article in English | MEDLINE | ID: mdl-37389209

ABSTRACT

The rampant use of antibiotics in animal husbandry, farming and clinical disease treatment has led to a significant issue with pathogen resistance worldwide over the past decades. The classical mechanisms of resistance typically investigate antimicrobial resistance resulting from natural resistance, mutation, gene transfer and other processes. However, the emergence and development of bacterial resistance cannot be fully explained from a genetic and biochemical standpoint. Evolution necessitates phenotypic variation, selection, and inheritance. There are indications that epigenetic modifications also play a role in antimicrobial resistance. This review will specifically focus on the effects of DNA modification, histone modification, rRNA methylation and the regulation of non-coding RNAs expression on antimicrobial resistance. In particular, we highlight critical work that how DNA methyltransferases and non-coding RNAs act as transcriptional regulators that allow bacteria to rapidly adapt to environmental changes and control their gene expressions to resist antibiotic stress. Additionally, it will delve into how Nucleolar-associated proteins in bacteria perform histone functions akin to eukaryotes. Epigenetics, a non-classical regulatory mechanism of bacterial resistance, may offer new avenues for antibiotic target selection and the development of novel antibiotics.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Epigenesis, Genetic , Animal Husbandry , Nuclear Proteins , DNA
13.
Mol Biomed ; 4(1): 17, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37273004

ABSTRACT

The tumor microenvironment (TME) is crucial to neoplastic processes, fostering proliferation, angiogenesis and metastasis. Epigenetic regulations, primarily including DNA and RNA methylation, histone modification and non-coding RNA, have been generally recognized as an essential feature of tumor malignancy, exceedingly contributing to the dysregulation of the core gene expression in neoplastic cells, bringing about the evasion of immunosurveillance by influencing the immune cells in TME. Recently, compelling evidence have highlighted that clinical therapeutic approaches based on epigenetic machinery modulate carcinogenesis through targeting TME components, including normalizing cells' phenotype, suppressing cells' neovascularization and repressing the immunosuppressive components in TME. Therefore, TME components have been nominated as a promising target for epigenetic drugs in clinical cancer management. This review focuses on the mechanisms of epigenetic modifications occurring to the pivotal TME components including the stroma, immune and myeloid cells in various tumors reported in the last five years, concludes the tight correlation between TME reprogramming and tumor progression and immunosuppression, summarizes the current advances in cancer clinical treatments and potential therapeutic targets with reference to epigenetic drugs. Finally, we summarize some of the restrictions in the field of cancer research at the moment, further discuss several interesting epigenetic gene targets with potential strategies to boost antitumor immunity.

15.
Microbiol Res ; 273: 127400, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37196490

ABSTRACT

Being among the top 10 causes of adult deaths, tuberculosis (TB) disease is considered a major global public health concern to address. The human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb), is an extremely competent and well-versed pathogen that promotes pathogenesis by evading the host immune systems through numerous tactics. Investigations revealed that Mtb could evade the host defense mechanisms by reconfiguring the host gene transcription and causing epigenetic changes. Although results indicate the link between epigenetics and disease manifestation in other bacterial infections, little is known regarding the kinetics of the epigenetic alterations in mycobacterial infection. This literature review discusses the studies in Mtb-induced epigenetic alterations inside the host and its contribution in the host immune evasion strategies. It also discusses how the Mtb-induced alterations could be used as 'epibiomarkers' to diagnose TB. Additionally, this review also discusses therapeutic interventions to be enhanced through remodification by 'epidrugs'.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Immune Evasion , Epigenesis, Genetic , Host-Pathogen Interactions/genetics
16.
Semin Cancer Biol ; 92: 84-101, 2023 07.
Article in English | MEDLINE | ID: mdl-37003397

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.


Subject(s)
Epigenomics , Leukemia, Myeloid, Acute , Humans , Child , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Prognosis , Mutation
17.
Rejuvenation Res ; 26(3): 88-104, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37082972

ABSTRACT

Epigenetic alterations during aging are manifested with altered gene expression linking it to lifespan regulation, genetic instability, and diseases. Diet and epigenetic modifiers exert a profound effect on the lifespan of an organism by modulating the epigenetic marks. However, our understanding of the multifactorial nature of the epigenetic process during aging and the onset of disease conditions as well as its reversal by epidrugs, diet, or environmental factors is still mystifying. This review covers the key findings in epigenetics related to aging and age-related diseases. Furthermore, it holds a discussion about the epigenetic clocks and their implications in various age-related disease conditions, including cancer. Although, epigenetics is a reversible process, how fast the epigenetic alterations can revert to normal is an intriguing question. Therefore, this article touches on the possibility of utilizing nutrition and mesenchymal stem cell secretome to accelerate the epigenetic reversal and emphasizes the identification of new therapeutic epigenetic modifiers to counter epigenetic alteration during aging.


Subject(s)
Healthy Aging , Healthy Aging/genetics , Epigenesis, Genetic , Longevity , Diet , DNA Methylation/genetics
18.
J Allergy Clin Immunol ; 151(6): 1622-1633.e10, 2023 06.
Article in English | MEDLINE | ID: mdl-37086924

ABSTRACT

BACKGROUND: X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect (XMEN) disease is a rare combined immunodeficiency caused by loss-of-function mutations in the magnesium transporter 1 (MAGT1) gene. MAGT1 deficiency impairs magnesium transport and the N-linked glycosylation of a panel of proteins, which subsequently abolishes the expression of key immune receptors such as natural killer group 2, member D (aka NKG2D). These effects induce immune system abnormalities, chronic Epstein-Barr virus infection, and neoplasia. Recent research shows that MAGT1 and tumor candidate suppressor 3 (TUSC3) share high sequence and functional similarity. OBJECTIVE: We sought to investigate the feasibility of activating TUSC3 expression to provide a potential therapeutic strategy for XMEN disease. METHODS: The expression profiles of MAGT1 and TUSC3 were analyzed using multiple databases, real-time quantitative PCR, and Western blot. The effects of decitabine and panobinostat on the regulation of TUSC3 expression were explored in both MAGT1 knockout (KO)/patient-derived lymphocytes and MAGT1 KO hepatocytes. RESULTS: Although TUSC3 is widely expressed, it is undetectable specifically in the immune system and liver, consistent with the main diseased tissues in patients with XMEN disease. CRISPR/Cas9-mediated KO of MAGT1 in the NKL cell line successfully mimicked the phenotypes of XMEN patient-derived lymphocytes, and exogenous expression of TUSC3 rescued the deficiencies in KO NKL cells. Using this in vitro model, we identified 2 epigenetic drugs, decitabine and panobinostat, by screening. Combination treatment using these 2 drugs significantly upregulated TUSC3 expression and rescued the immune and liver abnormalities. CONCLUSIONS: Epigenetic activation of TUSC3 expression constitutes an effective therapeutic strategy for XMEN disease.


Subject(s)
Epstein-Barr Virus Infections , Magnesium , Humans , Magnesium/metabolism , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human , Decitabine , Panobinostat , Epigenesis, Genetic
19.
Clin Epigenetics ; 15(1): 74, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120591

ABSTRACT

BACKGROUND: Approximately 95% of advanced colorectal cancer patients (CRC) have mismatch repair MMR-proficient (MMRp) tumors, which do not respond to PD1 blockade alone. Preclinical studies have shown that combined histone deacetylases (HDAC) and/or DNA methyltransferases (DNMT) inhibition can induce susceptibility to immune checkpoint therapy and inhibit tumor growth. We conducted a pilot trial evaluating PD-1 immune checkpoint inhibitor therapy in combination with DNMT and HDAC inhibitors in MMRp CRC. The study was designed with a biological endpoint of change in immune cell infiltration, to determine the optimal epigenetic combination that optimizes the tumor microenvironment. This trial was designed to test that hypothesis. RESULTS: From January 2016 to November 2018, 27 patients were enrolled with median age of 57 (range 40-69) years. Median progression-free survival and overall survival were 2.79 months and 9.17, respectively. One patient in Arm C achieved a durable partial response by RECIST criteria, lasting for approximately 19 months. The most common treatment-related hematological adverse events in all arms were anemia (62%), lymphopenia (54%) and thrombocytopenia (35%), and non-hematological AEs were anorexia (65%), nausea (77%), and vomiting (73%). CONCLUSIONS: The combination of 5-azacitidine and romidepsin with pembrolizumab was safe and tolerable in patients with advanced MMRp CRC, but with a minimal activity. Further mechanistic investigations are needed to understand epigenetic-induced immunologic shift and to expand the potential applicability of checkpoint inhibitors in this setting.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Humans , Adult , Middle Aged , Aged , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Modification Methylases/genetics , Epigenesis, Genetic , Microsatellite Repeats , Microsatellite Instability , Tumor Microenvironment
20.
Clin Epigenetics ; 15(1): 73, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120619

ABSTRACT

BACKGROUND: Epigenetic silencing of tumor suppressor genes (TSGs) is a key feature of oncogenesis in hepatocellular carcinoma (HCC). Liver-targeted delivery of CRISPR-activation (CRISPRa) systems makes it possible to exploit chromatin plasticity, by reprogramming transcriptional dysregulation. RESULTS: Using The Cancer Genome Atlas HCC data, we identify 12 putative TSGs with negative associations between promoter DNA methylation and transcript abundance, with limited genetic alterations. All HCC samples harbor at least one silenced TSG, suggesting that combining a specific panel of genomic targets could maximize efficacy, and potentially improve outcomes as a personalized treatment strategy for HCC patients. Unlike epigenetic modifying drugs lacking locus selectivity, CRISPRa systems enable potent and precise reactivation of at least 4 TSGs tailored to representative HCC lines. Concerted reactivation of HHIP, MT1M, PZP, and TTC36 in Hep3B cells inhibits multiple facets of HCC pathogenesis, such as cell viability, proliferation, and migration. CONCLUSIONS: By combining multiple effector domains, we demonstrate the utility of a CRISPRa toolbox of epigenetic effectors and gRNAs for patient-specific treatment of aggressive HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Methylation , Epigenesis, Genetic , Genes, Tumor Suppressor , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...