Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37431950

ABSTRACT

Subtelomeric gene silencing is the negative transcriptional regulation of genes located close to telomeres. This phenomenon occurs in a variety of eukaryotes with salient physiological implications, such as cell adherence, virulence, immune-system escape, and ageing. The process has been widely studied in the budding yeast Saccharomyces cerevisiae, where genes involved in this process have been identified mostly on a gene-by-gene basis. Here, we introduce a quantitative approach to study gene silencing, that couples the classical URA3 reporter with GFP monitoring, amenable to high-throughput flow cytometry analysis. This dual silencing reporter was integrated into several subtelomeric loci in the genome, where it showed a gradual range of silencing effects. By crossing strains with this dual reporter at the COS12 and YFR057W subtelomeric query loci with gene-deletion mutants, we carried out a large-scale forward screen for potential silencing factors. The approach was replicable and allowed accurate detection of expression changes. Results of our comprehensive screen suggest that the main players influencing subtelomeric silencing were previously known, but additional potential factors underlying chromatin conformation are involved. We validate and report the novel silencing factor LGE1, a protein with unknown molecular function required for histone H2B ubiquitination. Our strategy can be readily combined with other reporters and gene perturbation collections, making it a versatile tool to study gene silencing at a genome-wide scale.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Telomere/genetics , Telomere/metabolism , Heterochromatin/metabolism , Gene Expression Regulation, Fungal
2.
Oncotarget ; 8(67): 111943-111965, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29340103

ABSTRACT

Expression of the scaffolding protein Caveolin-1 (CAV1) enhances migration and invasion of metastatic cancer cells. Yet, CAV1 also functions as a tumor suppressor in early stages of cancer, where expression is suppressed by epigenetic mechanisms. Thus, we sought to identify stimuli/mechanisms that revert epigenetic CAV1 silencing in cancer cells and evaluate how this affects their metastatic potential. We reasoned that restricted tissue availability of anti-neoplastic drugs during chemotherapy might expose cancer cells to sub-therapeutic concentrations, which activate signaling pathways and the expression of CAV1 to favor the acquisition of more aggressive traits. Here, we used in vitro [2D, invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question. Colon and breast cancer cells were identified where CAV1 levels were low due to epigenetic suppression and could be reverted by treatment with the methyltransferase inhibitor 5'-azacytidine. Exposure of these cells to anti-neoplastic drugs for short periods of time (24-48 h) increased CAV1 expression through ROS production and MEK/ERK activation. In colon cancer cells, increased CAV1 expression enhanced migration and invasion in vitro via pathways requiring Src-family kinases, as well as Rac-1 activity. Finally, elevated CAV1 expression in colon cancer cells following exposure in vitro to sub-cytotoxic drug concentrations increased their metastatic potential in vivo. Therefore exposure of cancer cells to anti-neoplastic drugs at non-lethal drug concentrations induces signaling events and changes in transcription that favor CAV1-dependent migration, invasion and metastasis. Importantly, this may occur in the absence of selection for drug-resistance.

3.
Elife ; 4: e11509, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26473970

ABSTRACT

Some DNA viruses overcome plant defenses by producing a suppressor protein that blocks the silencing of viral genes.


Subject(s)
Geminiviridae/physiology , Gene Silencing , Immune Evasion , Plant Proteins/antagonists & inhibitors , Plants/immunology , Plants/virology , Viral Proteins/metabolism , Host-Pathogen Interactions , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL