Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
Virol J ; 21(1): 152, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970084

ABSTRACT

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS: In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS: A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION: The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.


Subject(s)
Genetic Variation , Human papillomavirus 18 , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Phylogeny , Oncogene Proteins, Viral/genetics , China , Humans , Human papillomavirus 18/genetics , Human papillomavirus 18/classification , Papillomavirus E7 Proteins/genetics , Capsid Proteins/genetics , Female , Epitopes, T-Lymphocyte/genetics , Papillomavirus Infections/virology , Repressor Proteins/genetics , Epitopes, B-Lymphocyte/genetics , DNA-Binding Proteins
2.
Methods Mol Biol ; 2813: 245-280, 2024.
Article in English | MEDLINE | ID: mdl-38888783

ABSTRACT

Identifying antigens within a pathogen is a critical task to develop effective vaccines and diagnostic methods, as well as understanding the evolution and adaptation to host immune responses. Historically, antigenicity was studied with experiments that evaluate the immune response against selected fragments of pathogens. Using this approach, the scientific community has gathered abundant information regarding which pathogenic fragments are immunogenic. The systematic collection of this data has enabled unraveling many of the fundamental rules underlying the properties defining epitopes and immunogenicity, and has resulted in the creation of a large panel of immunologically relevant predictive (in silico) tools. The development and application of such tools have proven to accelerate the identification of novel epitopes within biomedical applications reducing experimental costs. This chapter introduces some basic concepts about MHC presentation, T cell and B cell epitopes, the experimental efforts to determine those, and focuses on state-of-the-art methods for epitope prediction, highlighting their strengths and limitations, and catering instructions for their rational use.


Subject(s)
Computational Biology , Computer Simulation , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Epitopes, T-Lymphocyte/immunology , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes/immunology , Software , Animals , Epitope Mapping/methods , Antigen Presentation/immunology
3.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891974

ABSTRACT

Tetanus disease, caused by C. tetani, starts with wounds or mucous layer contact. Prevented by vaccination, the lack of booster shots throughout life requires prophylactic treatment in case of accidents. The incidence of tetanus is high in underdeveloped countries, requiring the administration of antitetanus antibodies, usually derived from immunized horses or humans. Heterologous sera represent risks such as serum sickness. Human sera can carry unknown viruses. In the search for human monoclonal antibodies (mAbs) against TeNT (Tetanus Neurotoxin), we previously identified a panel of mAbs derived from B-cell sorting, selecting two nonrelated ones that binded to the C-terminal domain of TeNT (HCR/T), inhibiting its interaction with the cellular receptor ganglioside GT1b. Here, we present the results of cellular assays and molecular docking tools. TeNT internalization in neurons is prevented by more than 50% in neonatal rat spinal cord cells, determined by quantitative analysis of immunofluorescence punctate staining of Alexa Fluor 647 conjugated to TeNT. We also confirmed the mediator role of the Synaptic Vesicle Glycoprotein II (SV2) in TeNT endocytosis. The molecular docking assays to predict potential TeNT epitopes showed the binding of both antibodies to the HCR/T domain. A higher incidence was found between N1153 and W1297 when evaluating candidate residues for conformational epitope.


Subject(s)
Antibodies, Monoclonal , Endocytosis , Molecular Docking Simulation , Neurons , Tetanus Toxin , Animals , Rats , Neurons/metabolism , Humans , Antibodies, Monoclonal/immunology , Tetanus Toxin/immunology , Tetanus Toxin/metabolism , Tetanus/prevention & control , Tetanus/immunology , Epitopes/immunology , Gangliosides/immunology , Gangliosides/metabolism , Cells, Cultured , Computer Simulation , Metalloendopeptidases
4.
Cell Rep ; 43(6): 114325, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870014

ABSTRACT

The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such "hard-coded" sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.


Subject(s)
Histocompatibility Antigens Class I , Humans , Ligands , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Amino Acid Sequence , Machine Learning , Peptides/metabolism , Peptides/chemistry
5.
BMC Genomics ; 25(1): 507, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778248

ABSTRACT

BACKGROUND: Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS: Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS: From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION: The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.


Subject(s)
Oncogene Proteins, Viral , Phylogeny , China , Humans , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Female , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Alphapapillomavirus/genetics , Alphapapillomavirus/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes/immunology , Epitopes/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Papillomavirus Infections/virology , Amino Acid Sequence
6.
Comput Struct Biotechnol J ; 23: 2122-2131, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38817963

ABSTRACT

B-cell epitope identification plays a vital role in the development of vaccines, therapies, and diagnostic tools. Currently, molecular docking tools in B-cell epitope prediction are heavily influenced by empirical parameters and require significant computational resources, rendering a great challenge to meet large-scale prediction demands. When predicting epitopes from antigen-antibody complex, current artificial intelligence algorithms cannot accurately implement the prediction due to insufficient protein feature representations, indicating novel algorithm is desperately needed for efficient protein information extraction. In this paper, we introduce a multimodal model called WUREN (Whole-modal Union Representation for Epitope predictioN), which effectively combines sequence, graph, and structural features. It achieved AUC-PR scores of 0.213 and 0.193 on the solved structures and AlphaFold-generated structures, respectively, for the independent test proteins selected from DiscoTope3 benchmark. Our findings indicate that WUREN is an efficient feature extraction model for protein complexes, with the generalizable application potential in the development of protein-based drugs. Moreover, the streamlined framework of WUREN could be readily extended to model similar biomolecules, such as nucleic acids, carbohydrates, and lipids.

7.
Hum Immunol ; 85(3): 110804, 2024 May.
Article in English | MEDLINE | ID: mdl-38658216

ABSTRACT

The development of vaccines against a wide range of infectious diseases and pathogens often relies on multi-epitope strategies that can effectively stimulate both humoral and cellular immunity. Immunoinformatics tools play a pivotal role in designing such vaccines, enhancing immune response potential, and minimizing the risk of failure. This review presents a comprehensive overview of practical tools for epitope prediction and the associated immune responses. These immunoinformatics tools facilitate the selection of epitopes based on parameters such as antigenicity, absence of toxic and allergenic sequences, secondary and tertiary structures, sequence conservation, and population coverage. The chosen epitopes can be tailored for B-cells or T-cells, both of which require further assessments covered in this study. We offer a range of suitable linkers that effectively separate cytotoxic T lymphocyte and helper T lymphocyte epitopes while preserving their functionality. Additionally, we identify various adjuvants for specific purposes. We delve into the evaluation of MHC-epitope interactions, MHC clusters, and the simulation of final constructs through molecular docking techniques. We provide diverse linkers and adjuvants optimized for epitope functions to bolster immune responses through epitope attachment. By leveraging these comprehensive tools, the development of multi-epitope vaccines holds the promise of robust immunity and a significant reduction in experimental costs.


Subject(s)
Computational Biology , Epitopes, T-Lymphocyte , Vaccines , Humans , Computational Biology/methods , Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Animals , Computer Simulation , Adjuvants, Immunologic , Molecular Docking Simulation , Epitopes, B-Lymphocyte/immunology , Epitopes/immunology , Vaccine Development
8.
Heliyon ; 10(7): e28223, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596014

ABSTRACT

Mycoplasma genitalium is a pathogenic microorganism linked to a variety of severe health conditions including ovarian cancer, prostate cancer, HIV transmission, and sexually transmitted diseases. A more effective approach to address the challenges posed by this pathogen, given its high antibiotic resistance rates, could be the development of a peptide vaccine. In this study, we used experimentally validated 13 membrane proteins and their immunogenicity to identify suitable vaccine candidates. Thus, based on immunogenic properties and high conservation among other Mycoplasma genitalium sub-strains, the P110 surface protein is considered for further investigation. Later on, we identified T-cell epitopes and B-cell epitopes from the P110 protein to construct a multiepitope-based vaccine. As a result, the 'NIAPISFSFTPFTAA' T-cell epitope and 'KVKYESSGSNNISFDS' B-cell epitope have shown 99.53% and 87.50% population coverage along with 100% conservancy among the subspecies, and both epitopes were found to be non-allergenic. Furthermore, focusing on molecular docking analysis showed the lowest binding energy for MHC-I (-137.5 kcal/mol) and MHC-II (-183.3 kcal/mol), leading to a satisfactory binding strength between the T-cell epitopes and the MHC molecules. However, the constructed multiepitope vaccine (MEV) consisting of 54 amino acids demonstrates favorable characteristics for a vaccine candidate, including a theoretical pI of 4.25 with a scaled solubility of 0.812 and high antigenicity probabilities. Additionally, structural analyses reveal that the MEV displays substantial alpha helices and extended strands, vital for its immunogenicity. Molecular docking with the human Toll-like receptors TLR1/2 heterodimer shows strong binding affinity, reinforcing its potential to elicit an immune response. Our immune simulation analysis demonstrates immune memory development and robust immunity, while codon adaptation suggests optimal expression in E. coli using the pET-28a(+) vector. These findings collectively highlight the MEV's potential as a valuable vaccine candidate against M. genitalium.

9.
Vaccines (Basel) ; 12(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675774

ABSTRACT

Human papillomavirus type 16 (HPV16) infection is responsible for more than 50% of global cervical cancer cases. The development of a vaccine based on cytotoxic T-lymphocyte (CTL) epitopes is a promising strategy for eliminating pre-existing HPV infections and treating patients with cervical cancer. In this study, an immunoinformatics approach was used to predict HLA-I-restricted CTL epitopes in HPV16 E5, E6, and E7 proteins, and a set of conserved CTL epitopes co-restricted by human/murine MHCs was screened and characterized, with the set containing three E5, four E6, and four E7 epitopes. Subsequently, the immunogenicity of the epitope combination was assessed in mice, and the anti-tumor effects of the multi-epitope peptide vaccine E5E6E7pep11 and the recombinant protein vaccine CTB-Epi11E567 were evaluated in the TC-1 mouse tumor model. The results demonstrated that mixed epitope peptides could induce antigen-specific IFN-γ secretion in mice. Prophylactic immunization with E5E6E7pep11 and CTB-Epi11E567 was found to provide 100% protection against tumor growth in mice. Moreover, both types of the multi-epitope vaccine significantly inhibited tumor growth and prolonged mouse survival. In conclusion, in this study, a multi-epitope vaccine targeting HPV16 E5, E6, and E7 proteins was successfully designed and evaluated, demonstrating potential immunogenicity and anti-tumor effects and providing a promising strategy for immunotherapy against HPV-associated tumors.

10.
bioRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38659833

ABSTRACT

Defining the binding epitopes of antibodies is essential for understanding how they bind to their antigens and perform their molecular functions. However, while determining linear epitopes of monoclonal antibodies can be accomplished utilizing well-established empirical procedures, these approaches are generally labor- and time-intensive and costly. To take advantage of the recent advances in protein structure prediction algorithms available to the scientific community, we developed a calculation pipeline based on the localColabFold implementation of AlphaFold2 that can predict linear antibody epitopes by predicting the structure of the complex between antibody heavy and light chains and target peptide sequences derived from antigens. We found that this AlphaFold2 pipeline, which we call PAbFold, was able to accurately flag known epitope sequences for several well-known antibody targets (HA / Myc) when the target sequence was broken into small overlapping linear peptides and antibody complementarity determining regions (CDRs) were grafted onto several different antibody framework regions in the single-chain antibody fragment (scFv) format. To determine if this pipeline was able to identify the epitope of a novel antibody with no structural information publicly available, we determined the epitope of a novel anti-SARS-CoV-2 nucleocapsid targeted antibody using our method and then experimentally validated our computational results using peptide competition ELISA assays. These results indicate that the AlphaFold2-based PAbFold pipeline we developed is capable of accurately identifying linear antibody epitopes in a short time using just antibody and target protein sequences. This emergent capability of the method is sensitive to methodological details such as peptide length, AlphaFold2 neural network versions, and multiple-sequence alignment database. PAbFold is available at https://github.com/jbderoo/PAbFold.

11.
Vaccine ; 42(10): 2503-2518, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38523003

ABSTRACT

Vaccines have significantly reduced the impact of numerous deadly viral infections. However, there is an increasing need to expedite vaccine development in light of the recurrent pandemics and epidemics. Also, identifying vaccines against certain viruses is challenging due to various factors, notably the inability to culture certain viruses in cell cultures and the wide-ranging diversity of MHC profiles in humans. Fortunately, reverse vaccinology (RV) efficiently overcomes these limitations and has simplified the identification of epitopes from antigenic proteins across the entire proteome, streamlining the vaccine development process. Furthermore, it enables the creation of multiepitope vaccines that can effectively account for the variations in MHC profiles within the human population. The RV approach offers numerous advantages in developing precise and effective vaccines against viral pathogens, including extensive proteome coverage, accurate epitope identification, cross-protection capabilities, and MHC compatibility. With the introduction of RV, there is a growing emphasis among researchers on creating multiepitope-based vaccines aiming to stimulate the host's immune responses against multiple serotypes, as opposed to single-component monovalent alternatives. Regardless of how promising the RV-based vaccine candidates may appear, they must undergo experimental validation to probe their protection efficacy for real-world applications. The time, effort, and resources allocated to the laborious epitope identification process can now be redirected toward validating vaccine candidates identified through the RV approach. However, to overcome failures in the RV-based approach, efforts must be made to incorporate immunological principles and consider targeting the epitope regions involved in disease pathogenesis, immune responses, and neutralizing antibody maturation. Integrating multi-omics and incorporating artificial intelligence and machine learning-based tools and techniques in RV would increase the chances of developing an effective vaccine. This review thoroughly explains the RV approach, ideal RV-based vaccine construct components, RV-based vaccines designed to combat viral pathogens, its challenges, and future perspectives.


Subject(s)
Artificial Intelligence , Vaccines , Humans , Proteome , Vaccinology/methods , Epitopes , Computational Biology/methods , Vaccines, Subunit , Epitopes, T-Lymphocyte , Molecular Docking Simulation , Epitopes, B-Lymphocyte
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38487845

ABSTRACT

B cell epitope prediction methods are separated into linear sequence-based predictors and conformational epitope predictions that typically use the measured or predicted protein structure. Most linear predictions rely on the translation of the sequence to biologically based representations and the applications of machine learning on these representations. We here present CALIBER 'Conformational And LInear B cell Epitopes pRediction', and show that a bidirectional long short-term memory with random projection produces a more accurate prediction (test set AUC=0.789) than all current linear methods. The same predictor when combined with an Evolutionary Scale Modeling-2 projection also improves on the state of the art in conformational epitopes (AUC = 0.776). The inclusion of the graph of the 3D distances between residues did not increase the prediction accuracy. However, the long-range sequence information was essential for high accuracy. While the same model structure was applicable for linear and conformational epitopes, separate training was required for each. Combining the two slightly increased the linear accuracy (AUC 0.775 versus 0.768) and reduced the conformational accuracy (AUC = 0.769).


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, B-Lymphocyte/chemistry , Molecular Conformation
13.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38493292

ABSTRACT

Computational predictors of immunogenic peptides, or epitopes, are traditionally built based on data from a broad range of pathogens without consideration for taxonomic information. While this approach may be reasonable if one aims to develop one-size-fits-all models, it may be counterproductive if the proteins for which the model is expected to generalize are known to come from a specific subset of phylogenetically related pathogens. There is mounting evidence that, for these cases, taxon-specific models can outperform generalist ones, even when trained with substantially smaller amounts of data. In this comment, we provide some perspective on the current state of taxon-specific modelling for the prediction of linear B-cell epitopes, and the challenges faced when building and deploying these predictors.


Subject(s)
Peptides , Proteins , Amino Acid Sequence , Epitopes, B-Lymphocyte
14.
Front Immunol ; 15: 1322712, 2024.
Article in English | MEDLINE | ID: mdl-38390326

ABSTRACT

Accurate computational identification of B-cell epitopes is crucial for the development of vaccines, therapies, and diagnostic tools. However, current structure-based prediction methods face limitations due to the dependency on experimentally solved structures. Here, we introduce DiscoTope-3.0, a markedly improved B-cell epitope prediction tool that innovatively employs inverse folding structure representations and a positive-unlabelled learning strategy, and is adapted for both solved and predicted structures. Our tool demonstrates a considerable improvement in performance over existing methods, accurately predicting linear and conformational epitopes across multiple independent datasets. Most notably, DiscoTope-3.0 maintains high predictive performance across solved, relaxed and predicted structures, alleviating the need for experimental structures and extending the general applicability of accurate B-cell epitope prediction by 3 orders of magnitude. DiscoTope-3.0 is made widely accessible on two web servers, processing over 100 structures per submission, and as a downloadable package. In addition, the servers interface with RCSB and AlphaFoldDB, facilitating large-scale prediction across over 200 million cataloged proteins. DiscoTope-3.0 is available at: https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0.


Subject(s)
Epitopes, B-Lymphocyte , Molecular Conformation
15.
Infect Genet Evol ; 118: 105556, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242186

ABSTRACT

SARS-CoV-2 genome underwent mutations since it started circulating within the human population. The aim of this study was to understand the fluctuation of the spike clusters concomitant to the population immunity either due to natural infection and/or vaccination in a state of Brazil that had both high rate of natural infection and vaccination coverage. A total of 1725 SARS-CoV-2 sequences from the state of Rio Grande do Norte, Brazil, were retrieved from GISAID and subjected to cluster analysis. Immunoinformatics were used to predict T- and B-cell epitopes, followed by simulation to estimate either pro- or anti-inflammatory responses and to correlate with circulating variants. From March 2020 to June 2022, the state of Rio Grande do Norte reported 579,931 COVID-19 cases with a 1.4% fatality rate across the three major waves: May-Sept 2020, Feb-Aug 2021, and Jan-Mar 2022. Cluster 0 variants (wild type strain, Zeta) were prevalent in the first wave and Delta (AY.*), which circulated in Brazil in the latter half of 2021, featuring fewer unique epitopes. Cluster 1 (Gamma (P.1 + P.1.*)) dominated the first half of 2021. Late 2021 had two new clusters, Cluster 2 (Omicron, (B.1.1.529 + BA.*)), and Cluster 3 (BA.*) with the most unique epitopes, in addition to Cluster 4 (Delta sub lineages) which emerged in the second half of 2021 with fewer unique epitopes. Cluster 1 epitopes showed a high pro-inflammatory propensity, while others exhibited a balanced cytokine induction. The clustering method effectively identified Spike groups that may contribute to immune evasion and clinical presentation, and explain in part the clinical outcome.


Subject(s)
COVID-19 , Humans , Brazil/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Epitopes, B-Lymphocyte , Glycoproteins
16.
Vaccine ; 42(2): 162-174, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38105139

ABSTRACT

SARS-CoV-2 remains a major global public health concern. Antibody waning and immune escape variant emergence necessitate the development of next generation vaccines that induce cross-reactive durable immune responses. T cell responses to SARS-CoV-2 demonstrate higher conservation, antigenic breadth, and longevity than antibody responses. Therefore, we sought to identify pathogen-derived T cell epitopes for a potential peptide-based vaccine. We pursued an approach leveraging: 1) liquid chromatography and tandem mass spectrometry (LC-MS/MS)-based identification of peptides from ancestral SARS-CoV-2-infected cell lines, 2) epitope prediction algorithms, and 3) overlapping peptide libraries. From this strategy, we identified 380 unique SARS-CoV-2-derived peptide sequences, including 53 antigenic HLA class I and class II peptides from multiple structural and non-structural/accessory viral proteins. These peptide sequences were highly conserved across variants of concern/interest (VoC/VoIs), and are estimated to achieve coverage of >96% of the world population. Our findings validate this discovery pipeline for peptide identification and immunogenicity testing, and are a crucial step toward the development of a next-generation multi-epitope SARS-CoV-2 peptide vaccine, and a novel vaccine platform methodology.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , COVID-19/prevention & control , Chromatography, Liquid , Tandem Mass Spectrometry , COVID-19 Vaccines , Epitopes, T-Lymphocyte , Peptides , Spike Glycoprotein, Coronavirus
17.
Front Immunol ; 14: 1278534, 2023.
Article in English | MEDLINE | ID: mdl-38124749

ABSTRACT

The application of B-cell epitope identification to develop therapeutic antibodies and vaccine candidates is well established. However, the validation of epitopes is time-consuming and resource-intensive. To alleviate this, in recent years, multiple computational predictors have been developed in the immunoinformatics community. Brewpitopes is a pipeline that curates bioinformatic B-cell epitope predictions obtained by integrating different state-of-the-art tools. We used additional computational predictors to account for subcellular location, glycosylation status, and surface accessibility of the predicted epitopes. The implementation of these sets of rational filters optimizes in vivo antibody recognition properties of the candidate epitopes. To validate Brewpitopes, we performed a proteome-wide analysis of SARS-CoV-2 with a particular focus on S protein and its variants of concern. In the S protein, we obtained a fivefold enrichment in terms of predicted neutralization versus the epitopes identified by individual tools. We analyzed epitope landscape changes caused by mutations in the S protein of new viral variants that were linked to observed immune escape evidence in specific strains. In addition, we identified a set of epitopes with neutralizing potential in four SARS-CoV-2 proteins (R1AB, R1A, AP3A, and ORF9C). These epitopes and antigenic proteins are conserved targets for viral neutralization studies. In summary, Brewpitopes is a powerful pipeline that refines B-cell epitope bioinformatic predictions during public health emergencies in a high-throughput capacity to facilitate the optimization of experimental validation of therapeutic antibodies and candidate vaccines.


Subject(s)
Epitopes, B-Lymphocyte , Viral Vaccines , Humans , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte , Emergencies , Public Health , SARS-CoV-2
18.
Arch Microbiol ; 205(12): 380, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955744

ABSTRACT

Nipah virus, a zoonotic virus from the family Paramyxoviridae has led to significant loss of lives till date with the most recent outbreak in India reported in Kerala. The virus has a considerably high mortality rate along with lack of characteristic symptoms which results in the delay of the virus detection. No specific vaccine is available for the virus although monoclonal antibody treatment has been seen to be effective along with favipiravir. The high mortality and complications caused by the virus underscores the necessity to develop alternative modes of vaccination. One such method has been designed in this study using peptide cocktail consisting of the immunologically important epitopes for use as vaccine. The human leucocytic antigens that are used for the study were analyzed for their presence in various ethnic Indian populations. This study may serve as a new avenue for development of more efficient peptide cocktail vaccines in recent future based on the population genetics and ethnicity.


Subject(s)
Nipah Virus , Humans , Nipah Virus/genetics , Vaccines, Subunit , Epitopes/genetics , Peptides , Epidemiologic Studies
19.
J Genet Eng Biotechnol ; 21(1): 152, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019359

ABSTRACT

BACKGROUND: Brucellosis caused by B. melitensis is one of the most important common diseases between humans and livestock. Currently, live attenuated vaccines are used for this disease, which causes many problems, and unfortunately, there is no effective vaccine for human brucellosis. The aim of our research was to design a recombinant vaccine containing potential immunogenic epitopes against B. melitensis. METHODS: In this study, using immunoinformatics approaches, 3 antigens Omp31, Omp25, and Omp28 were identified and the amino acid sequence of the selected antigens was determined in NCBI. Signal peptides were predicted by SignaIP-5.0 server. To predict B-cell epitopes from ABCpred and Bcepred servers, to predict MHC-I epitopes from RANKPEP and SYFPEITHI servers, to predict MHC-II epitopes from RANKPEP and MHCPred servers, and to predict CTL epitopes were used from the CTLPred server. Potentially immunogenic final epitopes were joined by flexible linkers. Finally, allergenicity (AllerTOP 2.0 server), antigenicity (Vaxijen server), physicochemical properties (ProtParam server), solubility (Protein-sol server), secondary (PSIPRED and GRO4 servers) and tertiary structure (I-TASSER server), refinement (GalaxyWEB server), validation (ProSA-web, Molprobity, and ERRAT servers), and optimization of the codon sequence (JCat server) of the structure of the multi-epitope vaccine were analyzed. RESULTS: The analysis of immunoinformatics tools showed that the designed vaccine has high quality, acceptable physicochemical properties, and can induce humoral and cellular immune responses against B. melitensis bacteria. In addition, the high expression level of recombinant antigens in the E. coli host was observed through in silico simulation. CONCLUSION: According to the results in silico, the designed vaccine can be a suitable candidate to fight brucellosis and in vitro and in vivo studies are needed to evaluate the research of this study.

20.
Int J Biol Macromol ; 253(Pt 2): 126685, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37666406

ABSTRACT

Mycoplasma synoviae is an extremely significant avian pathogen, causing substantial financial harm to poultry farmers worldwide, and impacting both chicken and turkey production. Multi-epitope vaccines offer higher immunity and lower allergenicity compared to conventional vaccines. In this study, our objective is to develop a multi-epitope vaccine for M. synoviae (MSMV) and to evaluate the immune responses and protective efficacy of MSMV in chickens. We successfully identified a total of 14 B-cell, 5 MHC-I, and 16 MHC-II binding epitopes from the immunodominant proteins RS01790, BMP, GrpE, RS00900, and RS00275. Subsequently, we synthesized the multi-epitope vaccine by connecting all conserved epitopes using appropriate linkers. The resulting MSMV demonstrated notable antigenicity, non-allergenic properties, and stability. Notably, the MSMV effectively stimulated high levels of antibody production in chickens. Furthermore, MSMV the vaccine elicited a robust cellular immune response in chickens, characterized by a well-balanced Th1/Th2-type cytokine profile and enhanced lymphocyte proliferation. In immune protection experiments, the vaccinated chickens exhibited reduced air sac lesion scores and tracheal mucosal thickness compared to their non-vaccinated chickens. Additionally, vaccinated chickens displayed lower M. synoviae loads in throat swabs. These findings collectively suggested that the MSMV holds significant potential as a promising vaccine candidate for managing M. synoviae infections.


Subject(s)
Mycoplasma Infections , Mycoplasma synoviae , Poultry Diseases , Animals , Chickens , Epitopes , Bacterial Vaccines , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Vaccines, Subunit , Poultry Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...