Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.670
Filter
1.
Genes Genomics ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990270

ABSTRACT

BACKGROUND: In humans, ACTN2 mutations are identified as highly relevant to a range of cardiomyopathies such as DCM and HCM, while their association with sudden cardiac death has been observed in forensic cases. Although ACTN2 has been shown to regulate sarcomere Z-disc organization, a causal relationship between ACTN2 dysregulation and cardiomyopathies under chronic stress has not yet been investigated. OBJECTIVE: In this work, we explored the relationship between Actn2 dysregulation and cardiomyopathies under dexamethasone treatment. METHODS: Previous cases of ACTN2 mutations were collected and the conservative analysis was carried out by MEGA 11, the possible impact on the stability and function of ACTN2 affected by these mutations was predicted by Polyphen-2. ACTN2 was suppressed by siRNA in H9c2 cells under dexamethasone treatment to mimic the chronic stress in vitro. Then the cardiac hypertrophic molecular biomarkers were elevated, and the potential pathways were explored by transcriptome analysis. RESULTS: Actn2 suppression impaired calcium uptake and increased hypertrophy in H9c2 cells under dexamethasone treatment. Concomitantly, hypertrophic molecular biomarkers were also elevated in Actn2-suppressed cells. Further transcriptome analysis and Western blotting data suggested that Actn2 suppression led to the excessive activation of the MAPK pathway and ERK cascade. In vitro pharmaceutical intervention with ERK inhibitors could partially reverse the morphological changes and inhibit the excessive cardiac hypertrophic molecular biomarkers in H9c2 cells. CONCLUSION: Our study revealed a functional role of ACTN2 under chronic stress, loss of ACTN2 function accelerated H9c2 hypertrophy through ERK signaling. A commercial drug, Ibudilast, was identified to reverse cell hypertrophy in vitro.

2.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963026

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the colony formation assay data shown in Fig. 4C on p. 6 were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes, which had already been published. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 24: 685, 2021; DOI: 10.3892/mmr.2021.12325].

3.
J Thorac Dis ; 16(6): 3764-3781, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983163

ABSTRACT

Background: Lung cancer is the most common primary malignant tumor of the lung, and as one of the malignant tumors that pose the greatest threat to the health of the population, the incidence rate has remained high in recent years. Previous studies have shown that KLRB1 is transcriptionally repressed in lung adenocarcinoma and correlates with lung adenocarcinoma prognosis. The objective of this study is to investigate the intrinsic mechanisms by which KLRB1 affects the malignant phenotypes of lung adenocarcinoma such as immune infiltration, proliferation, growth and metastasis. Methods: We assessed the expression levels of KLRB1 in publicly available databases and investigated its associations with clinical and pathological variables. Enrichment analysis was subsequently conducted to investigate possible signaling pathways and their associated biological functions. Statistical analysis, including Spearman correlation and the application of multigene prediction models, was utilized to assess the relationship between the expression of KLRB1 and the infiltration of immune cells. The diagnostic and prognostic value of KLRB1 was evaluated using Kaplan-Meier survival curves, diagnostic receptor operating characteristic (ROC) curves, histogram models, and Cox regression analysis. Specimens from lung adenocarcinoma (LUAD) patients were collected, the expression level of KLRB1 was detected by protein blotting analysis, and the expression level of KLRB1 was detected at the mRNA level by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Small interfering RNA (siRNA) was used to silence gene expression, and Transwell, Cell Counting Kit-8 (CCK-8) and colony formation assays were subsequently performed to analyze the effects of KLRB1 on LUAD cell migration, invasion and proliferation. Results: KLRB1 expression was lower in lung cancer tissue than in surrounding healthy tissue. Genes differentially expressed in the low and high KLRB1 expression groups were found to be significantly enriched in pathways related to immunity. KLRB1 exerted an impact on the MAPK/ERK signaling pathway, thereby modulating the growth and proliferation of LUAD cells. KLRB1 expression is linked to prognosis, immune infiltration, and cell migration and proliferation in LUAD. Conclusions: The evidence revealed a correlation between KLRB1 and both prognosis and immune infiltration in LUAD patients.

4.
Cell Signal ; 121: 111290, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977231

ABSTRACT

The overexpression of programmed death ligand 1 (PD-L1) is associated with resistance to anticancer therapies and poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Nimotuzumab, a humanized anti-epidermal growth factor receptor (EGFR) mAb, has been widely used clinically for treating several solid tumors. However, whether its anticancer effect involves a reduction in PD-L1 expression remains unclear. The current study aimed to investigate the regulatory effects and underlying mechanism of nimotuzumab on PD-L1 expression in HNSCC both in vitro and in vivo. In vitro, nimotuzumab inhibited IFN-γ-induced PD-L1 upregulation at both the transcriptional and protein levels in the HNSCC cell lines. Subsequent mechanism research revealed that nimotuzumab suppressed IFN-γ-stimulated PD-L1 upregulation mainly by inhibiting phosphorylation of EGFR/MEK/ERK pathway, which was further validated by MEK and ERK inhibitors. In a HNSCC tumor-bearing model, nimotuzumab significantly decreased PD-L1 expression during tumor progression or chemotherapy, and this reduction was accompanied by increased sensitivity of the tumor to docetaxel and atezolizumab. Additionally, nimotuzumab reversed PD-L1 upregulation when combined with Taxol + Cisplatin (TP) induction chemotherapy regimens and improved the CD4+ and CD8+ T cells infiltration in HNSCC patients. These findings provide new insights into the anticancer mechanisms of nimotuzumab in HNSCC.

5.
J Insect Physiol ; : 104672, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981575

ABSTRACT

The prothoracic gland (PG) is the source of ecdysteoids in larval insects. Although numerous studies have been conducted on signaling networks involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in PGs, less is known about regulation of metabolism in PGs. In the present study, we investigated correlations between expressions of sugar transporter (St)/trehalase (Treh) genes and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that in vitro PTTH treatment stimulated expression of the St1 gene, but not other transporter genes. Expression of the Treh1 gene was also stimulated by PTTH treatment. An immunoblotting analysis showed that St1 protein levels in Bombyx PGs increased during the later stage of the last larval instar and were not affect by PTTH treatment. PTTH treatment enhanced Treh enzyme activity in a time-dependent manner. Blocking either extracellular signal-regulated kinase (ERK) signaling with U0126 or phosphatidylinositol 3-kinase (PI3K) signaling with LY294002 decreased PTTH-stimulated Treh enzyme activity, indicating a link from the ERK and PI3K signaling pathways to Treh activity. Treatment with the Treh inhibitor, validamycin A, blocked PTTH-stimulated Treh enzyme activity and partially inhibited PTTH-stimulated ecdysteroidogenesis. Treatment with either a sugar transport inhibitor (cytochalasin B) or a specific glycolysis inhibitor (2-deoxy-D-glucose, 2-DG) partially inhibited PTTH-stimulated ecdysteroidogenesis. Taken together, these results indicate that increased expressions of St1/Treh1 and Treh activity, which lie downstream of PTTH signaling, are involved in PTTH stimulation in B. mori PGs.

6.
FEBS Lett ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977937

ABSTRACT

Malignant melanoma, an aggressive skin cancer with a poor prognosis, frequently features BRAFV600E mutation resulting in activation of the MAPK pathway and melanocyte proliferation and survival. BRAFV600E inhibitors like vemurafenib and dabrafenib have enhanced patient survival, yet drug resistance remains a significant challenge. We investigated the role of the ERK5 pathway in BRAFV600E melanoma cells and cells with acquired resistance to PLX4720 (vemurafenib) and dabrafenib. In BRAFV600E melanoma, ERK5 inhibition minimally affected viability compared to ERK1/2 inhibition. In vemurafenib-resistant cells, ERK5 inhibition alone didn't impact viability or restore drug sensitivity to vemurafenib. However, in dabrafenib-resistant cells, ERK5 inhibition reduced viability and enhanced the anti-proliferative effect of MEK1/2 inhibition. Targeting the ERK5 pathway may represent a therapeutic opportunity in dabrafenib-resistant melanoma.

7.
Mol Cell ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955180

ABSTRACT

During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.

8.
Mol Cancer ; 23(1): 141, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982480

ABSTRACT

BACKGROUND: The aberrant expression of phosphofructokinase-platelet (PFKP) plays a crucial role in the development of various human cancers by modifying diverse biological functions. However, the precise molecular mechanisms underlying the role of PFKP in head and neck squamous cell carcinoma (HNSCC) are not fully elucidated. METHODS: We assessed the expression levels of PFKP and c-Myc in tumor and adjacent normal tissues from 120 HNSCC patients. A series of in vitro and in vivo experiments were performed to explore the impact of the feedback loop between PFKP and c-Myc on HNSCC progression. Additionally, we explored the therapeutic effects of targeting PFKP and c-Myc in HNSCC using Patient-Derived Organoids (PDO), Cell Line-Derived Xenografts, and Patients-Derived Xenografts. RESULTS: Our findings indicated that PFKP is frequently upregulated in HNSCC tissues and cell lines, correlating with poor prognosis. Our in vitro and in vivo experiments demonstrate that elevated PFKP facilitates cell proliferation, angiogenesis, and metastasis in HNSCC. Mechanistically, PFKP increases the ERK-mediated stability of c-Myc, thereby driving progression of HNSCC. Moreover, c-Myc stimulates PFKP expression at the transcriptional level, thus forming a positive feedback loop between PFKP and c-Myc. Additionally, our multiple models demonstrate that co-targeting PFKP and c-Myc triggers synergistic anti-tumor effects in HNSCC. CONCLUSION: Our study demonstrates the critical role of the PFKP/c-Myc positive feedback loop in driving HNSCC progression and suggests that simultaneously targeting PFKP and c-Myc may be a novel and effective therapeutic strategy for HNSCC.


Subject(s)
Disease Progression , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Proto-Oncogene Proteins c-myc , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Mice , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Phosphofructokinase-1, Type C/metabolism , Phosphofructokinase-1, Type C/genetics , Cell Proliferation , Prognosis , Female , Male , Xenograft Model Antitumor Assays , Biomarkers, Tumor/metabolism
9.
Ecotoxicol Environ Saf ; 281: 116674, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964056

ABSTRACT

The persistence of the novel brominated flame retardant, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), in the environment and its potential for bioaccumulation in living organisms, including humans, further exacerbate its health risks. Therefore, ongoing research is crucial for fully understanding the extent of TBPH's neurotoxicity and for developing effective mitigation strategies. This study aims to investigate the potential neurotoxicity of TBPH on mouse neurobehavior and to evaluate the protective effects of the natural antioxidant astaxanthin (AST) against TBPH-induced neurotoxicity. The results indicate that exposure to TBPH can lead to a decline in learning and memory abilities and abnormal behaviors in mice, which may be associated with oxidative stress responses and apoptosis in the hippocampus. TBPH may disrupt the normal function of hippocampal neurons by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Mice exposed to TBPH treated with AST showed improved learning and memory abilities in the Morris water maze (MWM) and Step-down test (SDT). AST, through its antioxidant action, was able to significantly reduce the increase in reactive oxygen species (ROS) levels induced by TBPH, the increased expression of apoptosis markers, and the activation of the ERK1/2-FOS signaling pathway, alleviating TBPH-induced apoptosis in hippocampal neurons and improving neurobehavioral outcomes. These findings suggest that AST may alleviate the neurotoxicity of TBPH by modulating molecular events related to apoptosis and the ERK1/2-FOS signaling pathway. Thus, this study provides evidence for AST as a potential interventional strategy for the prevention or treatment of cognitive decline associated with environmental neurotoxicant exposure.

10.
Cancer Lett ; : 217107, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992489

ABSTRACT

Glioblastoma (GBM) presents a daunting challenge due to its resistance to temozolomide (TMZ), a hurdle exacerbated by the proneural-to-mesenchymal transition (PMT) from a proneural (PN) to a mesenchymal (MES) phenotype. TAGLN2 is prominently expressed in GBM, particularly in the MES subtype compared to low-grade glioma (LGG) and the PN subtype. Our research reveals TAGLN2's involvement in PMT and TMZ resistance through a series of in vitro and in vivo experiments. TAGLN2 knockdown can restrain proliferation and invasion, trigger DNA damage and apoptosis, and heighten TMZ sensitivity in GBM cells. Conversely, elevating TAGLN2 levels amplifies resistance to TMZ in cellular and intracranial xenograft mouse models. We demonstrate the interaction relationship between TAGLN2 and ERK1/2 through co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectrometry analysis. Knockdown of TAGLN2 results in a decrease in the expression of p-ERK1/2, whereas overexpression of TAGLN2 leads to an increase in p-ERK1/2 expression within the nucleus. Subsequently, the regulatory role of TAGLN2 in the expression and control of MGMT has been demonstrated. Finally, the regulation of TAGLN2 by NF-κB has been validated through chromatin immunoprecipitation and ChIP-PCR assays. In conclusion, our results confirm that TAGLN2 exerts its biological functions by interacting with the ERK/MGMT axis and being regulated by NF-κB, thereby facilitating the acquisition of promoting PMT and increased resistance to TMZ therapy in glioblastoma. These results provide valuable insights for the advancement of targeted therapeutic approaches to overcome TMZ resistance in clinical treatments.

11.
Cancer Innov ; 3(3): e117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947754

ABSTRACT

Background: Angiogenesis plays an important role in the occurrence and development of non-small cell lung cancer (NSCLC). The atypical mitogen-activated protein kinase 4 (MAPK4) has been shown to be involved in the pathogenesis of various diseases. However, the potential role of MAPK4 in the tumor angiogenesis of NSCLC remains unclear. Methods: Adult male C57BL/6 wild-type mice were randomly divided into the control group and p-siMAPK4 intervention group, respectively. The cell proliferation was analyzed with flow cytometry and immunofluorescence staining. The vascular density in tumor mass was analyzed by immunofluorescence staining. The expressions of MAPK4 and related signaling molecules were detected by western blot analysis and immunofluorescence staining, and so on. Results: We found that the expression of MAPK4, which was dominantly expressed in local endothelial cells (ECs), was correlated with tumor angiogenesis of NSCLC. Furthermore, MAPK4 silencing inhibited the proliferation and migration abilities of human umbilical vein ECs (HUVECs). Global gene analysis showed that MAPK4 silencing altered the expression of multiple genes related to cell cycle and angiogenesis pathways, and that MAPK4 silencing increased transduction of the extracellular regulated protein kinases 1/2 (ERK1/2) pathway but not Akt and c-Jun n-terminal kinase pathways. Further analysis showed that MAPK4 silencing inhibited the proliferation and migration abilities of HUVECs cultured in tumor cell supernatant, which was accompanied with increased transduction of the ERK1/2 pathway. Clinical data analysis suggested that the higher expression of MAPK4 and CD34 were associated with poor prognosis of patients with NSCLC. Targeted silencing of MAPK4 in ECs using small interfering RNA driven by the CD34 promoter effectively inhibited tumor angiogenesis and growth of NSCLC in vivo. Conclusion: Our results reveal that MAPK4 plays an important role in the angiogenesis and development of NSCLC. MAPK4 may thus represent a new target for NSCLC.

12.
Oncol Res ; 32(7): 1197-1207, 2024.
Article in English | MEDLINE | ID: mdl-38948022

ABSTRACT

Breast cancer, a predominant global health issue, requires ongoing exploration of new therapeutic strategies. Palbociclib (PAL), a well-known cyclin-dependent kinase (CDK) inhibitor, plays a critical role in breast cancer treatment. While its efficacy is recognized, the interplay between PAL and cellular autophagy, particularly in the context of the RAF/MEK/ERK signaling pathway, remains insufficiently explored. This study investigates PAL's inhibitory effects on breast cancer using both in vitro (MCF7 and MDA-MB-468 cells) and in vivo (tumor-bearing nude mice) models. Aimed at elucidating the impact of PAL on autophagic processes and exploring the potential of combining it with trametinib (TRA), an MEK inhibitor, our research seeks to address the challenge of PAL-induced drug resistance. Our findings reveal that PAL significantly decreases the viability of MCF7 and MDA-MB-468 cells and reduces tumor size in mice while showing minimal cytotoxicity in MCF10A cells. However, PAL also induces protective autophagy, potentially leading to drug resistance via the RAF/MEK/ERK pathway activation. Introducing TRA effectively neutralized this autophagy, enhancing PAL's anti-tumor efficacy. A combination of PAL and TRA synergistically reduced cell viability and proliferation, and in vivo studies showed notable tumor size reduction. In conclusion, the PAL and TRA combination emerges as a promising strategy for overcoming PAL-induced resistance, offering a new horizon in breast cancer treatment.


Subject(s)
Autophagy , Breast Neoplasms , Piperazines , Pyridines , Pyridones , Pyrimidinones , Xenograft Model Antitumor Assays , Humans , Animals , Autophagy/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Pyridones/pharmacology , Pyridones/therapeutic use , Female , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Mice , Piperazines/pharmacology , Piperazines/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Drug Synergism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mice, Nude , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Survival/drug effects , MCF-7 Cells
13.
Front Bioeng Biotechnol ; 12: 1390708, 2024.
Article in English | MEDLINE | ID: mdl-38952670

ABSTRACT

Introduction: Triple negative breast cancer (TNBC), a highly aggressive subtype accounting for 15-20% of all breast cancer cases, faces limited treatment options often accompanied by severe side effects. In recent years, natural extracellular nanovesicles derived from plants have emerged as promising candidates for cancer therapy, given their safety profile marked by non-immunogenicity and absence of inflammatory responses. Nevertheless, the potential anti-cancer effects of Citrus limon L.-derived extracellular nanovesicles (CLENs) for breast cancer treatment is still unexplored. Methods: In this study, we investigated the anti-cancer effects of CLENs on two TNBC cell lines (4T1 and HCC-1806 cells) under growth conditions in 2D and 3D culture environments. The cellular uptake efficiency of CLENs and their internalization mechanism were evaluated in both cells using confocal microscopy. Thereafter, we assessed the effect of different concentrations of CLENs on cell viability over time using a dual approach of Calcein-AM PI live-dead assay and CellTiter-Glo bioluminescence assay. We also examined the influence of CLENs on the migratory and evasion abilities of TNBC cells through wound healing and 3D Matrigel drop evasion assays. Furthermore, Western blot analysis was employed to investigate the effects of CLENs on the phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal- regulated kinase (ERK) expression. Results: We found that CLENs were internalized by the cells via endocytosis, leading to decreased cell viability, in a dose- and time-dependent manner. Additionally, the migration and evasion abilities of TNBC cells were significantly inhibited under exposed to 40 and 80 µg/mL CLENs. Furthermore, down-regulated expression levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK), suggesting that the inhibition of cancer cell proliferation, migration, and evasion is driven by the inhibition of the PI3K/AKT and MAPK/ERK signaling pathways. Discussion: Overall, our results demonstrate the anti-tumor efficiency of CLENs against TNBC cells, highlighting their potential as promising natural anti-cancer agents for clinical applications in cancer treatment.

14.
Front Genet ; 15: 1375736, 2024.
Article in English | MEDLINE | ID: mdl-38952713

ABSTRACT

Background: Developmental Dysplasia of the Hip (DDH) is a skeletal disorder where late-presenting forms often escape early diagnosis, leading to limb and pain in adults. The genetic basis of DDH is not fully understood despite known genetic predispositions. Methods: We employed Whole Genome Sequencing (WGS) to explore the genetic factors in late-presenting DDH in two unrelated families, supported by phenotypic analyses and in vitro validation. Results: In both cases, a novel de novo heterozygous missense mutation in RAF1 (c.193A>G [p.Lys65Glu]) was identified. This mutation impacted RAF1 protein structure and function, altering downstream signaling in the Ras/ERK pathway, as demonstrated by bioinformatics, molecular dynamics simulations, and in vitro validations. Conclusion: This study contributes to our understanding of the genetic factors involved in DDH by identifying a novel mutation in RAF1. The identification of the RAF1 mutation suggests a possible involvement of the Ras/ERK pathway in the pathogenesis of late-presenting DDH, indicating its potential role in skeletal development.

15.
Oncotarget ; 15: 424-438, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953895

ABSTRACT

Single-agent TAS102 (trifluridine/tipiracil) and regorafenib are FDA-approved treatments for metastatic colorectal cancer (mCRC). We previously reported that regorafenib combined with a fluoropyrimidine can delay disease progression in clinical case reports of multidrug-resistant mCRC patients. We hypothesized that the combination of TAS102 and regorafenib may be active in CRC and other gastrointestinal (GI) cancers and may in the future provide a treatment option for patients with advanced GI cancer. We investigated the therapeutic effect of TAS102 in combination with regorafenib in preclinical studies employing cell culture, colonosphere assays that enrich for cancer stem cells, and in vivo. TAS102 in combination with regorafenib has synergistic activity against multiple GI cancers in vitro including colorectal and gastric cancer, but not liver cancer cells. TAS102 inhibits colonosphere formation and this effect is potentiated by regorafenib. In vivo anti-tumor effects of TAS102 plus regorafenib appear to be due to anti-proliferative effects, necrosis and angiogenesis inhibition. Growth inhibition by TAS102 plus regorafenib occurs in xenografted tumors regardless of p53, KRAS or BRAF mutations, although more potent tumor suppression was observed with wild-type p53. Regorafenib significantly inhibits TAS102-induced angiogenesis and microvessel density in xenografted tumors, as well inhibits TAS102-induced ERK1/2 activation regardless of RAS or BRAF status in vivo. TAS102 plus regorafenib is a synergistic drug combination in preclinical models of GI cancer, with regorafenib suppressing TAS102-induced increase in microvessel density and p-ERK as contributing mechanisms. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.


Subject(s)
Drug Combinations , Drug Synergism , Gastrointestinal Neoplasms , Mutation , Neoplastic Stem Cells , Neovascularization, Pathologic , Phenylurea Compounds , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Pyridines , Pyrrolidines , STAT3 Transcription Factor , Thymine , Trifluridine , Uracil , Xenograft Model Antitumor Assays , Humans , Trifluridine/pharmacology , Phenylurea Compounds/pharmacology , Animals , Pyridines/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/metabolism , Uracil/pharmacology , Uracil/analogs & derivatives , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Thymine/pharmacology , Cell Line, Tumor , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Cell Proliferation/drug effects , Angiogenesis
16.
Theriogenology ; 226: 335-342, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959844

ABSTRACT

Extracellular signal-regulated protein kinase 5 (Erk5), a member of the mitogen-activated protein kinase (MAPK) family, is ubiquitously expressed in all eukaryotic cells and is implicated in the various mitotic processes such as cell survival, proliferation, migration, and differentiation. However, the potential functional roles of Erk5 in oocyte meiosis have not been fully determined. In this study, we document that ERK5 participates in the meiotic maturation of mouse oocytes by regulating the spindle assembly to ensure the meiotic progression. We unexpectedly found that phosphorylated ERK5 was localized in the spindle pole region at metaphase I and II stages by immunostaining analysis. Inhibition of ERK5 activity using its specific inhibitor XMD8-92 dramatically reduced the incidence of first polar body extrusion. In addition, inhibition of ERK5 evoked the spindle assembly checkpoint to arrest oocytes at metaphase I stage by impairing the spindle assembly, chromosome alignment and kinetochore-microtubule attachment. Mechanically, over-strengthened microtubule stability was shown to disrupt the microtubule dynamics and thus compromise the spindle assembly in ERK5-inhibited oocytes. Conversely, overexpression of ERK5 caused decreased level of acetylated α-tubulin and spindle defects. Collectively, we conclude that ERK5 plays an important role in the oocyte meiotic maturation by regulating microtubule dynamics and spindle assembly.

17.
Exp Dermatol ; 33(7): e15128, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973249

ABSTRACT

Dry skin is common to many pruritic diseases and is difficult to improve with oral traditional antihistamines. Recently, increasing evidence indicated that histamine H4 receptor (H4R) plays an important role in the occurrence and development of pruritus. Extracellular signal-regulated kinase (ERK) phosphorylation activation in the spinal cord mediates histamine-induced acute and choric itch. However, whether the histamine H4 receptor regulates ERK activation in the dry skin itch remains unclear. In the study, we explore the role of the histamine H4 receptor and p-ERK in the spinal cord in a dry skin mouse model induced by acetone-ether-water (AEW). q-PCR, Western blot, pharmacology and immunofluorescence  were applied in the study. We established a dry skin itch model by repeated application of AEW on the nape of neck in mice. The AEW mice showed typically dry skin histological change and persistent spontaneous scratching behaviour. Histamine H4 receptor, instead of histamine H1 receptor, mediated spontaneous scratching behaviour in AEW mice. Moreover, c-Fos and p-ERK expression in the spinal cord neurons were increased and co-labelled with GRPR-positive neurons in AEW mice. Furthermore, H4R agonist 4-methyhistamine dihydrochloride (4-MH)induced itch. Both 4-MH-induced itch and the spontaneous itch in AEW mice were blocked by p-ERK inhibitor U0126. Finally, intrathecal H4R receptor antagonist JNJ7777120 inhibited spinal p-ERK expression in AEW mice. Our results indicated that spinal H4R mediates itch via ERK activation in the AEW-induced dry skin mice.


Subject(s)
Acetone , Extracellular Signal-Regulated MAP Kinases , Pruritus , Receptors, Histamine H4 , Spinal Cord , Animals , Pruritus/chemically induced , Pruritus/metabolism , Receptors, Histamine H4/metabolism , Mice , Spinal Cord/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Acetone/pharmacology , Water , Ether , Disease Models, Animal , Phosphorylation , Indoles/pharmacology , Butadienes/pharmacology , Piperazines/pharmacology , Nitriles/pharmacology , Skin/metabolism , Chronic Disease , Methylhistamines , Proto-Oncogene Proteins c-fos/metabolism , Mice, Inbred C57BL
18.
Mol Biotechnol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907071

ABSTRACT

This study was aimed to uncover the character and potential regulatory mechanism of EPB41L3 in cervical cancer (CC). CC cells were injected into BALB/c nude mice (female) to construct a xenograft tumor model. Real-time quantitative polymerase chain reaction (qRT-PCR) and western blot were performed to evaluate the expression of EPB41L3, ERK/p38 MAPK signal markers in CC tissues and cells. Cell counting kit-8 (CCK-8) and Transwell was applied to analyze the viability, invasion, and migration of CC cell lines. EPB41L3 was substantially decreased both in CC tissues and cells. Cell viability, invasion, and migration of CC cells were reduced by overexpressing EPB41L3. Bioinformatics analysis prerdicted that EPB41L3 was strongly related to the ERK/p38 MAPK pathway. Compared with Ad-nc mice, the volume and weight of tumors and ERK/p38 MAPK signal markers were down-regulated in Ad-EPB41L3 mice. After knocking down EPB41L3 with EPB41L3 siRNA (siEPB41L3), the ERK/p38 MAPK pathway was activated. Moreover, SB203580 treatment reversed the effect of EPB41L3 silencing on the improvement in viability, migration, and invasion of CC cells. EPB41L3 suppresses the progression of CC via activating the ERK/p38 MAPK pathway. EPB41L3 may serve as an effective therapeutic target for CC.

19.
Phytomedicine ; 132: 155819, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38885579

ABSTRACT

BACKGROUND: Dysfunction of dopamine homeostasis (DAH), which is regulated by vesicular monoamine transporter 2 (VMAT2), is a vital cause of dopamine (DA) neurotoxicity and motor deficits in Parkinson's disease (PD). Gastrodin (4-hydroxybenzyl alcohol 4-O-ß-D-glucoside; GTD), a natural active compound derived from Gastrodia elata Blume, can be used to treat multiple neurological disorders, including PD. However, whether GTD regulates VMAT2-mediated DAH dysfunction in PD models remains unclear. PURPOSE: To explore whether GTD confers dopaminergic neuroprotection by facilitating DA vesicle storage and maintaining DAH in PD models. METHODS: Mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and PC12 cells with 1-methyl-4-phenyl-pyridinium (MPP+) to induce PD characteristics. Multiple behavioural tests were performed to evaluate the motor functions of the mice. HPLC was used to measure DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. Transmission electron microscopy was used to observe synaptic vesicles. Molecular docking and molecular dynamics were used to determine the binding affinity of GTD to the target protein. Reserpine (Res, a VMAT2 inhibitor) and PD0325901 (901, a MEK inhibitor) were employed to investigate the mechanism of GTD. Western blotting and immunohistochemistry were used to assess the expression of the target proteins. RESULTS: GTD attenuated motor deficits and dopaminergic neuronal injury, reversed the imbalance of DAH, and increased VMAT2 levels and vesicle volume in MPTP-induced mice. GTD ameliorated cell damage, ROS release, and dysfunction of DAH in MPP+-induced PC12 cells. Moreover, the neuroprotective effects of GTD were reversed by Res in vitro and in vivo. Furthermore, GTD can activate the MEK/ERK/CREB pathway to upregulate VMAT2 in vitro and in vivo. Interestingly, 901 reversed the effects of GTD on VMAT2 and dopaminergic neuronal impairment. CONCLUSION: GTD relieved PD-related motor deficits and dopaminergic neuronal impairment by facilitating MEK-depended VMAT2 to regulate DAH, which offers new insights into its therapeutic potential.

20.
J Mol Neurosci ; 74(3): 59, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890235

ABSTRACT

Binge drinking causes a range of problems especially damage to the nervous system, and the specific neural mechanism of brain loss and behavioral abnormalities caused by which is still unclear. Extracellular regulated protein kinases (ERK) maintain neuronal survival, growth, and regulation of synaptic plasticity by phosphorylating specific transcription factors to regulate expression of brain-derived neurotrophic factor (BDNF). Dual-specific phosphatase 1 (DUSP1) and DUSP6 dephosphorylate tyrosine and serine/threonine residues in ERK1/2 to inactivate them. To investigate the molecular mechanism by which alcohol affects memory and emotion, a chronic intermittent alcohol exposure (CIAE) model was established. The results demonstrated that mice in the CIAE group developed short-term recognition memory impairment and anxiety-like behavior; meanwhile, the expression of DUSP1 and DUSP66 in the mPFC was increased, while the levels of p-ERK and BDNF were decreased. Micro-injection of DUSP1/6 inhibitor BCI into the medial prefrontal cortex (mPFC) restored the dendritic morphology by reversing the activity of ERK-BDNF and ultimately improved cognitive and emotional impairment caused by CIAE. These findings indicate that CIAE inhibits ERK-BDNF by increasing DUSP1/6 in the mPFC that may be associated with cognitive and emotional deficits. Consequently, DUSP1 and DUSP6 appear to be potential targets for the treatment of alcoholic brain disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Dual Specificity Phosphatase 1 , Ethanol , Mice, Inbred C57BL , Prefrontal Cortex , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Male , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Ethanol/toxicity , Ethanol/pharmacology , Dual Specificity Phosphatase 6/metabolism , Dual Specificity Phosphatase 6/genetics , Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/pharmacology , Aminoacetonitrile/therapeutic use , Anxiety/drug therapy , Anxiety/etiology , MAP Kinase Signaling System
SELECTION OF CITATIONS
SEARCH DETAIL
...