Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Trop Anim Health Prod ; 56(4): 156, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727858

ABSTRACT

The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Antioxidants , Diet , Dietary Supplements , Digestion , Nigella sativa , Seeds , Sheep, Domestic , Animals , Nigella sativa/chemistry , Animal Feed/analysis , Male , Seeds/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Dietary Supplements/analysis , Diet/veterinary , Digestion/drug effects , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Rumen/metabolism , Brassicaceae/chemistry , Random Allocation , Nutrients/analysis , Nutrients/metabolism
2.
J Sci Food Agric ; 104(11): 6541-6552, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38520251

ABSTRACT

BACKGROUND: Aquaponic systems are sustainable processes of managing water and nutrients for food production. An innovate nutrient-efficient catfish-based (Clarias gariepinus) aquaponics system was implemented for producing two cultivars of two leafy vegetables largely consumed worldwide: lamb's lettuce (Valerianella locusta var. Favor and Valerianella locusta var. de Hollande) and arugula (Eruca vesicaria var. sativa and Eruca sativa). Different growing treatments (4 × 2 factorial design) were applied to plants of each cultivar, grown at two light intensities (120 and 400 µmol m-2 s-1). During growth, several morphological characteristics (root length, plant height, leaf number, foliage diameter and biggest leaf length) were measured. At harvest, plants were weighed and examined qualitatively in terms of greenness and health status. Additionally, leaf extracts were obtained and used to determine total phenolic contents, antioxidant capacities, and levels of cytotoxicity to Caco-2 intestinal model cells. RESULTS: After a 5-week growth period, both lamb's lettuce cultivars presented high levels of greenness and health status, at both light intensities, particularly the var. de Hollande that also showed higher average performance in terms of plant morphology. In turn, arugula cultivars showed lower levels of greenness and health status, especially the cultivar E. vesicaria var. sativa submitted to direct sunlight during growth. In addition, plant specimens submitted to higher levels of light intensity showed higher contents in antioxidants/polyphenols. Cultivars with a higher content in antioxidants/polyphenols led to higher Caco-2 cell viability. CONCLUSION: For successful industrial implementation of the aquaponics technology, different and optimized acclimatizing conditions must be applied to different plant species and cultivars. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Catfishes , Lactuca , Light , Plant Leaves , Animals , Humans , Catfishes/growth & development , Catfishes/metabolism , Lactuca/growth & development , Lactuca/chemistry , Lactuca/radiation effects , Lactuca/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Caco-2 Cells , Antioxidants/metabolism , Antioxidants/analysis , Phenols/metabolism , Phenols/analysis
3.
Curr Issues Mol Biol ; 46(1): 398-408, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38248327

ABSTRACT

Eruca sativa is a commonly used edible plant in Italian cuisine. E. sativa 70% ethanol extract (ES) was fractionated with five organic solvents, including n-hexane (EHex), chloroform (ECHCl3), ethyl acetate (EEA), n-butyl alcohol (EBuOH), and water (EDW). Ethyl acetate fraction (EEA) had the highest antioxidant activity, which was correlated with the total polyphenol and flavonoid content. ES and EEA acted as PPAR-α ligands by PPAR-α competitive binding assay. EEA significantly increased cornified envelope formation as a keratinocyte terminal differentiation marker in HaCaT cells. Further, it significantly reduced nitric oxide and pro-inflammatory cytokines (IL-6 and TNF-α) in lipopolysaccharide-stimulated RAW 264.7 cells. The main flavonol forms detected in high amounts from EEA are mono-and di-glycoside of each aglycone. The main flavonol form of EEA is the mono-glycoside of each aglycone detected, and the most abundant flavonol mono-glycoside is kaempferol 3-glucoside 7.4%, followed by quercetin-3-glucoside 2.3% and isorhamnetin 3-glucoside 1.4%. Flavonol mono-glycosides were shown to be a potent PPAR-α ligand using molecular docking simulation and showed the inhibition of nitric oxide. These results suggest that the flavonol composition of E. sativa is suitable for use in improving skin barrier function and inflammation in skin disorders, such as atopic dermatitis.

4.
Nutrients ; 16(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38257145

ABSTRACT

A growing interest has been drawn to the use of traditional medicinal plants for the treatment of human diseases and, in particular, infertility and reproductive toxicity associated with environmental factors. The Mediterranean basin area is a recognized source of plant species with therapeutic interest. In this frame, Eruca sativa (ES) is an annual edible plant and a member of the Brassicaceae family. A relatively large number of studies, focusing on the biological effects of the extract from the leaves of ES on in vitro and in vivo models of disease, have been published in recent years. The present narrative review aims to analyze the phytochemical constituents, traditional uses, possible pharmacological activities, and recognized effects of ES on male reproductive outcomes. Available investigations have revealed the presence of a number of compounds with antioxidant properties, such as polyphenols, glucosinolates, flavonoids, and carotenoids in extracts from ES. Based on the chemical and pharmacological characteristics of the aforementioned compounds, we show that ES has possible preventive properties and therapeutic uses, especially in the functional derangements of the male reproductive system.


Subject(s)
Brassicaceae , Reproductive Health , Humans , Antioxidants/pharmacology , Carotenoids , Flavonoids/pharmacology
5.
Plant Biol (Stuttg) ; 26(2): 223-231, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38198234

ABSTRACT

Microplastics pollution of agricultural soil is a global environmental concern because of its potential risk to food security and human health. Although many studies have tested the direct effects of microplastics on growth of Eruca sativa Mill., little is known about whether these effects are regulated by fertilization and weed competition in field management practices. Here, we performed a greenhouse experiment growing E. sativa as target species in a three-factorial design with two levels of fertilization (low versus. high), two levels of weed competition treatments (weed competition versus no weed competition) and five levels of microplastic treatments (no microplastics, Polybutylene adipate-co-terephthalate [PBAT], Polybutylene succinate [PBS], Polycaprolactone [PCL] or Polypropylene [PP]). Compared to the soil without microplastics, PBS and PCL reduced aboveground biomass and leaf number of the E. sativa. PBS also resulted in increased root allocation and thicker roots in E. sativa. In addition, fertilization significantly mitigated the negative effects of PBS and PCL on aboveground biomass of E. sativa, but weed competition significantly promoted these effects. Although fertilization alleviated the negative effect of PBS on aboveground biomass, such alleviation became weaker under weed competition than when E. sativa grew alone. The results indicate that the effects of specific polymer types on E. sativa growth could be regulated by fertilization, weed management, and even their interactions. Therefore, reasonable on-farm management practices may help in mitigating the negative effects of microplastics pollution on E. sativa growth in agricultural fields.


Subject(s)
Microplastics , Soil , Humans , Plastics , Agriculture/methods , Biomass
6.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 527-540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054786

ABSTRACT

Herein we attempt to shed light on the potential improving effect of Eruca sativa seeds (ESS) on the reproductive aspects of male Japanese quails. To accomplish this objective, two groups of quails were supplemented with ESS powder at doses of 5 and 10 g/kg feed from 7 days to 140 days of age, in addition to the control group, which did not receive treatment. Forty males were reared singly in cages to evaluate sperm characters and 32 males were raised with 64 females to evaluate fertility and sperm penetrability. Sixty-six phytochemical compounds were found according to gas chromatography-mass spectrometry analysis of ESS. The most plentiful ones are 13-docosenoic acid methyl ester, 9-octadecenoic acid methyl ester, and linoleic acid methyl ester. Both 5 g/kg and 10 g/kg doses of ESS showed similar effectiveness in enhancing various reproductive parameters, including gonadal index, sperm characteristics, fertility, libido, and cloacal gland attributes. However, some aspects like sperm concentration and testosterone levels exhibited a dose-dependent response. There is no significant change in mortality rate of supplemented groups compared to the control one. ESS also caused a reduction in feed intake and an enhancement in feed conversion ratio without affecting final body weight and body weight gain. This suggests potential nutritional benefits beyond reproductive health. The low-dose-fed group showed a significant reduction in total cholesterol and malondialdehyde compared to the high-dose-fed and unfed groups. The higher dose notably increased total antioxidant capacity compared to the lower dose and control group. Despite the positive effects on male reproductive parameters, there wasn't a significant impact on hatchability percentage, indicating that while male fertility improved, it might not have directly affected the viability of the eggs. Overall, the study suggests that ESS could be a safe and promising addition to the diet of male Japanese quails to enhance their reproductive capabilities without adverse effects. The findings could have implications for poultry farming by potentially improving breeding efficiency and health outcomes in quails.


Subject(s)
Coturnix , Seeds , Female , Male , Animals , Coturnix/physiology , Plant Breeding , Ovum , Quail , Body Weight , Esters , Animal Feed/analysis
7.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982584

ABSTRACT

Soil salinity can have various negative consequences on agricultural products, from their quality and production to their aesthetic traits. In this work, the possibility to use salt-affected vegetables, that otherwise would be discarded, as a source of nutraceuticals was explored. To this aim, rocket plants, a vegetable featuring bioactive compounds such as glucosinolates, were exposed to increasing NaCl concentrations in hydroponics and analysed for their content in bioactive compounds. Salt levels higher than 68 mM produced rocket plants that did not comply with European Union regulations and would therefore be considered a waste product. Anyway, our findings, obtained by Liquid Chromatography-High Resolution Mass Spectrometry, demonstrated a significant increase in glucosinolates levels in such salt-affected plants. opening the opportunity for a second life of these market discarded products to be recycled as glucosinolates source. Furthermore, an optimal situation was found at NaCl 34 mM in which not only were the aesthetic traits of rocket plants not affected, but also the plants revealed a significant enrichment in glucosinolates. This can be considered an advantageous situation in which the resulting vegetables still appealed to the market and showed improved nutraceutical aspects.


Subject(s)
Brassicaceae , Brassicaceae/chemistry , Sodium Chloride , Glucosinolates/analysis , Plant Leaves/chemistry , Vegetables , Sodium Chloride, Dietary
8.
Plants (Basel) ; 12(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679079

ABSTRACT

Soil salinization become worse in the last decades, leading to reduced crop yields, especially in the Mediterranean basin. Eruca sativa is a common species cultivated in this area with remarkable economic importance. This study aimed at investigating the effect of salinity on this plant, focusing on (i) seedling development in terms of variations in germination and growth parameters and (ii) anatomical and ultra-structural changes in the morphology of cotyledons. For this reason, seeds were treated with different salinity levels ranging from 137 to 548 mM NaCl. Seed germination was delayed by all the concentrations tested, but only above 137 mM seedling growth was impaired. Results showed a high occurrence of lipid bodies within the mesophyll cells of cotyledons of seedlings exposed to salt concentrations above 137 mM, suggesting an impairment in lipid mobilization caused by salinity during plant development. The cotyledons of treated seedlings showed reduced intercellular spaces and ultrastructural changes in chloroplasts and peroxisomes. Moreover, salt-induced autophagic processes were present in samples grown at the highest NaCl levels. Interestingly, at 137 mM NaCl, seedlings showed the highest values of mesophyll thickness and fresh weight, implying a possible mechanism of salt adaptation during germination.

9.
Pathogens ; 11(12)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36558761

ABSTRACT

Fusarium graminearum is the most important causal agent of head blight in wheat, and stalk and ear rot in maize. A field experiment was conducted to investigate the effect of incorporation of Brassicaceae cover crops on Fusarium graminearum in a wheat-maize rotation. Five species belonging to Brassicaceae (Brassica juncea, Eruca sativa, Raphanus sativus, B. carinata, B. oleracea var. caulorapa L.) were used in the field experiment to investigate their potential to suppress F. graminearum inoculum in soil, disease incidence in maize and to reduce subsequent mycotoxin contamination in maize. Brassica juncea was found to contain the highest glucosinolate concentration in shoots (31 µmol g-1). Severity of ear rot and stalk rot in maize was not significantly reduced in the amended plots. Incorporation of R. sativus 'Terranova' significantly decreased the amount of F. graminearum DNA by 58% compared with the cultivated fallow treatment, however the DNA concentration was not significantly different to fallow uncultivated. Fusarium graminearum DNA and deoxynivalenol in maize was 50% lower after incorporation of B. oleracea var. caulorapa L. compared to after fallow treatment but the difference was not significant. The brassica crops used in the present field experiment were not effective in suppressing F. graminearum, therefore further studies to optimise the current approach are recommended.

10.
Plants (Basel) ; 11(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36559594

ABSTRACT

Rocket is the common designation for two baby-leaf salad crops of the Brassicaceae family: Eruca sativa (L.) Cav., usually referred to as annual garden rocket, and Diplotaxis tenuifolia (L.) DC. commonly named to as perennial wild rocket. E. sativa is used for human consumption since antiquity. However, the growing consumer preference for D. tenuifolia is being accompanied by the fast increase in its production area and commercialization of new cultivars. Nevertheless, the worldwide number of wild rocket accessions maintained in germplasm collections is very reduced, the solution for which situation the project "REMIRucula" intends to contribute, establishing a germplasm collection at the INIAV, Oeiras, Portugal. Herein, we report on the establishment via next generation sequencing (NGS) of the first genome assembly of D. tenuifolia and the identification of specific single sequence repeat (SSR) and single nucleotide polymorphisms (SNP) loci for the establishment of specific DNA-markers for this species. A representative set of 87 D. tenuifolia and 3 E. sativa accessions were assessed by 5 SSR and 9 SNP-CAPS markers, allowing a drastic discrimination between both species and the establishment of unequivocal molecular fingerprints for the analyzed accessions. The non-discrimination within six pairs and one trio of D. tenuifolia accessions is discussed.

11.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36555238

ABSTRACT

Vascular inflammation (VI) represents a pathological condition that progressively affects the integrity and functionality of the vascular wall, thus leading to endothelial dysfunction and the onset of several cardiovascular diseases. Therefore, the research of novel compounds able to prevent VI represents a compelling need. In this study, we tested erucin, the natural isothiocyanate H2S-donor derived from Eruca sativa Mill. (Brassicaceae), in an in vivo mouse model of lipopolysaccharide (LPS)-induced peritonitis, where it significantly reduced the amount of emigrated CD11b positive neutrophils. We then evaluated the anti-inflammatory effects of erucin in LPS-challenged human umbilical vein endothelial cells (HUVECs). The pre-incubation of erucin, before LPS treatment (1, 6, 24 h), significantly preserved cell viability and prevented the increase of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels. Moreover, erucin downregulated endothelial hyperpermeability and reduced the loss of vascular endothelial (VE)-Cadherin levels. In addition, erucin decreased vascular cell adhesion molecule 1 (VCAM-1), cyclooxygenase-2 (COX-2) and microsomal prostaglandin E-synthase 1 (mPGES-1) expression. Of note, erucin induced eNOS phosphorylation and counteracted LPS-mediated NF-κB nuclear translocation, an effect that was partially abolished in the presence of the eNOS inhibitor L-NAME. Therefore, erucin can control endothelial function through biochemical and genomic positive effects against VI.


Subject(s)
Endothelium, Vascular , Signal Transduction , Humans , Mice , Animals , Endothelium, Vascular/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
13.
Antibiotics (Basel) ; 11(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140028

ABSTRACT

Fusarium graminearum is a globally important cereal pathogen, causing head blight in wheat, resulting in yield losses and mycotoxin contamination. Currently, triazole fungicides are used to suppress Fusarium graminearum, however, the declining effectiveness of triazoles and concerns over the safety of pesticides have led to the pursuit of safe alternative crop protection strategies such as biofumigation. In the present study, species belonging to Brassicaceae (Brassica juncea, Raphanus sativus, Eruca sativa) were assessed for their biofumigation potential against F. graminearum and the glucosinolate profile of the brassicas was determined. In Petri dishes, mycelial plugs of Fusarium graminearum were exposed to frozen/defrosted leaf discs of brassicas collected at early-leaf, stem-extension, and early-bud stages. Additionally, F. graminearum inoculum was incubated in soil amended with chopped tissues of brassicas in a closed jar experiment. Glucosinolate analysis of the leaf tissue of brassicas revealed that the total glucosinolate concentration of B. juncea 'Brons' increased with advancing growth stage (24.5-51.9 µmol g-1). Brassica juncea leaf discs were effective against mycelial growth, while the sinigrin content in the leaf tissue corresponded to the level of suppression. At the stem-extension and early-bud stages, B. juncea 'Brons' showed 87-90% suppression with four leaf discs, and 100% suppression with eight leaf discs. Brassica juncea 'Caliente Rojo' leaf discs collected at the stem-extension stage showed 94% inhibition with eight discs. In the closed jar experiment, each brassica species significantly suppressed F. graminearum inoculum by 41-55%. The findings suggest that the brassica species investigated in the present study could be effective in reducing the inoculum of F. graminearum in soil prior to cereal production.

14.
Plant Pathol J ; 38(4): 261-271, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35953046

ABSTRACT

Root-knot nematodes are the most important plantparasitic nematodes worldwide. Many efforts have been made to find non-chemical, risk-free, and environmentally friendly methods for nematode control. In this study, the effects of compost and vermicompost of arugula (Eruca sativa) on Meloidogyne javanica were investigated in three glasshouse experiments. In addition, the expression of the defense-related genes nonexpressor of pathogenesis-related 1 (NPR1) and lipoxygenase 1 (LOX1) was detected in tomato plants treated with vermicompost of arugula at 0, 2, 7, and 14 days after nematode inoculation. The result showed that the vermicompost of arugula significantly reduced the reproduction factor of the nematode by 54.4% to 70.5% in the three experiments and increased the dry weight of shoots of infected tomato plants. Gene expression analysis showed that LOX1 expression increased on the second and seventh day after nematode inoculation, while NPR1 expression decreased. The vermicompost of arugula showed stronger nematode inhibitory potential than the vermicompost of animal manure. The vermicompost of arugula is superior to arugula compost in suppressing the activity of M. javaniva and reducing its impact. It manipulates the expression of resistance genes and could induce systemic resistance against rootknot nematodes.

15.
Antibiotics (Basel) ; 11(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35884107

ABSTRACT

Worldwide, the primary problem today is the proliferation of cancer and secondary bacterial infections caused by biofilms, as they are the principal causes of death due to the lack of effective drugs. A great deal of biological activities of silver nanoparticles (AgNPs) have made them a brilliant choice for the development of new drugs in recent years. The present study was conducted to evaluate the anticancer, antibacterial, anti-QS, and antibiofilm effects of AgNPs synthesized from Eruca sativa (E. sativa) leaf extract. The ultraviolet-visible (UV-Vis) spectra showed a peak of surface plasmon resonance at 424 nm λmax, which corresponded to AgNP formation. The Fourier transform infrared spectroscopy (FT-IR) confirmed that biological moieties are involved for the development of AgNPs. Moreover, transmission electron microscopy (TEM) analyses confirmed the spherical shape and uniform size (8.11 to 15 nm) of the AgNPs. In human lung cancer cells (A549), the anticancer potential of AgNPs was examined by the MTT [3-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, scratch assay, and invasion assay. The results indicated that AgNPs inhibit the migration of A549 cells. The synthesized AgNPs showed MIC values of 12.5 µg/mL against Chromobacterium violaceum (C. violaceum) and 25 µg/mL against Pseudomonas aeruginosa (P. aeruginosa), which demonstrated their antibacterial abilities. Biological compounds that disable the QS system are being investigated as potential strategies for preventing bacterial infections. Thus, we analyzed the potential effectiveness of synthesized AgNPs in inhibiting QS-regulated virulence factors and biofilm formation in both strains of bacteria. In C. violaceum, the synthesized AgNPs significantly inhibited both violacein (85.18% at 1/2 × MIC) and acyl homoserine lactone (78.76% at 1/2 × MIC). QS inhibitory activity was also demonstrated in P. aeruginosa at a sub-MIC concentration (1/2 × MIC) by a reduction in pyocyanin activity (68.83%), total protease (68.50%), LasA activity (63.91%), and LasB activity (56.40%). Additionally, the exopolysaccharide production was significantly reduced in both C. violaceum (65.79% at 1/2 × MIC) and P. aeruginosa (57.65% at 1/2 × MIC). The formation of biofilm was also significantly inhibited at 1/2 × MIC in C. violaceum (76.49%) and in P. aeruginosa (65.31%). Moreover, a GC-MS analysis confirmed the presence of different classes of bioactive phytochemical constituents present in the leaf extract of E. sativa. On the basis of our results, we conclude that biologically synthesized AgNPs showed numerous multifunctional properties and have the potential to be used against human cancer and bacterial biofilm-related infections.

16.
Plants (Basel) ; 11(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807685

ABSTRACT

The use of contaminated water to irrigate crop plants poses a risk to human health from the bioaccumulation potential of microcystins (MCs) in the edible tissues of vegetable plants. The main objective of this study is to determine the concentration of total microcystins (MC-LR and MC-RR) in leafy green plants (Lactuca sativa L. var. longifolia and Eruca sativa) that have previously been irrigated with polluted water. Integrated water samples were collected by cleaned plastic bottles at a depth of about 30 cm from one of the sources of water used to irrigate agricultural lands for crop plants. At the same time, samples from plants were also collected because this water from the lake farm is used for the irrigation of surrounding vegetable plants such as Lactuca sativa L. var. longifolia and Eruca sativa. The dominant species of cyanobacteria in water samples are Microcystis aeruginosa (Kützing) and Oscillatoria limnetica Lemmermann, which were detected with an average cell count 2,300,000 and 450,000 cells/mL, respectively. These two dominant species in water produced two MCs variants (MC-LR, -RR) that were quantified by high-performance liquid chromatography (HPLC). Dissolve and particulate MCs were detected in the irrigation waters by HPLC with concentrations of 45.04-600 µg/L. MCs in the water samples exceeded the WHO safety limit (1 µg/L) of MC in drinking water. In addition, the total concentration of Microcystin in Lactuca sativa L. var. longifolia and Eruca sativa were 1044 and 1089 ng/g tissues, respectively. The estimated daily intake (EDI) of microcystins by a person (60 kg) consuming 300 g of fresh plants exceeded the total daily intake guidelines (0.04 µg kg-1 body weight) for human food consumption. According to the findings of this study, irrigation water and plants used for human consumption should be tested for the presence of MCs regularly through critical and regularly monitored programs to prevent the accumulation and transfer of such toxins through the food web.

17.
Phytother Res ; 36(6): 2616-2627, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35478197

ABSTRACT

Eruca sativa Mill. is an edible plant belonging to the Brassicaceae botanical family with a long story as a medicinal material, mainly linked to the presence of glucoerucin. One of the main products of this glucosinolate is erucin, a biologicallly active isothiocyanate recently recognized as a hydrogen sulfide (H2 S) donor. In this work, an Eruca sativa extract has been obtained from a defatted seed meal (DSM), achieving a powder rich in thiofunctionalized glucosinolates, glucoerucin, and glucoraphanin, accounting for 95% and 5% of the total glucosinolate content (17% on a dry weight basis), associated with 13 identified phenolic acids and flavonoids accounting for 2.5%. In a cell-free model, Eruca sativa DSM extract slowly released H2 S. Moreover, this extract promoted significant hypotensive effects in hypertensive rats, and evoked dose-dependent cardioprotection in in vivo model of acute myocardial infarct, obtained through a reversible coronary occlusion. This latter effect was sensitive to blockers of mitochondrial KATP and Kv7.4 potassium channels, suggesting a potential role of these mitochondrial channels in the protective effects of Eruca sativa DSM extract. Accordingly, Eruca sativa DSM extract reduced calcium uptake and apoptotic cell death in isolated cardiac mitochondria. Taken together, these results demonstrate that Eruca sativa DSM extract is endowed with an interesting nutraceutical profile on the cardiovascular system due to, at least in part, its H2 S releasing properties. These results pave the way for future investigations on active metabolites.


Subject(s)
Brassicaceae , Cardiovascular System , Hydrogen Sulfide , Animals , Glucosinolates , Hydrogen Sulfide/pharmacology , Plant Extracts/pharmacology , Rats , Seeds
18.
Front Plant Sci ; 13: 820925, 2022.
Article in English | MEDLINE | ID: mdl-35371120

ABSTRACT

As a versatile cruciferous species, Eruca sativa is widely cultivated, but in some areas, it has become an invasive weed. There are few studies on its seed dormancy and soil seed bank. This research examined seed dormancy, germination, and dynamics of the soil seed bank of E. sativa, with a view to provide support for its prevention and control. We tested the effects of temperature, light, storage, water, and salinity stress on seed germination and burial depth on seedling emergence of E. sativa. Dynamics of the soil seed bank were determined with a 24 month in situ seed-burial study. Seeds of E. sativa can germinate in a temperature range of 5-35°C; moreover, they exhibited non-deep physiological dormancy (NDPD) at maturity, which can be broken by dry storage or exposure to low temperature in winter. Germination of E. sativa seeds was sensitive to water and salinity stress, and most seeds did not germinate at -0.3 MPa. When buried in soil in the field, seeds exhibited an annual dormancy/non-dormancy cycle and formed at least a short-term persistent soil seed bank. Seeds buried deeper than 5 cm can hardly emerge. Seeds of E. sativa have a wide germination temperature range and exhibited dormancy cycling, which promotes the formation of a persistent soil seed bank and enables it to better adapt to the harsh low-temperature climate of the Qinghai-Tibet Plateau. No-tillage would be a good management strategy for this species.

19.
Plants (Basel) ; 11(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35270080

ABSTRACT

Bacterial cells have the ability to form biofilm onto the surfaces of food matrixes and on food processing equipment, leading to a source of food contamination posing serious health implications. Therefore, our study aimed to determine the effect of Eruca sativa Miller (E. sativa) crude extract against biofilms of food-borne bacteria along with in silico approaches to investigate adhesion proteins responsible for biofilm activity against the identified phytochemicals. The antibacterial potential of crude extract was evaluated using agar well diffusion technique and combinations of light and scanning electron microscopy to assess the efficacy of crude extract against the developed biofilms. Our results showed that crude extract of E. sativa was active against all tested food-borne bacteria, exhibiting a rapid kinetics of killing bacteria in a time-dependent manner. MIC and MBC values of E. sativa crude extract were found to be ranging from 125 to 500 µg/mL and 250 to 1000 µg/mL respectively. Furthermore, inhibition of developed biofilm by E sativa was found to be ranging from 58.68% to 73.45% for all the tested strains. The crude extract also reduced the viability of bacterial cells within biofilms and amount of EPS (ranging 59.73-82.77%) in the biofilm matrix. Additionally, the microscopic images also revealed significant disruption in the structure of biofilms. A molecular docking analysis of E. sativa phytochemicals showed interaction with active site of adhesion proteins Sortase A, EspA, OprD, and type IV b pilin of S. aureus, E. coli, P. aeruginosa, and S. enterica ser. typhi, respectively. Thus, our findings represent the first demonstration of E. sativa crude extract's bioactivity and potency against food-borne bacteria in their planktonic forms, as well as against the developed biofilms. Therefore, a possible mechanistic approach for inhibition of biofilm via targeting adhesion proteins can be explored further to target biofilm producing food-borne bacterial pathogens.

20.
Life (Basel) ; 12(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35330151

ABSTRACT

Germination models are quite helpful in predicting emergence times, dormancy periods, and their applications in crop management. This study investigated the germination behaviors of Eruca sativa Mill. in response to fluctuations in temperatures (Ts) and water potentials (ψs). Germination percentage (GP) increased 95% with rising temperature within the range of 20-30 °C, and decreased 25% at 5 °C. Moreover, each ψ and T resulted in a decrease in GP as ψ decreased. Further, we noted that the θT1 value was substantially high at 30 °C and in (0 MPa), whereas the θT2 value was maximum at 10 °C (-0.02 MPa) and it decreased with decreasing Ψ. The maximum hydrothermal time constant (θHTT) and hydrotime (θH) values were obtained at 10 and 30 °C, respectively. In addition, a linear increase in the GR(g) pattern was observed at Tb and a decrease below the To. The calculated cardinal Ts was 5 °C for the base T, and 30 °C for both the optimum and ceiling T. The germination characteristics were higher at 30 °C having (0 MPa). Therefore, using cardinal temperatures, germination results, and the hydrothermal time model (HTT) could reveal the independent and interactive impacts of both T and the Ψ on the response of seed germination subjected to diverse environmental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...