Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
1.
Front Psychiatry ; 15: 1361997, 2024.
Article in English | MEDLINE | ID: mdl-38716119

ABSTRACT

Introduction: Membrane phospholipid abnormalities are considered a pathophysiological background for schizophrenia. The aim of the study was to explore in detail the fatty acid (FA) composition in patients with antipsychotic-free schizophrenia and its association with clinical symptoms and cognitive function. Materials and methods: Erythrocyte membrane FAs were measured in 29 antipsychotic-free patients with schizophrenia (male/female = 11/18; mean [standard deviation] age=26.7 [7.9] years) and age and sex-matched 32 healthy volunteers. Clinical symptoms and cognitive function were assessed using the Positive and Negative Syndrome Scale (PANSS), Brief Assessment of Cognition in Schizophrenia (BACS), and the Schizophrenia Cognition Rating Scale (SCoRS). Results: Eicosapentaenoic acid levels were lower in the schizophrenia group than in the healthy control group. In contrast, arachidonic acid and nervonic acid levels were higher in the schizophrenia group than in the control group. Nervonic acid levels were significantly associated with depression scores as measured by the PANSS. No FA levels were correlated with BACS score; however, oleic acid levels were significantly related to cognitive dysfunction, as measured by the SCoRS. Conclusion: These findings suggest that depressive symptoms along with cognitive dysfunction in daily living in schizophrenia may be linked to the FA composition abnormalities. Further studies will be needed to examine potential longitudinal FA changes during the course of schizophrenia as well as disease specificity.

2.
Adv Healthc Mater ; : e2400127, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691349

ABSTRACT

Venous/arterial thrombosis poses significant threats to human health. However, drug-enabled thrombolysis treatment often encounters challenges such as short half-life and low bioavailability. To address these issues, the design of erythrocyte-membrane (EM) camouflaged nanocapsules (USIO/UK@EM) incorporating ultra-small iron oxide (USIO) and urokinase (UK) drug, which exhibits remarkable photothermal/magnetothermal effects and drug delivery ability for venous/arterial thrombolysis, is reported. USIO, UK, and EM are coextruded to fabricate USIO/UK@EM with average sizes of 103.7 nm. As USIO/UK@EM possesses wide photoabsorption and good magnetic properties, its solution demonstrates a temperature increase to 41.8-42.9 °C within 5 min when exposed to an 808 nm laser (0.33 mW cm-2) or alternating magnetic field (AMF). Such photothermal/magnetothermal effect along with UK confers impressive thrombolytic rates of 82.4% and 74.2%, higher than that (≈15%) achieved by UK alone. Further, the EM coating extends the circulating half-life (t1/2 = 3.28 h). When USIO/UK@EM is administered to mice and rabbits, tail vein thrombus in mice and femoral artery thrombus in rabbits can be dissolved by the synergetic effect of thermothrombolysis and UK. Therefore, this study not only offers insights into the rational design of multifunctional biomimetic nanocapsules but also showcases a promising thrombolysis strategy utilizing nanomedicine.

3.
Nutrients ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794744

ABSTRACT

Mounting evidence indicates a complex link between circulating saturated fatty acids (SFAs) and cardiovascular disease (CVD) risk factors, but research on erythrocyte membrane SFA associations with metabolic markers remains limited. Our study sought to investigate the correlations between erythrocyte membrane SFAs and key metabolic markers within glycemic and lipid metabolism in a Chinese population of 798 residents aged 41 to 71 from Guangzhou. Using gas chromatography-mass spectrometry, we assessed the erythrocyte membrane saturated fatty acid profile and performed multiple linear regression to evaluate the relationship between different SFA subtypes and metabolic markers. Our findings revealed that the odd-chain SFA group (C15:0 + C17:0) exhibited negative associations with fasting blood glucose (FBG), homeostatic model assessment for insulin resistance (HOMA-IR), and triglycerides (TG). Conversely, the very-long-chain SFA group (C20:0 + C22:0 + C23:0 + C24:0) exhibited positive associations with fasting insulins (FINS), HOMA-IR, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C). Furthermore, there was no evidence supporting an association between the even-chain group (C14:0 + C16:0 + C18:0) and metabolic markers. Our findings suggest that different subtypes of SFAs have diverse effects on glycemic and lipid metabolic markers, with odd-chain SFAs associated with a lower metabolic risk. However, the results concerning the correlations between even-chain SFAs and very-long-chain SFAs with markers of glycemic and lipid metabolism pathways are confusing, highlighting the necessity for further exploration and investigation.


Subject(s)
Biomarkers , Blood Glucose , Erythrocyte Membrane , Fatty Acids , Humans , Middle Aged , Male , Cross-Sectional Studies , Fatty Acids/blood , Female , Aged , Blood Glucose/metabolism , Biomarkers/blood , Erythrocyte Membrane/metabolism , Adult , China , Insulin Resistance , Lipid Metabolism/physiology , Asian People , Triglycerides/blood , Insulin/blood , East Asian People
4.
J Colloid Interface Sci ; 663: 856-868, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447400

ABSTRACT

Mitochondrial dysfunction and metal ion imbalance are recognized as pathological hallmarks of Alzheimer's Disease (AD), leading to deposition of ß-amyloid (Aß) thereby and inducing neurotoxicity, activating apoptosis, eliciting oxidative stress, and ultimately leading to cognitive impairment. In this study, the red blood cell membrane (RBC) was used as a vehicle for encapsulating carbon quantum dots (CQD) and polydopamine (PDA), creating a nanocomposite (PDA-CQD/RBC). This nanocomposite was combined with near-infrared light (NIR) for AD treatment. The RBC offers anti-immunorecognition properties to evade immune clearance, PDA exhibits enzyme-mimicking activity to mitigate oxidative stress damage, and CQD acts as a chelating agent for metal ions (Cu2+), effectively preventing Cu2+-mediated aggregation of Aß. Furthermore, the local heating induced by near-infrared laser irradiation can dismantle the formed Aß fibers and enhance the blood-brain barrier's permeability. Both in vitro and animal experiments have shown that PDA-CQD/RBC, in combination with NIR, mitigates neuroinflammation, and ameliorates behavioral deficits in mice. This approach targets multiple pathological pathways, surpassing the limitations of single-target treatments and enhancing therapeutic efficacy while decelerating disease progression.


Subject(s)
Alzheimer Disease , Indoles , Polymers , Quantum Dots , Mice , Animals , Alzheimer Disease/drug therapy , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Amyloid beta-Peptides , Metals , Infrared Rays , Carbon/pharmacology
5.
Int J Pharm ; 652: 123811, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38237709

ABSTRACT

Nanoformulations for combining chemotherapy, chemodynamic therapy, and photothermal therapy have enormous potential in tumor treatment. Coating nanoformulations with cell membranes endows them with homologous cellular mimicry, enabling nanoformulations to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused multifunctional biomimetic nanoformulations based on Cu-doped zeolitic imidazolate framework-8 (ZIF-8). Hydroxycamptothecin (HCPT), a clinical anti-tumor drug, was encapsulated into ZIF-8, which was subsequently coated with polydopamine (PDA) and red blood cell membrane. The as-fabricated biomimetic nanoformulations showed an enhanced cell uptake in vitro and the potential to prolong blood circulation in vivo, producing effective synergistic chemotherapy, chemodynamic therapy, and photothermal therapy under the 808 nm laser irradiation. Together, the biomimetic nanoformulations showed a prolonged blood circulation and evasion of immune recognition in vivo to provide a bio-inspired strategy which may have the potential for the multi-synergistic therapy of breast cancer.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Neoplasms , Humans , Photothermal Therapy , Doxorubicin , Biomimetics , Phototherapy , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Erythrocytes
6.
Toxics ; 12(1)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276727

ABSTRACT

The toxicological impact of airborne polluting ultrafine particles (UFPs, also classified as nanoparticles with average sizes of less than 100 nm) is an emerging area of research pursuing a better understanding of the health hazards they pose to humans and other organisms. Hemolytic activity is a toxicity parameter that can be assessed quickly and easily to establish part of a nanoparticle's behavior once it reaches our circulatory system. However, it is exceedingly difficult to determine to what extent each of the nanoparticles present in the air is responsible for the detrimental effects exhibited. At the same time, current hemolytic assessment methodologies pose a series of limitations for the interpretation of results. An alternative is to synthesize nanoparticles that model selected typical types of UFPs in air pollution and evaluate their individual contributions to adverse health effects under a clinical assay of osmotic fragility. Here, we discuss evidence pointing out that the absence of hemolysis is not always a synonym for safety; exposure to model nanopollutants, even at low concentrations, is enough to increase erythrocyte susceptibility and dysfunction. A modified osmotic fragility assay in combination with a morphological inspection of the nanopollutant-erythrocyte interaction allows a richer interpretation of the exposure outcomes. Membrane-nanoparticle interplay has a leading role in the vulnerability observed. Therefore, future research in this line of work should pay special attention to the evaluation of the mechanisms that cause membrane damage.

7.
J Dairy Sci ; 107(5): 2586-2605, 2024 May.
Article in English | MEDLINE | ID: mdl-38056566

ABSTRACT

The relationship between saturated fatty acids (SFA) and bladder cancer (BC) risk has been conflicting. Our aim was to investigate the relationship between erythrocyte membrane SFA and BC risk. A total of 404 participants were enrolled in the study (including 112 cases and 292 controls). A validated food frequency questionnaire was used to assess the food intake. The constitutive composition of fatty acids in the erythrocyte membrane was measured by gas chromatography. After adjustment for BC risk factors, SFA had no significant association with BC risk. However, C18:0 was positively linked with BC risk with an odds ratio (OR; 95% CI) of 2.99 (1.37-6.53). In contrast, very-long-chain saturated fatty acids (VLCSFA), especially C24:0, were negatively related to BC risk with an OR (95% CI) of 0.28 (0.12-0.65) for VLCSFA and 0.33 (0.15-0.75) for C24:0. Higher total odd-chain SFA (C15:0 and C17:0) were associated with a lower risk of BC with OR (95% CI) of 0.18 (0.076-0.44), 0.18 (0.068-0.47), 0.34 (0.14-0.81), respectively. After subgroup analysis, the protective effects C15:0 and C17:0 were still remained. Receiver operating characteristic analysis displayed that the combination of C15:0 and C17:0 indexes increased the accurate predictive rate of BC risk. Further mediation effect analysis showed that C15:0 and C17:0 could be used as partial mediation effectors for milk and dairy products and bladder carcinogenesis. Overall, the combination of odd-chain SFA (C15:0 and C17:0) in the erythrocyte membrane could serve as a reliable mediator and predictor, indicating a relationship between a high intake of milk and dairy products and a lower risk of BC.

8.
Bioelectromagnetics ; 45(2): 58-69, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013630

ABSTRACT

Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, ßsp (1.4 MHz) and γ1sp (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the ßsp relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1sp relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the ßsp and γ1sp relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the ßsp relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1sp relaxation.


Subject(s)
Glycophorins , Spectrin , Humans , Spectrin/chemistry , Spectrin/metabolism , Spectrin/pharmacology , Glycophorins/metabolism , Glycophorins/pharmacology , Hydrogen Bonding , Dielectric Spectroscopy , Erythrocyte Membrane/metabolism , Erythrocytes , Skeleton/metabolism , Lipids/pharmacology , Hydrogen-Ion Concentration
9.
Adv Healthc Mater ; 13(7): e2302725, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38030141

ABSTRACT

In the context of bone regeneration, nanoparticles harboring osteogenic factors have emerged as pivotal agents for modulating the differentiation fate of stem cells. However, persistent challenges surrounding biocompatibility, loading efficiency, and precise targeting ability warrant innovative solution. In this study, a novel nanoparticle platform founded upon the zeolitic imidazolate framework-8 (ZIF-8) is introduced. This new design, CDC20@ZIF-8@eM-Apt, involves the envelopment of ZIF-8 within an erythrocyte membrane (eM) cloak, and is coupled with a targeting aptamer. ZIF-8, distinguished by its porosity, biocompatibility, and robust cargo transport capabilities, constitutes the core framework. Cell division cycle protein 20 homolog (CDC20) is illuminated as a new target in bone regeneration. The eM plays a dual role in maintaining nanoparticle stability and facilitating fusion with target cell membranes, while the aptamer orchestrates the specific recruitment of bone marrow mesenchymal stem cells (BMSCs) within bone defect sites. Significantly, CDC20@ZIF-8@eM-Apt amplifies osteogenic differentiation of BMSCs via the inhibition of NF-κB p65, and concurrently catalyzes bone regeneration in two bone defect models. Consequently, CDC20@ZIF-8@eM-Apt introduces a pioneering strategy for tackling bone defects and associated maladies, opening novel avenues in therapeutic intervention.


Subject(s)
Nanoparticles , Zeolites , Osteogenesis , Erythrocyte Membrane , Bone Regeneration/physiology
10.
Toxicol Mech Methods ; 34(4): 350-358, 2024 May.
Article in English | MEDLINE | ID: mdl-38031273

ABSTRACT

PURPOSE: This study aimed to understand the gender-specific alcohol-induced biochemical changes and TBARS association with the endocrine system. METHODS: Human male and female subjects ranging from 35 ± 10 years old with an 8-10-year drinking history were included in the study. RESULTS: The results demonstrated that testosterone levels were lower in male alcoholics and higher in female alcoholics, as well as higher estrogen and cortisol levels in both genders. In addition, we found lower T3, T4, and thyroid-stimulating hormone (TSH) levels in alcoholics of both sexes. Furthermore, plasma TBARS, protein carbonyls, nitrite, and nitrate levels increased significantly with concomitant decrease in reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in both male and female alcoholics. Furthermore, erythrocyte lysate nitrite and nitrate levels membrane total cholesterol, phospholipid and cholesterol/phospholipid (C/P) ratio with lower total membrane proteins in both genders of alcoholics. SDS-PAGE analysis of erythrocyte membrane proteins revealed increased density of band 3, protein 4.1, 4.2, 4.9 and glycophorins, whereas decreases in spectrin (α and ß) were observed in both genders of alcoholics. Besides, alcoholics of both sexes had a lower ability to resist osmotic hemolysis. Plasma TBARS was negatively correlated with testosterone, TSH, T3 and T4 in male alcoholics, moreover, estradiol and cortisol were positively correlated in males and females respectively. CONCLUSION: Female alcoholics may be more susceptible to osmotic hemolysis due to increased erythrocyte membrane lipid peroxidation with decreased antioxidant status, which results in an altered membrane C/P ratio and membrane protein composition.

11.
Adv Healthc Mater ; 13(9): e2303278, 2024 04.
Article in English | MEDLINE | ID: mdl-38112336

ABSTRACT

Aberrant ß-amyloid (Aß) fibrillation is the key event in Alzheimer's disease (AD), the inhibition and degradation of which are recognized as a promising therapeutic strategy to alleviate the nerve damage of AD. Photodynamic therapy (PDT) holds great potential for modulation of Aß self-assembly, which is nevertheless limited by the inefficient utilization of reactive oxygen species (ROS). Herein, an erythrocyte membrane (EM)-modified core-shell upconversion nanoparticle (UCNP/Cur@EM) is designed and fabricated as a biomimetic nanobait to improve the PDT efficiency in AD. The UCNP with the outlayer of mesoporous silica is synthesized to load a high amount of the photosensitizer (curcumin), the unique optical feature of which can trigger curcumin to generate ROS upon near-infrared light (NIR) irradiation. Integration of EM enables the biomimetic nanobait to attract Aß peptides trapped in the phospholipid bilayer, restraining the growth of Aß monomers to form aggregates and improving the utilization rate of ROS to degrade the preformed Aß aggregates. In vivo studies demonstrate that UCNP/Cur@EM irradiated by NIR enables to decrease Aß deposits, ameliorates memory deficits, and rescues cognitive functions in the APP/PS1 transgenic mouse model. A biocompatible and controllable way is provided here to inhibit the amyloid protein-associated pathological process of AD.


Subject(s)
Alzheimer Disease , Curcumin , Photochemotherapy , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Reactive Oxygen Species/metabolism , Curcumin/therapeutic use , Biomimetics , Amyloid beta-Peptides , Mice, Transgenic
12.
Pharmaceutics ; 15(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38140125

ABSTRACT

The nano-delivery system with a dual biomimetic effect can penetrate deeper in tumor microenvironments (TMEs) and release sufficient antitumor drugs, which has attracted much attention. In this study, we synthesized erythrocyte-like mesoporous silica nanoparticles (EMSNs) as the core loaded with doxorubicin (DOX) and coated them with calcium phosphate (CaP) and erythrocyte membrane (EM) to obtain DOX/EsPMs. The transmission electron microscopy (TEM), fluorescent co-localization and protein bands of SDS-PAGE were used to confirm the complete fabrication of EsPMs. The EsPMs with erythrocyte-like shape exhibited superior penetration ability in in vitro diffusion and tumor-sphere penetration experiments. Intracellular Ca2+ and ROS detection experiments showed that the CaP membranes of EsPMs with pH-sensitivity could provide Ca2+ continuously to induce reactive oxide species' (ROS) generation in the TME. The EM as a perfect "camouflaged clothing" which could confuse macrophagocytes into prolonging blood circulation. Hemolysis and non-specific protein adsorption tests proved the desirable biocompatibility of EsPMs. An in vivo pharmacodynamics evaluation showed that the DOX/EsPMs group had a satisfactory tumor-inhibition effect. These advantages of the nano-erythrocytes suggest that by modifying the existing materials to construct a nano-delivery system, nanoparticles will achieve a biomimetic effect from both their structure and function with a facilitated and sufficient drug release profile, which is of great significance for antitumor therapy.

13.
Clin Nutr ; 42(12): 2328-2337, 2023 12.
Article in English | MEDLINE | ID: mdl-37862819

ABSTRACT

BACKGROUND & AIMS: Polyunsaturated fatty acids (PUFAs) may play a vital role in maintaining skeletal muscle mass in the aged population. This study investigated the longitudinal relationship between the concentrations of erythrocyte membrane PUFAs and age-related changes in skeletal muscle mass over an average 6.5 years of follow-up in a Chinese middle-aged and older adult population. METHODS: A total of 1494 participants aged 57.4 ± 4.7 years were included in this study. Skeletal muscle mass was determined using dual-energy X-ray absorptiometry. Per year percent changes in the skeletal muscle index (Δ% SMI), appendicular skeletal muscle index (Δ% ASMI), and total body lean mass index (Δ% TBLMI) from baseline were calculated. Concentrations of total and individual cis-n-3 and cis-n-6 PUFAs of the erythrocyte membrane were determined using gas-liquid chromatography. RESULTS: Fully adjusted linear regression models showed that per unit increases in the concentrations of C18:2 n-6, C20:4 n-6, C22:4 n-6, and total n-6 PUFAs resulted in increases of 0.022%-0.155 % in the Δ% SMI (P for linearity: <0.001-0.006). Restricted cubic spline analysis revealed an inverted U-shaped relationship between the concentrations of C20:2 n-6, C22:5 n-3, C22:6 n-3, and total n-3 PUFAs and the Δ% SMI (P for non-linearity: <0.001-0.036). In addition, an inverted U-shaped curve was also detected for the relationships of the linoleic acid/α-linolenic acid ratio (P for non-linearity = 0.010) and n-6/n-3 PUFA ratio (P for non-linearity = 0.013) with the Δ% SMI, with the Δ% SMI peaking at respective ratios of 124.96 and 3.69. Similar associations were revealed by the Bayesian kernel machine regression model. No interaction effect was detected between the individual PUFAs for the Δ% SMI in the bivariate exposure-response analysis. Overall, similar results were observed for the Δ% ASMI and Δ% TBLMI. CONCLUSIONS: The associations between different individual PUFAs and age-related muscle loss in middle-aged and older adults may be different. Our results suggest that high concentrations of erythrocyte membrane n-6 PUFAs may be correlated with less skeletal muscle mass loss, whereas extremely high concentrations of n-3 PUFAs may be correlated with more muscle loss.


Subject(s)
Erythrocyte Membrane , Fatty Acids, Omega-3 , Middle Aged , Humans , Aged , Erythrocyte Membrane/chemistry , Prospective Studies , Bayes Theorem , Fatty Acids, Unsaturated , Muscle, Skeletal , Fatty Acids/analysis
14.
Membranes (Basel) ; 13(7)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37505024

ABSTRACT

Dielectric relaxations at 1.4 MHz (ßsp) and 9 MHz (γ1sp) on the erythrocyte spectrin network were studied by dielectric spectroscopy using dense suspensions of erythrocytes and erythrocyte ghost membranes, subjected to extraction with up to 0.2% volume Triton-X-100. The step-wise extraction of up to 60% of membrane lipids preserved γ1sp and gradually removed ßsp-relaxation. On increasing the concentration up to 100 mM of NaCl at either side of erythrocyte plasma membranes, the ßsp-relaxation was linearly enhanced, while the strength of γ1sp-relaxation remained unchanged. In media with NaCl between 100 and 150 mM ßsp-relaxation became slightly inhibited, while γ1sp-relaxation almost disappeared, possibly due to the decreased electrostatic repulsion allowing erythrocytes to come into closer contact. When these media contained, at concentrations 10-30 mg/mL dextran (MW 7 kDa), polyethylene glycol or polyvinylpyrrolidone (40 kDa), or albumin or homologous plasma with equivalent concentration of albumin, the γ1sp-relaxation was about tenfold enhanced, while ßsp-relaxation was strengthened or preserved. The results suggest the Maxwell-Vagner accumulation of ions on the lipid bilayer as an energy source for ßsp-relaxation. While ßsp-relaxation appears sensitive to erythrocyte membrane deformability, γ1sp-relaxation could be a sensitive marker for the inter-membrane interactions between erythrocytes.

15.
Zhonghua Xue Ye Xue Za Zhi ; 44(4): 316-320, 2023 Apr 14.
Article in Chinese | MEDLINE | ID: mdl-37357001

ABSTRACT

Objective: To report gene mutations in nine patients with hereditary elliptocytosis (HE) and analyze the characteristics of pathogenic gene mutations in HE. Methods: The clinical and gene mutations of nine patients clinically diagnosed with HE at Institute of Hematology & Blood Diseases Hospital from June 2018 to February 2022 were reported and verified by next-generation sequencing to analyze the relationship between gene mutations and clinical phenotypes. Results: Erythrocyte membrane protein gene mutations were detected among nine patients with HE, including six with SPTA1 mutation, one with SPTB mutation, one with EPB41 mutation, and one with chromosome 20 copy deletion. A total of 11 gene mutation sites were involved, including 6 known mutations and 5 novel mutations. The five novel mutations included SPTA1: c.1247A>C (p. K416T) in exon 9, c.1891delG (p. A631fs*17) in exon 15, E6-E12 Del; SPTB: c.154C>T (p. R52W) ; and EPB41: c.1636A>G (p. I546V) . Three of the six patients with the SPTA1 mutation were SPTA1 exon 9 mutation. Conclusion: SPTA1 is the most common mutant gene in patients with HE.


Subject(s)
Elliptocytosis, Hereditary , Spherocytosis, Hereditary , Humans , Mutation , Elliptocytosis, Hereditary/genetics , Elliptocytosis, Hereditary/diagnosis , Elliptocytosis, Hereditary/metabolism , Erythrocyte Membrane/genetics , Erythrocyte Membrane/metabolism , Exons , High-Throughput Nucleotide Sequencing , Spherocytosis, Hereditary/genetics , Spherocytosis, Hereditary/metabolism
16.
ACS Appl Mater Interfaces ; 15(21): 25285-25299, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37207282

ABSTRACT

Pancreatic cancer (PC) is one of the most malignant cancers that develops rapidly and carries a poor prognosis. Synergistic cancer therapy strategy could enhance the clinical efficacy compared to either treatment alone. In this study, gold nanorods (AuNRs) were used as siRNA delivery vehicles to interfere with the oncogenes of KRAS. In addition, AuNRs were one of anisotropic nanomaterials that can absorb near-infrared (NIR) laser and achieve rapid photothermal therapy for malignant cancer cells. Modification of the erythrocyte membrane and antibody Plectin-1 occurred on the surface of the AuNRs, making them a promising target nanocarrier for enhancing antitumor effects. As a result, biomimetic nanoprobes presented advantages in biocompatibility, targeting capability, and drug-loading efficiency. Moreover, excellent antitumor effects have been achieved by synergistic photothermal/gene treatment. Therefore, our study would provide a general strategy to construct a multifunctional biomimetic theranostic multifunctional nanoplatform for preclinical studies of PC.


Subject(s)
Hyperthermia, Induced , Nanotubes , Neoplasms , Humans , Phototherapy , Photothermal Therapy , Gold , Biomimetics , Erythrocyte Membrane , Neoplasms/pathology , Cell Line, Tumor
17.
Int J Neuropsychopharmacol ; 26(6): 385-395, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37217258

ABSTRACT

BACKGROUND: Major depressive disorders is a chronic and severe psychiatric disorder with poor prognosis and quality of life. Abnormal erythrocyte fatty acid (FA) composition in depressed patients were found in our previous study, but the relationship between erythrocyte membrane FA levels and different severity of depressive and anxiety symptoms remains to be explored. METHODS: This cross-sectional study included 139 patients with first-diagnosed, drug-naïve depression and 55 healthy controls whose erythrocyte FA composition was analyzed. Patients with depression were divided into severe depression and mild to moderate depression or depression with severe anxiety and mild to moderate anxiety. Then the differences of FA levels among different groups were analyzed. Finally, the receiver operating characteristic curve analysis was applied to identify potential biomarkers in distinguishing the severity of depressive symptoms. RESULTS: Levels of erythrocyte membrane FAs were elevated among patients with severe depression compared with healthy controls or patients with mild to moderate depression of almost all kinds. While C18:1n9t (elaidic acid), C20:3n6 (eicosatrienoic acid), C20:4n6 (arachidonic acid), C22:5n3 (docosapentaenoic acid), total fatty acids (FAs), and total monounsaturated FAs were elevated in patients with severe anxiety compared with patients with mild to moderate anxiety. Furthermore, the level of arachidonic acid, C22:4n6 (docosatetraenoic acid), elaidic acid, and the combination of all 3 were associated with the severity of depressive symptoms. CONCLUSIONS: The results suggested that erythrocyte membrane FA levels have the potential to be the biological indicator of clinical characteristics for depression, such as depressive symptoms and anxiety. In the future, more research is needed to explore the causal association between FA metabolism and depression.


Subject(s)
Depressive Disorder, Major , Fatty Acids , Humans , Fatty Acids/metabolism , Erythrocyte Membrane/metabolism , Cross-Sectional Studies , Quality of Life , Biomarkers , Arachidonic Acids/metabolism
18.
Parasites Hosts Dis ; 61(1): 24-32, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37170461

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var multigene family, is a highly polymorphic antigen that plays a crucial role in the pathology of malaria. The contribution of the genetic diversity of var toward the immune escape of P. falciparum has not yet been fully elucidated. This study aimed to characterize the diversity of var repertoires by screening P. falciparum Duffy-binding-like α domain (PfDBLα) among field isolates from central Myanmar. Genetic analysis revealed that the D-H segments of var in Myanmar populations have an extensive polymorphic repertoire, with high numbers of unique sequence types in each individual. However, var genes from the global population, including Myanmar, shared close genetic lineages regardless of their geographic origins, indicating that they have not undergone rapid evolutionary changes.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Genetic Variation/genetics , Myanmar , Malaria, Falciparum/epidemiology , Membrane Proteins/genetics , Erythrocytes
19.
Biomolecules ; 13(5)2023 04 24.
Article in English | MEDLINE | ID: mdl-37238600

ABSTRACT

Plasmalogens are membrane phospholipids with two fatty acid hydrocarbon chains linked to L-glycerol, one containing a characteristic cis-vinyl ether function and the other one being a polyunsaturated fatty acid (PUFA) residue linked through an acyl function. All double bonds in these structures display the cis geometrical configuration due to desaturase enzymatic activity and they are known to be involved in the peroxidation process, whereas the reactivity through cis-trans double bond isomerization has not yet been identified. Using 1-(1Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphocholine (C18 plasm-20:4 PC) as a representative molecule, we showed that the cis-trans isomerization can occur at both plasmalogen unsaturated moieties, and the product has characteristic analytical signatures useful for omics applications. Using plasmalogen-containing liposomes and red blood cell (RBC) ghosts under biomimetic Fenton-like conditions, in the presence or absence of thiols, peroxidation, and isomerization processes were found to occur with different reaction outcomes due to the particular liposome compositions. These results allow gaining a full scenario of plasmalogen reactivity under free radical conditions. Moreover, clarification of the plasmalogen reactivity under acidic and alkaline conditions was carried out, identifying the best protocol for RBC membrane fatty acid analysis due to their plasmalogen content of 15-20%. These results are important for lipidomic applications and for achieving a full scenario of radical stress in living organisms.


Subject(s)
Fatty Acids , Plasmalogens , Plasmalogens/chemistry , Plasmalogens/metabolism , Isomerism , Fatty Acids/metabolism , Liposomes/chemistry , Free Radicals/chemistry , Erythrocyte Membrane/metabolism
20.
Adv Sci (Weinh) ; 10(18): e2301361, 2023 06.
Article in English | MEDLINE | ID: mdl-37075744

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the elderly population. Despite significant advances in studies of the pathobiology on AD, there is still no effective treatment. Here, an erythrocyte membrane-camouflaged nanodrug delivery system (TR-ZRA) modified with transferrin receptor aptamers that can be targeted across the blood-brain barrier to ameliorate AD immune environment is established. Based on metal-organic framework (Zn-CA), TR-ZRA is loaded with CD22shRNA plasmid to silence the abnormally high expression molecule CD22 in aging microglia. Most importantly, TR-ZRA can enhance the ability of microglia to phagocytose Aß and alleviate complement activation, which can promote neuronal activity and decrease inflammation level in the AD brain. Moreover, TR-ZRA is also loaded with Aß aptamers, which allow rapid and low-cost monitoring of Aß plaques in vitro. After treatment with TR-ZRA, learning, and memory abilities are enhanced in AD mice. In conclusion, the biomimetic delivery nanosystem TR-ZRA in this study provides a promising strategy and novel immune targets for AD therapy.


Subject(s)
Alzheimer Disease , Aged , Mice , Humans , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacology , Amyloid beta-Peptides/therapeutic use , Erythrocyte Membrane/metabolism , Theranostic Nanomedicine , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...