Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.880
Filter
1.
Front Aging Neurosci ; 16: 1426070, 2024.
Article in English | MEDLINE | ID: mdl-39044806

ABSTRACT

Background: Women carrying the APOE4 allele are at greater risk of developing Alzheimer's disease (AD) from ages 65-75 years compared to men. To better understand the elevated risk conferred by APOE4 carrier status among midlife women, we investigated the separate and interactive associations of endogenous estrogens, plasma AD biomarkers, and APOE4 carrier status on regional brain volumes in a sample of late midlife postmenopausal women. Methods: Participants were enrolled in MsBrain, a cohort study of postmenopausal women (n = 171, mean age = 59.4 years, mean MoCA score = 26.9; race = 83.2% white, APOE4 carriers = 40). Serum estrone (E1) and estradiol (E2) levels were assessed using liquid chromatography-tandem mass spectrometry. APOE genotype was determined using TaqMan SNP genotyping assays. Plasma AD biomarkers were measured using single molecule array technology. Cortical volume was measured and segmented by FreeSurfer software using individual T1w MPRAGE images. Multiple linear regression models were conducted to determine whether separate and interactive associations between endogenous estrogen levels, plasma AD biomarkers (Aß42/Aß40, Aß42/p-tau181), and APOE4 carrier status predict regional brain volume (21 regions per hemisphere, selected a priori); and, whether significant interactive associations between estrogens and AD biomarkers on brain volume differed by APOE4 carrier status. Results: There was no main effect of APOE4 carrier status on regional brain volumes, endogenous estrogen levels, or plasma AD biomarkers. Estrogens did not associate with regional brain volumes, except for positive associations with left caudal middle frontal gyrus and fusiform volumes. The interactive association of estrogens and APOE4 carrier status on brain volume was not significant for any region. The interactive association of estrogens and plasma AD biomarkers predicted brain volume of several regions. Higher E1 and E2 were more strongly associated with greater regional brain volumes among women with a poorer AD biomarker profile (lower Aß42/40, lower Aß42/p-tau181 ratios). In APOE4-stratified analyses, these interactions were driven by non-APOE4 carriers. Conclusion: We demonstrate that the brain volumes of postmenopausal women with poorer AD biomarker profiles benefit most from higher endogenous estrogen levels. These findings are driven by non-APOE4 carriers, suggesting that APOE4 carriers may be insensitive to the favorable effects of estrogens on brain volume in the postmenopause.

2.
Metabolism ; 158: 155976, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019342

ABSTRACT

BACKGROUND: Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS: Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with viral-mediated, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS: In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS: Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT: Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.

3.
JMIR Res Protoc ; 13: e50542, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990638

ABSTRACT

BACKGROUND: Women of reproductive age experience cyclical variation in the female sex steroid hormones 17ß-estradiol and progesterone during the menstrual cycle that is attenuated by some hormonal contraceptives. Estrogens perform a primary function in sexual development and reproduction but have nonreproductive effects on bone, muscle, and sinew tissues (ie, ligaments and tendons), which may influence injury risk and physical performance. OBJECTIVE: The purpose of the study is to understand the effect of the menstrual cycle and hormonal contraceptive use on bone and calcium metabolism, and musculoskeletal health and performance. METHODS: A total of 5 cohorts of physically active women (aged 18-40 years) will be recruited to participate: eumenorrheic, nonhormonal contraceptive users (n=20); combined oral contraceptive pill (COCP) users (n=20); hormonal implant users (n=20); hormonal intrauterine system users (n=20); and hormonal injection users (n=20). Participants must have been using the COCP and implant for at least 1 year and the intrauterine system and injection for at least 2 years. First-void urine samples and fasted blood samples will be collected for biochemical analysis of calcium and bone metabolism, hormones, and metabolic markers. Knee extensor and flexor strength will be measured using an isometric dynamometer, and lower limb tendon and stiffness, tone, and elasticity will be measured using a Myoton device. Functional movement will be assessed using a single-leg drop to assess the frontal plane projection angle and the qualitative assessment of single leg loading. Bone density and macro- and microstructure will be measured using ultrasound, dual-energy x-ray absorptiometry, and high-resolution peripheral quantitative computed tomography. Skeletal material properties will be estimated from reference point indentation, performed on the flat surface of the medial tibia diaphysis. Body composition will be assessed by dual-energy x-ray absorptiometry. The differences in outcome measures between the hormonal contraceptive groups will be analyzed in a one-way between-group analysis of covariance. Within the eumenorrheic group, the influence of the menstrual cycle on outcome measures will be assessed using a linear mixed effects model. Within the COCP group, differences across 2 time points will be analyzed using the paired-samples 2-tailed t test. RESULTS: The research was funded in January 2020, and data collection started in January 2022, with a projected data collection completion date of August 2024. The number of participants who have consented at the point of manuscript submission is 66. It is expected that all data analysis will be completed and results published by the end of 2024. CONCLUSIONS: Understanding the effects of the menstrual cycle and hormonal contraception on musculoskeletal health and performance will inform contraceptive choices for physically active women to manage injury risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT05587920; https://classic.clinicaltrials.gov/ct2/show/NCT05587920. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50542.


Subject(s)
Menstrual Cycle , Humans , Female , Adult , Young Adult , Cross-Sectional Studies , Prospective Studies , Menstrual Cycle/drug effects , Adolescent , Hormonal Contraception/adverse effects , Cohort Studies , Bone Density/drug effects
4.
Steroids ; 210: 109483, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053631

ABSTRACT

Steroid hormones often circulate in the plasma as inactive sulfated forms, such as estrone sulfate and dehydroepiandrosterone sulfate. The enzyme steroid sulfatase (STS) converts these steroids into active forms, mainly estrogens, in peripheral tissues. STS is present in most tissues, but it occurs at higher levels in certain organs, notably liver and placenta. In this study, we examined the tissue distribution of STS in a prominent laboratory model, the house mouse (Mus musculus). Tissues included were heart, liver, small intestine, skeletal muscle, and gonads of both sexes. An 3H-estrone-sulfate conversion assay was used to measure STS activity in tissue homogenates and extracts. STS activities were high for hepatic tissue homogenates of both genders. Testicular STS levels were similar to those of liver, while STS activities of ovary, small intestine, heart, and muscle were considerably lower. The specific STS inhibitors, EMATE and STX-64 virtually eliminated STS activity in hepatic microsomes and cytosols, verifying that the observed enzyme activity was due to STS. Enzyme kinetic assays showed Km values of 8.6 µM for liver and 9.1 µM for testis, using E1S as substrate. Hepatic and testicular STS activities, measured in CHAPS-extracted microsome, were low up to 5 weeks of age and were higher through 56 weeks. Western blotting, with a specific STS antibody, confirmed the presence of STS protein (65 Da) in both liver and testis. Immunofluorescence of tissue sections detected the presence of STS protein in hepatocytes, in testicular Leydig cells and in seminiferous tubules (Leydig cells and developing germ cells). These results suggest that STS may have a significant role in testicular function.

5.
Horm Behav ; 164: 105606, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059233

ABSTRACT

Several polygynous mammals exhibit reproductive skew in which only a few males reproduce. Successful males need strength, stamina and fighting ability to exclude competitors. Consequently, during the mating season their androgens and glucocorticoids are expected to increase to support spermatogenesis and aggressive behavior. But, during the nonmating season these hormones should decline to minimize deleterious effects, such as reduced immune function. Bats that exhibit harem polygyny in which males aggressively defend large groups of females year-round are ideal for assessing hormonal and other consequences of extreme polygyny. Here we use DNA methylation to estimate age and gas chromatography, tandem mass spectrometry to profile steroid metabolites in urine of wild greater spear-nosed bats, Phyllostomus hastatus, across seasons. We find that condition, measured by relative weight, is lower during the mating season for both sexes, although it remains high in harem males during the mating season. Average age of females is greater than males, and females exhibit substantial seasonal differences in androgens, estrogens and glucocorticoids with higher levels of all hormones during the mating season. Males, however, show little seasonal differences but substantial age-associated increases in most steroid metabolites. Harem males have larger, persistently scrotal testes and are older than bachelor males. While cortisone generally declines with age, harem males maintain higher amounts of biologically active cortisol than bachelor males all year and cortisol levels increase more quickly in response to restraint in males than in females. Taken together, these results suggest that attaining reproductive dominance requires hormone levels that reduce lifespan.

6.
Article in English | MEDLINE | ID: mdl-39037689

ABSTRACT

PURPOSE OF REVIEW: Many synthetic endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment and highly detected among pregnant people. These chemicals may disrupt maternal and/or fetal sex steroid hormones, which are critical to pregnancy maintenance and fetal development. Here, we review the epidemiological literature examining prenatal exposure to common synthetic EDCs in relation to maternal and fetal sex steroid hormones. RECENT FINDINGS: We performed a literature search using PubMed, SCOPUS, and Embase, ultimately identifying 29 articles for full review. Phenols, parabens, and persistent organic pollutants generally showed inverse associations with androgens, estrogens, and progesterone. Phthalates and per-and polyfluoroalkyl substances tended to be inversely associated with progesterone, while evidence regarding androgens and estrogens was mixed. Inconsistent, but noteworthy, differences by fetal sex and timing of exposure/outcome were observed. Overall, the literature suggests EDCs may disrupt maternal and fetal sex steroid activity, though findings are mixed. Given the pervasive, high-volume production of these synthetic chemicals and the critical functions sex steroid hormones play during gestation, additional research is warranted.

7.
Article in English | MEDLINE | ID: mdl-39026459

ABSTRACT

OBJECTIVE: Determine associations of endogenous estrogens with memory systems in the postmenopausal brain and evaluate clinical significance. STUDY DESIGN: In the MsBrain cohort (n=199, mean age 59.3+3.9 years, 83.9% white), we examined the cross-sectional association of serum estradiol and estrone, measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS), during a functional magnetic resonance imaging (fMRI) task of word encoding and recognition. To characterize the clinical significance of those associations, we examined the magnitude of activation in relation to a neuropsychological measures of memory and affect. RESULTS: Endogenous estradiol was positively associated with activation in temporal and frontal cortices during encoding and negatively associated with one prefrontal region during recognition (p<.05). Activation in the left inferior frontal gyrus was associated with memory performance (ß(SE)= 0.004(0.002), p<.05), and anxiety (ß(SE)= -0.100(0.050), p<.05). The left middle frontal gyrus was associated with memory performance (ß(SE)= 0.006(0.002), p<.01), depression, and anxiety. The left superior temporal gyrus (STG) was associated with depression (ß(SE)= -0.083(0.036), p<.05) and anxiety (ß(SE)= -0.134(0.058), p<.05). Estrone was positively associated with activation in a range of brain areas including bilateral STG and right superior frontal gyrus during encoding (p<.05). Activation of the left insula an precental gyrus were associated with symptoms of depression and anxiety. None related to memory. CONCLUSION: The function of brain areas critical to memory performance varies with estrogen levels in the postmenopause, even though those levels are low. Higher levels of estradiol may facilitate memory performance through enhanced function of temporal and frontal cortices during encoding of verbal material.

9.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000501

ABSTRACT

A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.


Subject(s)
Cardiovascular Diseases , Hypothalamo-Hypophyseal System , Metabolic Diseases , Pituitary-Adrenal System , Vasopressins , Humans , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Vasopressins/metabolism , Cardiovascular Diseases/metabolism , Animals , Metabolic Diseases/metabolism , Corticotropin-Releasing Hormone/metabolism , Adrenocorticotropic Hormone/metabolism
10.
Food Chem ; 459: 140312, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39003855

ABSTRACT

Estrogens and their analogues can cause harm to human health through the food chain. Ten estrogens in different milk samples were directly extracted by amphiphilic divinylbenzene/N-vinyl-2-pyrrolidone (DVB/NVP)-Fe3O4@SiO2-based magnetic solid-phase extraction (MSPE) followed by pre-column derivatization and ultra-high performance liquid chromatography tandem mass-spectrometry (UHPLC-MS/MS) detection. Under the optimal conditions, the limits of detection for ten analytes were in the range of 0.05-0.38 ng mL-1 in whole liquid milk matrix and 0.04-3.00 ng g-1 in milk powder matrix. The intra-/inter-day accuracy ranged in 83.4-113.8%, with RSDs in 2.5-15.0%. A total of 15 brands of liquid milk and milk powder samples were analyzed, and only estradiol was detected in three brands of boxed liquid milk within safe range. The proposed sample pretreatment eliminated the common protein precipitation process, improved the sample throughput, and has the potential for routine testing of estrogens and their analogues in market-sale milk samples.

11.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999978

ABSTRACT

The emotion of disgust protects individuals against pathogens, and it has been found to be elevated during pregnancy. Physiological mechanisms discussed in relation to these changes include immune markers and progesterone levels. This study aimed to assess the association between steroids and disgust sensitivity in pregnancy. Using a prospective longitudinal design, we analyzed blood serum steroid concentrations and measured disgust sensitivity via text-based questionnaires in a sample of 179 pregnant women during their first and third trimesters. We found positive correlations between disgust sensitivity and the levels of C19 steroids (including testosterone) and its precursors in the Δ5 pathway (androstenediol, DHEA, and their sulfates) and the Δ4 pathway (androstenedione). Additionally, positive correlations were observed with 5α/ß-reduced C19 steroid metabolites in both trimesters. In the first trimester, disgust sensitivity was positively associated with 17-hydroxypregnanolone and with some estrogens. In the third trimester, positive associations were observed with cortisol and immunoprotective Δ5 C19 7α/ß-hydroxy-steroids. Our findings show that disgust sensitivity is positively correlated with immunomodulatory steroids, and in the third trimester, with steroids which may be related to potential maternal-anxiety-related symptoms. This study highlights the complex relationship between hormonal changes and disgust sensitivity during pregnancy.


Subject(s)
Disgust , Humans , Female , Pregnancy , Adult , Longitudinal Studies , Pregnancy Trimester, Third/blood , Steroids/blood , Prospective Studies , Pregnancy Trimester, First , Young Adult
12.
Horm Behav ; 164: 105598, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968677

ABSTRACT

Estrogens have inconsistent effects on learning and memory in both the clinical and preclinical literature. Preclinical literature has the advantage of investigating an array of potentially important factors contributing to the varied effects of estrogens on learning and memory, with stringently controlled studies. This study set out to identify specific factors in the animal literature that influence the effects of estrogens on cognition, for possible translation back to clinical practice. The literature was screened and studies meeting strict inclusion criteria were included in the analysis. Eligible studies included female ovariectomized rodents with an adequate vehicle for the estrogen treatment, with an outcome of spatial learning and memory in the Morris water maze. Training days of the Morris water maze were used to assess acquisition of spatial learning, and the probe trial was used to evaluate spatial memory recall. Continuous outcomes were pooled using a random effects inverse variance method and reported as standardized mean differences with 95 % confidence intervals. Subgroup analyses were developed a priori to assess important factors. The overall analysis favoured treatment for the later stages of training and for the probe trial. Factors including the type of estrogen, route, schedule of administration, age of animals, timing relative to ovariectomy, and duration of treatment were all found to be important. The subgroup analyses showed that chronic treatment with 17ß-estradiol, either cyclically or continuously, to young animals improved spatial recall. These results, observed in animals, can inform and guide further clinical research on hormone replacement therapy for cognitive benefits.

13.
Int J Womens Dermatol ; 10(3): e169, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39015748

ABSTRACT

Background: Pigmented lesions such as melanosis have rarely been reported in patients with vulvar lichen sclerosus (VLS) that is typically characterized by hypopigmented lesions. Objective: We aimed to analyze systematically anogenital melanosis in a large cohort of VLS patients. Methods: We analyzed the clinical data of 198 female patients with VLS. The anogenital lesions of all patients were professionally photographed in a standardized position and illumination. Severity classification of architectural findings followed an easy-to-use clinical score. A modified Melasma Area and Severity Index and an image analysis software were used to evaluate the area and intensity of pigmentation. Results: According to the clinical score, 79 (198/39.9%) patients showed grade 1 disease, 78 (198/39.4%) grade 2, 37 (198/18.7%) grade 3, and 4 (198/2%) grade 4 disease. About 111 (56.1%) of the 198 patients had anogenital melanosis with a median modified Melasma Area and Severity Index of 3.6 (0.4-14). Univariate analysis revealed that anogenital melanosis was positively correlated with the use of topical estrogens (P = .0018) and negatively correlated with the use of pulsed high-dose corticosteroids plus low-dose methotrexate (PHDC-LDM, P = .021). On multivariable analysis, the use of topical hormone therapy turned out to be a strong independent predictor for the presence of anogenital melanosis (odds ratio: 4.57, 95% confidence interval: 1.66-12.57, P = .0033), whereas PHDC-LDM use was an independent predictor for the absence of anogenital melanosis (odds ratio: 0.35, 95% confidence interval: 0.15-0.84, P = .018). Limitations: The study includes the retrospective monocentric design. Conclusion: Anogenital melanosis is a very frequent and so far, under-reported clinical finding in VLS patients. It is likely caused by the use of topical estrogens employed for VLS treatment. In contrast, patients with more severe disease and PHDC-LDM treatment appear to develop less likely anogenital melanosis.

14.
Mikrochim Acta ; 191(8): 474, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39037586

ABSTRACT

A novel magnetic dispersive solid phase extraction (MDSPE) procedure based on the deep eutectic solvent (DES) modified magnetic graphene oxide/metal organic frameworks nanocomposites (MGO@ZIF-8@DES) was established and used for the efficient enrichment of estradiol, estrone, and diethylstilbestrol in cosmetics (toner, lotion, and cream) for the first time. Then, the three estrogens were separated and determined by UHPLC-UV analysis method. In order to study the features and morphology of the synthesized adsorbents, various techniques such as FT-IR, SEM, and VSM measurements were executed. The MGO@ZIF-8@DES nanocomposites combine the advantages of high adsorption capacity, adequate stability in aqueous solution, and convenient separation from the sample solution. To achieve high extraction recoveries, the Box-Behnken design and single factor experiment were applied in the experimental design. Under the optimum conditions, the method detection limits for three estrogens were 20-30 ng g-1. This approach showed a good correlation coefficient (r more than 0.9998) and reasonable linearity in the range 70-10000 ng g-1. The relative standard deviations for intra-day and inter-day were beneath 7.5% and 8.9%, respectively. The developed MDSPE-UHPLC-UV method was successfully used to determine  three estrogens in cosmetics, and acceptable recoveries in the intervals of 83.5-95.9% were obtained. Finally, three estrogens were not detected in some cosmetic samples. In addition, the Complex GAPI tool was used to evaluate the greenness of the developed pretreatment method. The developed MDSPE-UHPLC-UV method is sensitive, accurate, rapid, and eco-friendly, which provides a promising strategy for determining hormones in different complex samples.


Subject(s)
Cosmetics , Deep Eutectic Solvents , Estrogens , Graphite , Metal-Organic Frameworks , Nanocomposites , Solid Phase Extraction , Graphite/chemistry , Cosmetics/chemistry , Cosmetics/analysis , Nanocomposites/chemistry , Metal-Organic Frameworks/chemistry , Solid Phase Extraction/methods , Estrogens/analysis , Estrogens/isolation & purification , Estrogens/chemistry , Deep Eutectic Solvents/chemistry , Limit of Detection , Estradiol/chemistry , Estradiol/analysis , Estradiol/isolation & purification , Estrone/analysis , Estrone/chemistry , Estrone/isolation & purification , Adsorption , Diethylstilbestrol/analysis , Diethylstilbestrol/chemistry , Diethylstilbestrol/isolation & purification , Chromatography, High Pressure Liquid/methods
15.
Essays Biochem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994718

ABSTRACT

Sulfatase (STS) and sulfotransferases (SULT) have important role in the biosynthesis and action of steroid hormones. STS catalyzes the hydrolysis of estrone-sulfate (E1-S) and dehydroepiandrosterone-sulfate (DHEA-S), while sulfotransferases catalyze the reverse reaction and require 3-phosphoadenosine-5-phosphosulfate as a sulfate donor. These enzymes control the concentration of active estrogens and androgens in peripheral tissues. Aberant expression of STS and SULT genes has been found in both, benign hormone-dependent diseases and hormone-dependent cancers. The aim of this review is to present the current knowledge on the role of STS and SULT in gynecological cancers, endometrial (EC) and ovarian cancer (OC). EC is the most common and OC the most lethal gynecological cancer. These cancers primarily affect postmenopausal women and therefore rely on the local production of steroid hormones from inactive precursors, either DHEA-S or E1-S. Following cellular uptake by organic anion transporting polypeptides (OATP) or organic anion transporters (OAT), STS and SULT regulate the formation of active estrogens and androgens, thus disturbed balance between STS and SULT can contribute to the onset and progression of cancer. The importance of these enzymes in peripheral estrogen biosynthesis has long been recognized, and this review provides new data on the important role of STS and SULT in the formation and action of androgens, their regulation and inhibition, and their potential as prognostic biomarkers.

16.
Essays Biochem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994724

ABSTRACT

The ovaries are key steroid hormone production sites in post-pubertal females. However, current research on steroidogenic enzymes, endogenous hormone concentrations and their effects on healthy ovarian function and malignant development is limited. Here, we discuss the importance of steroid enzymes in normal and malignant ovaries, alongside hormone concentrations, receptor expression and action. Key enzymes include STS, 3ß-HSD2, HSD17B1, ARK1C3, and aromatase, which influence ovarian steroidal action. Both androgen and oestrogen action, via their facilitating enzyme, drives ovarian follicle activation, development and maturation in healthy ovarian tissue. In ovarian cancer, some data suggest STS and oestrogen receptor α may be linked to aggressive forms, while various oestrogen-responsive factors may be involved in ovarian cancer metastasis. In contrast, androgen receptor expression and action vary across ovarian cancer subtypes. For future studies investigating steroidogenesis and steroidal activity in ovarian cancer, it is necessary to differentiate between disease subtypes for a comprehensive understanding.

18.
Arch Gynecol Obstet ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963584

ABSTRACT

PURPOSE: Functional hypothalamic amenorrhea (FHA) is characterized by an estrogen deficiency which in turn can cause vascular dysfunction. The aim of this study is to evaluate any changes in the chorio-retinal circulation in patients affected by FHA. 24 patients with FHA and 24 age-matched controls underwent a gynecological evaluation and an OCT angiography (OCTA) to study chorio-retinal vascularization. RESULTS: OCTA in FHA patients showed an increase in vessel density in the choriocapillaris (CC) layer (both in the fovea area, at 5% p value = 0.037 and in the whole area, at 5% p value = 0.028) and an increase in vascular density in the deep fovea (DVP) (at 10% p value = 0.096) in the whole district compared to controls. Simple linear regressions show a significant negative association between CC vessel density and insulin (p = 0.0002) and glucose values (p = 0.0335) for the fovea district and a negative association between DVP vessel density and endometrial thickness (at 10%, p value: 0.095) in the whole district. CONCLUSION: Our study shows that CC vessel density is increased in women affected by FHA. This could represent a compensation effort to supply the vascular dysfunction caused by estrogen deficiency. We also found an increasing trend in vascular density in DVP associated with the decrease of endometrial thickness, an indirect sign of estrogenization. Considering that these changes occur in absence of visual defects, they could be used as a biomarker to estimate hypoestrogenism-induced microcirculation changes before clinical appearance.

19.
Behav Brain Res ; 470: 115094, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38844057

ABSTRACT

Estrogen receptor (ER) activation by 17-ß estradiol (E2) can attenuate neuronal injury and behavioral impairments following global cerebral ischemia (GCI) in rodents. This study sought to further examine the discrete roles of ERs through characterization of the effects of selective ER activation on post-ischemic pro-inflammatory microglial activation, hippocampal neuronal injury, and anxiety-like behaviors. Forty-six ovariectomized (OVX) adult female Wistar rats received daily s.c injections (100 µg/kg/day) of propylpyrazole triol (PPT; ERα agonist), diarylpropionitrile (DPN; ERß agonist), G-1 (G-protein coupled ER agonist; GPER), E2 (activating all receptors), or vehicle solution (VEH) for 21 days. After final injection, rats underwent GCI via 4-vessel occlusion (n=8 per group) or sham surgery (n=6, vehicle injections). The Open Field Test (OFT), Elevated Plus Maze (EPM), and Hole Board Test (HBT) assessed anxiety-like behaviors. Microglial activation (Iba1, CD68, CD86) in the basolateral amygdala (BLA), CA1 of the hippocampus, and paraventricular nucleus of the hypothalamus (PVN) was determined 8 days post-ischemia. Compared to sham rats, Iba1 activation and CA1 neuronal injury were increased in all ischemic groups except DPN-treated rats, with PPT-treated ischemic rats also showing increased PVN Iba1-ir expression. Behaviorally, VEH ischemic rats showed slightly elevated anxiety in the EPM compared to sham counterparts, with no significant effects of agonists. While no changes were observed in the OFT, emotion regulation via grooming in the HBT was increased in G-1 rats compared to E2 rats. Our findings support selective ER activation to regulate post-ischemic microglial activation and coping strategies in the HBT, despite minimal impact on hippocampal injury.


Subject(s)
Anxiety , Brain Ischemia , CA1 Region, Hippocampal , Microglia , Phenols , Pyrazoles , Rats, Wistar , Animals , Female , Microglia/metabolism , Microglia/drug effects , Rats , Anxiety/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Brain Ischemia/metabolism , Pyrazoles/pharmacology , Phenols/pharmacology , Ovariectomy , Neurons/metabolism , Neurons/drug effects , Propionates/pharmacology , Propionates/administration & dosage , Behavior, Animal/drug effects , Behavior, Animal/physiology , Estradiol/pharmacology , Disease Models, Animal , Receptors, Estrogen/metabolism , Nitriles/pharmacology
20.
J Nutr ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825042

ABSTRACT

Osteoporosis is a significant concern in bone health, and understanding its pathomechanism is crucial for developing effective prevention and treatment strategies. This article delves into the relationship between estrogen metabolism and bone mineralization, shedding light on how phytoestrogens can influence this intricate process. Estrogen, a hormone primarily associated with reproductive health, plays a pivotal role in maintaining bone density and structure. The article explores the positive effects of estrogen on bone mineralization, highlighting its importance in preventing conditions like osteoporosis. Phytoestrogens, naturally occurring compounds found in certain plant-based foods, are the focal point of the discussion. These compounds have the remarkable ability to mimic estrogen's actions in the body. The article investigates how phytoestrogens can modulate the activity of estrogen, thereby impacting bone health. Furthermore, the article explores the direct effects of phytoestrogens on bone mineralization and structure. By regulating estrogen metabolism, phytoestrogens can contribute to enhanced bone density and reduced risk of osteoporosis. Finally, the article emphasizes the role of plant-based diets as a source of phytoestrogens. By incorporating foods rich in phytoestrogens into one's diet, individuals may potentially bolster their bone health, adding a valuable dimension to the ongoing discourse on osteoporosis prevention. In conclusion, this article offers a comprehensive overview of 137 positions of literature on the intricate interplay between phytoestrogens, estrogen metabolism, and bone health, shedding light on their potential significance in preventing osteoporosis and promoting overall well-being.

SELECTION OF CITATIONS
SEARCH DETAIL
...