Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
Environ Res ; 258: 119454, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906450

ABSTRACT

Urbanization of estuaries drastically changed existing shorelines and bathymetric contours, in turn modifying habitat for marine foundational species that host critical biodiversity. And yet we lack approaches to characterize a significant fraction of the biota that inhabit these ecosystems on time scales that align with rates of urbanization. Environmental DNA (or eDNA) metabarcoding that combines multiple assays targeting a broad range of taxonomic groups can provide a solution, but we need to determine whether the biological communities it detects ally with different habitats in these changing aquatic environments. In this study, we tested whether tree of life metabarcoding (ToL-metabarcoding) data extracted from filtered seawater samples correlated with four known geomorphic habitat zones across a heavily urbanized estuary (Sydney Harbour, Australia). Using this method, we substantially expanded our knowledge on the composition and spatial distribution of marine biodiversity across the tree of life in Sydney Harbour, particularly for organisms where existing records are sparse. Excluding terrestrial DNA inputs, we identified significant effects of both distance from the mouth of Sydney Harbour and geomorphic zone on biological community structure in the ToL-metabarcoding dataset (entire community), as well as in each of the taxonomic subgroups that we considered (fish, macroinvertebrates, algae and aquatic plants, bacteria). This effect appeared to be driven by taxa as a collective versus a few individual taxa, with each taxon explaining no more than 0.62% of the variation between geomorphic zones. Similarly, taxonomic richness was significantly higher within geomorphic zones with large sample sizes, but also decreased by 1% with each additional kilometer from the estuary mouth, a result consistent with a reduction in tidal inputs and available habitat in upper catchments. Based on these results, we suggest that ToL-metabarcoding can be used to benchmark biological monitoring in other urbanized estuaries globally, and in Sydney Harbour at future time points based on detection of bioindicators across the tree of life. We also suggest that robust biotic snapshots can be archived following extensive curation of taxonomic assignments that incorporates ecological affinities, supported by records from relevant and regional biodiversity repositories.

2.
Ecol Modell ; 490(April): 1-13, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38846779

ABSTRACT

Hypoxia, or low dissolved oxygen (DO), is a widespread water quality problem affecting estuaries and coastal waters around the world. Water quality criteria for DO have been established for every estuary in the US and are an important part of the regulatory response to nutrient pollution and associated anthropogenic eutrophication. Experimental studies examining effects of low DO exposure have been to quantify outcomes based on hypoxia effects observed in individuals, such as increased mortality or growth impairment. Although laboratory exposure tests provide useful benchmarks for policy development, most of those considered in policy development did not consider behavioral responses to low DO. However, experimental research has shown that behavioral responses occur, and that behavior modifies exposure to low DO conditions. Here we begin development of a spatially explicit individual based model (SEIBM) intended to project behavioral outcomes of exposure to spatially variable hypoxia in estuaries. Our goal is to consider the responsiveness of an SEIBM to both different behavioral hypotheses, as well as realistic spatial patterns in hypoxia. A sensitivity analysis was used to explore responsiveness based on two movement strategies: avoidance and behavioral switching. We tested the sensitivity of a suite of movement parameters to changes in spatial patterns representative of an index estuary. The sensitivity analysis demonstrated that model responses to changes in movement strategies include biologically meaningful changes in site occupancy and movement distance centered on individual behavior near a normoxic-hypoxic boundary. Further, the model demonstrated important sensitivity to realistic changes in movement parameters, including the size and shape of the individual neighborhood describing knowledge useful for movement decisions. These results support the utility of the developed SEIBM for exploring behavioral responses of fish to hypoxia in estuaries. The sensitivity analysis also demonstrates parameter values that must be set based on empirical data and are sensitive to data quality. These results will be used to further develop the model and to plan field and laboratory studies to support model parametrization. The end goal is a model framework that can inform policy decisions regarding hypoxia resulting from anthropogenic nutrient loading in estuaries.

3.
J Fish Biol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831672

ABSTRACT

Selection of nursery habitats by marine fish, such as European sea bass (Dicentrarchus labrax), is poorly understood. Identifying and protecting the full range of juvenile nursery habitats is vital to supporting resilient fish populations and economically important fisheries. We examined how the condition, stomach fullness, and diet of juvenile European sea bass, along with their abundance, differ at high or low tide between the following estuarine habitats: saltmarsh, oyster reefs, shingle, sand, and mud edge habitats. Using a combination of fyke and seine netting we found no difference in sea bass abundance or condition across high-tide habitats, suggesting that rather than differentially selecting between them, juvenile sea bass use all available shallow habitats at high tide. Stomach fullness was significantly higher on saltmarsh and sand compared to mud, and thus these habitats may support better foraging. Dietary DNA metabarcoding revealed that sand and saltmarsh diets mostly comprised Hediste polychaetes, whereas zooplanktonic taxa dominated diets over mud. At low tide, sea bass abundance was highest in shingle and oyster reefs, where stomach fullness and condition were lowest. This may indicate a potential trade-off between using habitats for foraging and refuge. Although sea bass abundance alone does not capture productivity, the high abundance across all estuarine habitats at high tide suggests that it is important to consider the protection of a mosaic of interconnected habitats to support nursery functions rather than focus on individual habitat types.

4.
Mar Environ Res ; 199: 106603, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38875899

ABSTRACT

Uca maracoani is a fiddler crab found in estuaries along the western Atlantic coast, with a notable preference for euhaline environments. This study aimed to analyze the population structure and dynamics of this species in an estuary on the North Coast of Brazil, specifically in an area of the upper estuary where seasonal rainfall fluctuations result in significant changes in salinity. Monthly crab samples were taken from December 2013 to November 2015, together with measurements of environmental variables, such as water and climate parameters. The population maintains a balanced sex ratio; however, males are generally larger, with lower mortality rates and longer lifespans than females. Reproduction is continuous but mainly takes place in the dry season when salinity levels are higher (above 12‰). Higher crab densities have been observed during the rainy season when, despite lower salinity levels (below 10‰), the conditions for survival (food availability and milder climate) seem to be more favorable. The estimated average annual biomass and production for the population were 2.62 g AFDM m-2 and 5.43 g AFDM m-2 year-1, respectively, characterized by a high turnover rate (P/B = 2.10 year-1). Our results suggest that U. maracoani has thriving populations in the Amazon coast's mangroves, benefiting from the vast muddy intertidal zone and the high organic content delivered by the estuaries.

5.
Mar Environ Res ; 199: 106566, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865871

ABSTRACT

The concentrations of Cd, Cu and Zn have been determined in the tissues and the cytosolic fraction of the common cockle, Cerastoderma edule, collected from sediments in the Tamar, Plym and Avon estuaries (South West, England). Metal concentrations in the tissues of C. edule from the Avon were lower than those from the Tamar and Plym, except for Cu in the digestive gland. Significant statistical relationships were only obtained between the total sedimentary metal concentrations and Cd in the body of C. edule and Cu in the digestive gland. The cytosolic fraction was extracted from each of the tissues and separated for protein analysis thereby allowing determination of the metal contents in high molecular weight (HMW) compounds, metallothionein-like proteins (MTLP) and very low molecular weight (VLMW) compounds. The digestive glands of C. edule from the Avon had relatively low concentrations of MTLP, whereas MTLP concentrations in the digestive gland of cockles from the Tamar and Plym were higher. The cytosolic fraction of C. edule had relatively low total Cd and Cu concentrations associated with MTLP, whereas Zn was preferentially associated with the HMW and the VLMW components. The results are relevant to metal distributions in C. edule and the role of cytosols in the management of metals by C. edule and other invertebrates.

6.
Environ Sci Technol ; 58(21): 9213-9226, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748643

ABSTRACT

The use of optical proxies is essential to the sustained monitoring of dissolved organic carbon (DOC) in estuaries and coastal wetlands, where dynamics occur on subhour time scales. In situ dissolved organic matter (DOM) fluorescence, or FDOM, is now routinely measured along with ancillary water-quality indicators by commercial sondes. However, its reliability as an optical proxy of DOC concentration is often limited by uncertainties caused by in situ interferences and by variability in DOM composition and water matrix (ionic strength, pH) that are typical at the land-ocean interface. Although corrections for in situ interferences already exist, validated strategies to account for changes in the DOM composition and water matrix in these systems are still lacking. The transferability of methods across systems is also poorly known. Here, we used a comprehensive data set of laboratory-based excitation-emission matrix fluorescence and DOC concentration matched to in situ sonde measurements to develop and compare approaches that leverage ancillary water-quality indicators to improve estimates of DOC concentration from FDOM. Our analyses demonstrated the validity of in situ interference correction schemes, the importance of ancillary water-quality indicators to account for DOM composition and water matrix change, and the good transferability of the proposed methods.


Subject(s)
Carbon , Environmental Monitoring , Estuaries , Wetlands , Environmental Monitoring/methods , Fluorescence
7.
Mar Environ Res ; 198: 106554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754152

ABSTRACT

In this study, two different approaches based on taxonomic assemblages and on copepod functional groups were used to investigate the mesozooplankton assemblage structure and its relationship with environmental variables in the main estuaries of the Gulf of Cádiz (Guadalquivir, Guadiana and Tinto-Odiel) during the dry-warm season. In general, the mesozooplankton assemblages were dominated by copepods, especially the calanoid Acartia tonsa, which reached its highest abundance in the inner zones while the adjacent coastal zones were characterized by a mixture of copepods and cladocerans, especially Penilia avirostris. Regarding the trait-based approach, three copepod functional groups were identified, principally sorted by their feeding strategy. Group 1 (composed of omnivorous copepods displaying a mixed feeding strategy and broadcast-spawners) was found mainly in the inner areas, while Groups 2 (omnivorous cyclopoids, sac-spawners that feed via active ambush) and 3 (herbivores-omnivores employing a filter feeding strategy and mostly broadcast-spawners) were predominant in the adjacent coastal zones. The relative abundance of copepod functional groups suggested that Group 1 could be considered the most important contributor to secondary production in the estuarine systems of the Gulf of Cádiz. In relation to environmental factors, salinity was the most influential variable on mesozooplankton assemblages in both approaches. Our results suggest that the studied estuaries, although taxonomically different, have mesozooplankton assemblages that perform similar ecological functions. Both methods provide valuable and complementary information about mesozooplankton assemblage dynamics in the main estuaries of the Gulf of Cádiz.


Subject(s)
Copepoda , Estuaries , Zooplankton , Animals , Copepoda/physiology , Zooplankton/physiology , Environmental Monitoring , Biodiversity , Salinity , Seasons
8.
Environ Pollut ; 349: 123954, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38604307

ABSTRACT

Agricultural run-off in Australia's Mackay-Whitsunday region is a major source of nutrient and pesticide pollution to coastal and inshore ecosystems of the Great Barrier Reef. While the effects of run-off are well documented for the region's coral and seagrass habitats, the ecological impacts on estuaries, the direct recipients of run-off, are less known. This is particularly true for fish communities, which are shaped by the physico-chemical properties of coastal waterways that vary greatly in tropical regions. To address this knowledge gap, we used environmental DNA (eDNA) metabarcoding to examine fish assemblages at four locations (three estuaries and a harbour) subjected to varying levels of agricultural run-off during a wet and dry season. Pesticide and nutrient concentrations were markedly elevated during the sampled wet season with the influx of freshwater and agricultural run-off. Fish taxa richness significantly decreased in all three estuaries (F = 164.73, P = <0.001), along with pronounced changes in community composition (F = 46.68, P = 0.001) associated with environmental variables (largely salinity: 27.48% contribution to total variance). In contrast, the nearby Mackay Harbour exhibited a far more stable community structure, with no marked changes in fish assemblages observed between the sampled seasons. Among the four sampled locations, variation in fish community composition was more pronounced within the wet season (F = 2.5, P = 0.001). Notably, variation in the wet season was significantly correlated with agricultural contaminants (phosphorus: 6.25%, pesticides: 5.22%) alongside environmental variables (salinity: 5.61%, DOC: 5.57%). Historically contaminated and relatively unimpacted estuaries each demonstrated distinct fish communities, reflecting their associated catchment use. Our findings emphasise that while seasonal effects play a key role in shaping the community structure of fish in this region, agricultural contaminants are also important contributors in estuarine systems.


Subject(s)
Agriculture , Coral Reefs , DNA, Environmental , Environmental Monitoring , Fishes , Salinity , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Australia , Pesticides , Estuaries , Ecosystem
9.
Mar Pollut Bull ; 202: 116376, 2024 May.
Article in English | MEDLINE | ID: mdl-38636342

ABSTRACT

In the present study, we determined glyphosate (GPS) and aminomethylphosphonic acid (AMPA) in the water and sediments of the Ofanto River (Italy), evaluating their transport from the mouth to the sea. Sediments were collected twice in 2021 during low and high tide; waters were sampled on a seasonal basis. The results showed the prevalence of GPS and AMPA in the water with concentrations equal to 190 and 3053 ng/l, respectively. We also found GPS and AMPA in the sediments with values of 0.95 and 11.34 ng/g. In water, pesticides were detected in all seasons with peaks in concentrations during summer and spring. A significant positive correlation between the pesticides in the sediments and the water pH and a negative correlation with salinity was observed. An estimation of the average loads revealed a discharge of 64.11 kg/yr. of GPS and 958.37 kg/yr. of AMPA from the river to the marine environment.


Subject(s)
Environmental Monitoring , Geologic Sediments , Glycine , Glyphosate , Rivers , Water Pollutants, Chemical , Glycine/analogs & derivatives , Glycine/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Pesticides/analysis , Italy , Organophosphonates/analysis , Seasons
10.
Heliyon ; 10(7): e28018, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596140

ABSTRACT

Increasing human activities in coastal areas of Ghana have led to the degradation of many surface waterbodies, with significant consequences for the ecosystems in the affected areas. Thus, this degradation extremely affects the health of ecosystems and disrupts the essential services they provide. The present study explored the use of benthic macroinvertebrates as an indicator of estuarine degradation along the coast of Ghana. Water and sediment samples were collected bimonthly from Ankobra, Kakum and Volta estuaries for physicochemical parameters, nutrients and benthic macroinvertebrates. The findings revealed the dominance of pollution-tolerant taxa such as Capitella sp., Nereis sp., Heteromastus sp., Tubifex sp., Cossura sp. and Chironomous sp. in Kakum Estuary while pollution-sensitive taxa such as Scoloplos sp., Euridice sp., Lumbriconereis sp. and Pachymelania sp. in the Volta Estuary. The species-environment interactions showed dissolved oxygen, temperature, salinity, orthophosphate, nitrates, ammonium, electrical conductivity, turbidity, and chemical oxygen demand as the most significant parameters that complement the use of benthic macroinvertebrates as indicators of environmental quality in the studied estuaries. There were correlations of some benthic macroinvertebrate taxa with environmental factors in the estuaries suggesting low, moderate and high levels of pollution in the Volta, Kakum and Ankobra estuaries, respectively. Nevertheless, the study finds Kakum Estuary to be the ecologically healthiest estuary than the Volta and Ankobra Estuaries. Therefore, the study has shown benthic macroinvertebrates as a key indicator of ecosystem health alterations, and it is recommended that they should be incorporated with other environmental data for pollution monitoring in Ghanaian coastal waters.

11.
Mar Environ Res ; 197: 106472, 2024 May.
Article in English | MEDLINE | ID: mdl-38537362

ABSTRACT

Understanding the responses of organisms to different environmental drivers is critical for improving ecosystem management and conservation. Estuarine ecosystems are under pressure from multiple anthropogenic stressors (e.g. increasing sediment and nutrient loads, pollution, climate change) that are affecting the functions and services these ecosystems provide. Here, we used long-term estuarine benthic invertebrate monitoring data (∼30 year time-series) to evaluate the responses of macrobenthic invertebrate communities and indicator species to climatic, oceanic, freshwater, and local environmental drivers in New Zealand estuaries. We aimed to improve our ability to predict ecosystem change and understand the effects of multiple environment drivers on benthic communities. Our analyses showed that the abundance and richness of macrobenthic fauna and four indicator taxa (bivalves known to have differing tolerances to sediment mud content: Austrovenus stutchburyi, Macomona liliana, Theora lubrica, and Arthritica bifurca) responded to unique combinations of multiple environmental drivers across sites and times. Macrobenthic responses were highly mixed (i.e., positive and negative) and site-dependent. We also show that responses of macrobenthic fauna were lagged and most strongly related to climatic and oceanic drivers. The way the macrobenthos responded has implications for predicting and understanding the ecological consequences of a rapidly changing environment and how we conserve and manage coastal ecosystems.


Subject(s)
Ecosystem , Invertebrates , Animals , New Zealand , Oceans and Seas , Fresh Water , Estuaries , Environmental Monitoring
12.
Mar Environ Res ; 196: 106409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461608

ABSTRACT

Abrupt drops in salinity that occur in tropical estuaries during the equatorial rainy season led to hyposaline conditions which may reduce the populational density of oysters. To assess the effect of saline stress on physiological and metabolic responses of the Manabi oyster (Crassostrea cf. corteziensis) was exposed to 35, 30, 20,10 and 5‰ concentrations during 96 h. Inorganic osmolytes, pH, salinity, haemocyanin and protein concentration in the plasma as well as the number of oysters with closed valves were recorded. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and catalase (CAT) activity were analysed. Inorganic osmolytes and internal salinity were elevated in oysters exposed to 35, 10 and 5‰. A significant number of oysters with valve closure was observed in 10 and 5‰, which coincided with a decline in physiological pH and changes in haemocyanin concentrations. AST activity and AST/ALT ratio were reduced under 35, 10 and 5‰, and CAT increased in oysters exposed to 35‰; but protein concentration, LDH and ALP did not show significant variations. Metabolic adjustment and behavior of the Manabi oyster could explain tolerance and survival (at least for a short term) to hyposaline stress in tropical estuarine ecosystems.


Subject(s)
Crassostrea , Animals , Crassostrea/physiology , Ecosystem , Antioxidants , Oxidative Stress , Biomarkers/metabolism
13.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38308512

ABSTRACT

Mixotrophic plankton can comprise a substantial portion of the plankton community compared to phytoplankton and zooplankton. However, there is a gap in the understanding of conditions that influence mixotroph prevalence and activity in situ because current methods often over- or underestimate mixotroph abundance. A labeled prey-tracer method was utilized to identify active mixotrophs present at two locations in a temperate estuary over a year. The tracer method was combined with light microscopy data to estimate active mixotroph abundance and proportion. This study estimated that actively grazing mixotrophic taxa were more abundant in the spring and autumn compared to summer. Dinoflagellates typically dominated the mixotrophic taxa except during autumn at the low salinity location when cryptophytes dominated. Further analysis suggested that active mixotroph abundances might not be only regulated by environmental conditions favorable to mixotrophy but, instead, environmental conditions favorable to different mixotrophs utilization of phagotrophy. By focusing on mixotrophic taxa that were identified to be actively grazing at time of sampling, this study provided a more nuanced estimation of mixotroph abundance, increasing the understanding of how mixotrophic abundance and proportion in situ are influenced by the planktonic community composition and environmental factors.


Subject(s)
Dinoflagellida , Plankton , Animals , Phytoplankton , Zooplankton , Cryptophyta
14.
Environ Pollut ; 345: 123500, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38320685

ABSTRACT

Trace metal concentrations in the particulate fractions (MP), dissolved fractions (MD) and sediments (MS), such as Ba, Cu, Co, Cr, Pb, Ni and Zn, were determined during the dry season of the largest open sea delta of Americas, the Parnaíba River Delta (Brazil). This study aimed to comprehend the distribution, dynamic changes of metal speciation and environmental quality index of trace metals in the particulate fractions and subsurface sediments in scenario of major marine influence over the delta. The trace metals bound to suspended particulate material (SPM) from weathering the drainage basin exhibited a removal trend under increases in salinity and pH. Desorption influenced the partitioning of BaMP, ZnMP, NiMP, CoMP, CuMP, and the adsorption and precipitation of PbMP and CrMP to the surface sediments. The organic matter contents in the sediments acts as an important geochemical carrier of these contaminants, and the dissolved organic carbon influences the binding of PbMD in the subsurface waters. The geoaccumulation index (Igeo) plays a crucial role in revealing potential contamination with ZnMP contents and weak association to this fraction. These results make possible the assessment of ecological risk by metal contamination and global pollution mitigation in coastal tidal estuaries under intensive physical mixing along the equatorial coast.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Metals, Heavy/analysis , Seasons , Brazil , Estuaries , Lead , Geologic Sediments/chemistry , Environmental Monitoring/methods , Rivers/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis
15.
Sci Total Environ ; 919: 170873, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38350565

ABSTRACT

Understanding the factors influencing eutrophication, as represented by concentrations of chlorophyll-a (Chl-a), is needed to inform effective management and conservation strategies promoting ecological resilience. The objective of this study was to evaluate a unique combination of abiotic explanatory factors to describe Chl-a concentrations within the study estuary (North Biscayne Bay, Florida, USA). Multiple linear regression determined the strength and direction of influence of factors using data from 10 water quality monitoring stations. The analysis also considered time scales for evaluating cumulative effects of freshwater inflow and wind. Results show that dominant drivers of Chl-a were temperature, freshwater volume (whose cumulative effects were evaluated up to a 60-day time scale), and turbidity, which were statistically significant at 60, 60, and 70 % of the investigated stations, respectively. All drivers collectively accounted for 22 to 63 % of the variability of Chl-a measurements. Of the nine variables evaluated, nutrient concentrations (orthophosphate and ammonia) were not among the top three overall drivers. Despite nutrients historically being cited in the literature as the most significant factor, this study asserts that non-nutrient factors often govern Chl-a levels, necessitating a paradigm shift in management strategies to bolster estuarine resilience against climate change.


Subject(s)
Chlorophyll , Environmental Monitoring , Chlorophyll A/analysis , Environmental Monitoring/methods , Chlorophyll/analysis , Water Quality , Fresh Water/analysis , Eutrophication , Estuaries
16.
Environ Res ; 250: 118465, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38367839

ABSTRACT

Estuaries in South Africa are very important for biodiversity conservation and serve as focal points for leisure and tourism activities. The organophosphate flame retardants (OPFRs) levels in these aquatic systems haven't been documented in any studies as of yet. Due to the negative effects of persistent organic pollutants in South African estuaries, we examined the occurrence of eight OPFRs in sediments of two estuaries by studying their spatiotemporal distribution, season variation, and ecological risks. The Sundays Estuary (SDE), a semi-urbanized agricultural surrounding system, recorded an ∑8OPFR concentration in sediments that ranged from 0.71 to 22.5 ng/g dw, whereas Swartkops Estuary, a largely urbanized system, recorded a concentration that ranged from 0.61 to 119 ng/g dw. Alkyl-OPFRs were the prevalent homologue in both estuaries compared to the chlorinated and aryl groups. While TBP, TCPP, and TCrP were the most abundant compounds among the homologue groups. There was no distinct seasonal trend of ∑8OPFR concentration in either estuary, with summer and autumn seasons recording the highest concentrations in SDE and SWE, respectively. Ecological risks in the majority of the study sites for the detected compounds were at low (RQ < 0.1) and medium levels (0.1 ≤ RQ < 1) for certain species of fish, Daphnia magna and algae. However, the cumulative RQs for all the compounds had ∑RQs ≥1 for most sites in both estuaries, indicating that these organisms, if present in both estuaries, may be exposed to potential ecological concerns due to accumulated OPFR chemicals. The scope of future studies should be broadened to include research areas that are not only focus on the bioaccumulation patterns of these compounds but also find sustainable ways to reduce them from these estuarine environments.


Subject(s)
Environmental Monitoring , Estuaries , Flame Retardants , Geologic Sediments , Seasons , Water Pollutants, Chemical , Geologic Sediments/chemistry , Geologic Sediments/analysis , Water Pollutants, Chemical/analysis , South Africa , Risk Assessment , Flame Retardants/analysis , Organophosphates/analysis , Organophosphates/toxicity , Animals
17.
Ecology ; 105(4): e4274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419360

ABSTRACT

Identification of the key biotic and abiotic drivers within food webs is important for understanding species abundance changes in ecosystems, particularly across ecotones where there may be strong variation in interaction strengths. Using structural equation models (SEMs) and four decades of integrated data from the San Francisco Estuary, we investigated the relative effects of top-down, bottom-up, and environmental drivers on multiple trophic levels of the pelagic food web along an estuarine salinity gradient and at both annual and monthly temporal resolutions. We found that interactions varied across the estuarine gradient and that the detectability of different interactions depended on timescale. For example, for zooplankton and estuarine fishes, bottom-up effects appeared to be stronger in the freshwater upstream regions, while top-down effects were stronger in the brackish downstream regions. Some relationships (e.g., bottom-up effects of phytoplankton on zooplankton) were seen primarily at annual timescales, whereas others (e.g., temperature effects) were only observed at monthly timescales. We also found that the net effect of environmental drivers was similar to or greater than bottom-up and top-down effects for all food web components. These findings can help identify which trophic levels or environmental factors could be targeted by management actions to have the greatest impact on estuarine forage fishes and the spatial and temporal scale at which responses might be observed. More broadly, this study highlights how environmental gradients can structure community interactions and how long-term data sets can be leveraged to generate insights across multiple scales.


Subject(s)
Ecosystem , Food Chain , Animals , Fresh Water , Fishes/physiology , Phytoplankton/physiology , Zooplankton/physiology
18.
Mar Pollut Bull ; 199: 116008, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171162

ABSTRACT

We employed a validated method to assess the seasonal variation and distribution of caffeine in the Bohai and Yellow Seas, as well as in Yantai urban estuaries and offshore region in northern China. Caffeine concentrations were highest during the summer in the Yellow Sea (1436.4 ng/L) and lowest in the Yantai urban offshore region during the spring and autumn and in the Yantai urban estuarine area and Bohai Sea during the winter (0.1 ng/L). There was significant variation in maximum caffeine levels among seasons across all regions examined, reaching a difference of 5980.5 times at the same sampling site between summer and winter. The caffeine concentration in the Yantai offshore region was significantly higher than in the Bohai and Yellow Seas. This study is the first investigation of seasonal fluctuations in the pollution levels of neurotoxic substances in the northern seas of China.


Subject(s)
Caffeine , Estuaries , Seasons , Oceans and Seas , Climate , China , Environmental Monitoring/methods
19.
Mar Environ Res ; 193: 106290, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091643

ABSTRACT

Overfishing constitutes a major threat affecting marine fish population worldwide, including mullet species that have been exploited by fisheries during the reproductive migration in temperate and tropical latitudes for millennia. In the present study, we investigated the relationship of fishing intensity of mullet Mugil liza during its reproductive migration and the abundance of their juveniles in an essential nursery ground for the species in the southwest Atlantic Ocean. To carry out this analysis, we used a 23-year standardized long-term time series (1997-2019) of monthly abundance of M. liza juveniles, local/regional (water temperature, salinity, water transparency and river discharge) and global (ENSO) environmental factors, along with compilations of fishing landing data for the species. Generalized Additive Models (GAM) revealed the negative effect of fishing adult populations on the abundance of juveniles when they reach the marine surf-zone and after recruiting into the estuary. Our results reinforce the importance of adequate conservation and fishery regulation policies to prevent the species' stock from collapsing.


Subject(s)
Ecosystem , Smegmamorpha , Animals , Fisheries , Brazil , Conservation of Natural Resources , Water , Smegmamorpha/physiology
20.
Mar Pollut Bull ; 198: 115858, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061149

ABSTRACT

We investigate the effects of spatial changes in environmental conditions and anthropogenic influences on larval fish communities in two tropical estuaries with varying levels of human impact. Our findings revealed a distinct structure of larval fish assemblages between the two estuaries located in northeastern Brazil, and we observed that eutrophication, characterized by high concentrations of nutrients, had adverse effects on the abundance and richness of larval fish assemblages. Additionally, we observed that a decrease in rainfall had an impact on larval fish assemblages, particularly during the dry season, when intermittent upstream rivers lead to changes in salinity and species composition within the estuaries. This study contributed to evaluating the community descriptors of two tropical estuaries under different levels of human influence, providing insights into the vulnerability of larval fish assemblages to climate change, specifically in relation to human influences and hypersalinity and the effects of marinization in shallow tropical estuaries in this region.


Subject(s)
Estuaries , Fishes , Animals , Humans , Larva , Brazil , Rivers , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...