Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.113
Filter
1.
J Exp Bot ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989653

ABSTRACT

In plant biology Fusicoccin (FC) is one of the most studied fungal metabolites to date. Since the structural identification in 1964, much has been learned about its effects on the physiology of plants, about the interference with the action of plant hormones, the molecular nature of the plant receptor(s) for FC and the biosynthetic pathway for FC in the fungus. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase|14-3-3 receptor has taken center stage in explaining all FC induced physiological effects. However, a more critical review shows that this is not at all evident for a number of FC induced effects. Examples of this are: the inhibition of outward rectifying K+-channels in guard cells, the phosphorylation/activation of PEP-carboxylase and malate accumulation, the antagonism with ABA induced production of H2O2 / NO and the effect on ethylene production. In addition, recently two other physiological processes were shown to be targeted by FC, viz. the activation of TORC1 and the interference of FC with the immune response to fungal elicitors. In this review, the notion will be challenged that all FC affected processes start with the binding to and activation of the PM-ATPase and the question is raised whether may be other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule; in analogy to the fungal product and plant hormone gibberellic acid. A relevant question in this respect is whether it is a coincidence that proteins that act in a coordinated fashion during stomatal opening (the ATPases and K+-channels) are targeted by FC? Or are the sites where FC binds in the plant, conserved during evolution because they serve a physiological role, namely the accommodation of a plant produced molecule? In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile to make a renewed attempt with current day improved technology to answer this question and may be upgrade FC or structural analogue(s) to a new level, the level of plant hormone.

2.
EFSA J ; 22(7): e8878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966136

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Fucine Film (EU register number RECYC322), which uses the Reifenhäuser technology. The input material consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are extruded under vacuum into sheets. The recycled sheets are intended to be used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, excluded drinking water and beverages, for long-term storage at room temperature, with or without hotfill. Based on the limited data available, the Panel concluded that the information submitted to EFSA was inadequate to demonstrate that the recycling process Fucine Film is able to reduce potential unknown contamination of the input PET flakes to a concentration that does not pose a risk to human health.

3.
Tissue Cell ; 89: 102453, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38964085

ABSTRACT

AIMS: Baicalin is a flavonoid derived from the root of the medicinal plant Scutellaria baicalensis Georgi (S. baicalensis) and is known for its various pharmacological properties. This study aimed to investigate the impact of baicalin (BAI) on the occurrence of kidney calcium oxalate crystal formation induced by ethylene glycol in male SD rats. MAIN METHODS: A rat model of renal stones was created and various concentrations of baicalin were used for intervention. Samples of urine, blood, and kidney tissue were taken from the rats, and they were euthanized for biochemical and histopathological examinations. KEY FINDINGS: Our results show that baicalin treatment improved the weight loss induced by ethylene glycol (EG) and ammonium chloride (AC) in rats. Baicalin also reduced the formation of calcium oxalate crystals and protected kidney function in rats with urolithiasis. Furthermore, it lowered the level of malondialdehyde (MDA) and elevated the activity of antioxidant enzymes compared to the stone control group. Additionally, baicalin notably alleviated renal inflammation in rats with urolithiasis. SIGNIFICANCE: The present study attributed clinical evidence first time that claiming the significant antiurolithic effect of baicalin and could be a cost-effective candidate for the prevention and treatment of urolithiasis.

4.
Plant Commun ; : 101013, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38961625

ABSTRACT

The two principal growth regulators cytokinins and ethylene are known to interact in the regulation of plant growth. However, information about underlying molecular mechanism and positional specificity of the cytokinin/ethylene crosstalk in root growth control is scarce. We have identified spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. In contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis, the production of ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs), and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3 and ACO4 as being responsible for ethylene biosynthesis and the ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatial-specific regulation of ethylene biosynthesis as a key aspect of hormonal control over root growth.

5.
Chempluschem ; : e202400135, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963686

ABSTRACT

The conversion of bioethanol to ethylene in gas phase and atmospheric pressure was investigated over γ-Al2O3 supported copper and nickel catalysts. These catalysts were prepared by co-precipitation and pre-treated with hydrogen at 450 °C. Six catalysts were studied at 450 °C under a nitrogen atmosphere. It was found that the monometallic Cu/γ-Al2O3 catalyst exhibited the highest ethylene concentration, with a selectivity of around 90%. The bioethanol conversion obtained was between 57%-86%. Another catalyst that exhibited high concentration values was the NiCu1:7 bimetallic catalyst. The catalysts were characterised using XRD, SEM, EDS, TEM, TGA, FTIR, Raman, and N2-physisoption techniques. Furthermore, the Cu/γ-Al2O3 catalyst was studied under different reduction temperatures and gas flow conditions. It was found that the catalysts reduced at 350 °C and 35 ml/min N2 flow presented ethylene concentrations between (0.18-0.21) g/L. Moreover, the catalyst deactivation was identified to be first order and the equation of the Cu/γ-Al2O3 catalyst deactivation model was determined. Carbonaceous deposits over the used sample were not detected by Raman and FTIR. It was determined that the Cu/γ-Al2O3 catalyst deactivation could be mainly attributed to the blocking of the catalytic sites by strongly adsorbed compounds and hydroxylation of the catalyst surface.

6.
Plant Physiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954501

ABSTRACT

The final phase in root nodule development is nodule senescence. The mechanism underlying the initiation of nodule senescence requires further elucidation. Here, we investigated the intrinsic signals governing soybean (Glycine max L. Merr.) nodule senescence, uncovering ethylene as a key signal in this intricate mechanism. Two AP2/ERF transcription factor genes, GmENS1 and GmENS2 (Ethylene-responsive transcription factors required for Nodule Senescence), exhibit heightened expression levels in both aged nodules and nodules treated with ethylene. Overexpression of either GmENS1 or GmENS2 accelerated senescence in soybean nodules, whereas the knockout or knockdown of both genes delayed senescence and enhanced nitrogenase activity. Furthermore, our findings indicated that GmENS1 and GmENS2 directly bind to the promoters of GmNAC039, GmNAC018, and GmNAC030, encoding three NAC transcription factors essential for activating soybean nodule senescence. Notably, the nodule senescence process mediated by GmENS1 or GmENS2 overexpression was suppressed in the soybean nac039/018/030 triple mutant compared with the wild-type control. These data indicate GmENS1 and GmENS2 as pivotal transcription factors mediating ethylene-induced nodule senescence through the direct activation of GmNAC039/GmNAC018/GmNAC030 expression in soybean.

7.
Plant Commun ; : 101012, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956873

ABSTRACT

High light stress in subtropical and tropical regions strongly limits agricultural production due to photo-oxidative damage, decreased growth and yield. Here, we investigated whether beneficial microbes can protect plants under high light stress. We found that Enterobacter sp. SA187 (SA187) supports Arabidopsis thaliana growth under high light stress by reducing the accumulation of reactive oxygen species (ROS) and maintaining photosynthesis. When subjected to high light stress, SA187 triggers dynamic changes in Arabidopsis gene expression related to fortified iron metabolism and redox regulation thereby enhancing the plant anti-oxidative glutathione/glutaredoxin redox system. Genetic analysis shows that SA187-enhanced iron and sulfur metabolism are coordinated by ethylene signaling. In summary, beneficial microbes could be an effective and inexpensive means for enhancing high light stress tolerance in plants.

8.
Sci Rep ; 14(1): 15599, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971829

ABSTRACT

Porous asphalt mixture is conventional hot mix asphalt (HMA) with substantially decreased fines, which produces an open-graded mixture that enables the water to flow through an interconnected void space. Porous asphalt is a permeable system that has a lot of benefits. However, because of its open structure, the durability of this mixture decreases, and both its stability and resilient modulus are much lower compared to the dense conventional asphalt mixtures. Also, the high void percentage may lead to an increase in the draindown proportion. Fibers (cellulose or mineral) and polymer-modified binders are recommended for porous asphalt mixtures, especially in hot and moderate climates. The objective of this study is to improve the porous asphalt mixture's performance by using ethylene-vinyl acetate (EVA) polymer-modified bitumen. Two types of fibers (cellulose fibers and glass wool fibers) were used, separately to determine the control mixture. Four different proportions of EVA polymer were added to the bitumen (1%, 2%, 3%, and 4%) and Scanning Electron Microscopy (SEM) was used for better investigating of the bitumen microstructure, then The Marshall mix design was used to determine the optimum EVA content (OEC) for the porous asphalt mixture. Several performance tests were conducted to investigate the characteristics of the porous asphalt mixture, such as the infiltration rate, binder draindown, the wheel track and the cantabro abrasion tests. The findings of the study conclude that the addition of EVA polymer to the porous asphalt mixtures enhances the performance as it increases stability by 20.8% and the infiltration rate by 20.6%. It decreases binder draindown proportion by 33.3%, cantabro abrasion loss by 25.1% and the rut depth at 5,000 cycles and 10,000 cycles by 29.8% and 19.7%, respectively.

9.
Physiol Mol Biol Plants ; 30(6): 985-1002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974358

ABSTRACT

Present study would be significant in the sustenance of quality characters for postharvest storage of Capsicum fruit with CO2-sensitization in biocompatible manner. The present experiment describes effects of CO2 sensitization on delaying postharvest ripening through physiological attributes in Capsicum fruit. The experiment was conducted with acidified bicarbonate-derived CO2 exposure for 2 h on Capsicum fruit, kept under white light at 25 °C through 7 days postharvest storage. Initially, fruits responded well to CO2 as recorded sustenance of greenness and integrity of fruit coat resolved through scanning electron micrograph. Loss of water and accumulation of total soluble solids were marginally increased on CO2-sensitized fruit as compared to non-sensitized (control) fruit. The ethylene metabolism biosynthetic genes like CaACC synthase, CaACC oxidase were downregulated on CO2-sensitization. Accompanying ethylene metabolism cellular respiration was downregulated on CO2 induction as compared to control through 7 days of storage. Fruit coat photosynthesis decarboxylating reaction by NADP malic enzyme was upregulated to maintain the reduced carbon accumulation as recorded on 7 days of storage under the same condition. CO2-sensitization effectively reduced the lipid peroxides as oxidative stress products on ripening throughout the storage. Anti-oxidation reaction essentially downregulates the ROS-induced damages of biomolecules that otherwise are highly required for food preservation during postharvest storage. Thus, the major finding is that CO2-sensitization maintains a higher ratio of unsaturated to saturated fatty acids in fruit coat during storage. Tissue-specific downregulation of ROS also maintained the nuclear stability under CO2 exposure. These findings provide basic as well as applied insights for sustaining Capsicum fruit quality with CO2 exposure under postharvest storage. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01471-4.

10.
Article in English | MEDLINE | ID: mdl-38972388

ABSTRACT

A 36-year-old male presented to the Emergency Department with clinical symptoms of blurred vision of progressive onset of two years of evolution. The ophthalmological examination revealed the existence of bilateral papilledema. Using cranial computed tomography and magnetic resonance imaging, the presence of a right occipital pial arteriovenous malformation was certified. Arteriographically, pial arterial contributions dependent on the right middle cerebral artery and the right posterior cerebral artery were identified. Venous drainage was located at the level of the superior sagittal sinus. An associated right transverse sinus stenosis was also identified. The existence of secondary intracranial hypertension was corroborated by monitoring with an intracranial pressure sensor. An interventional procedure was carried out consisting of embolization of the arterial supplies of the lesion using Onyx®. The clinical-radiological findings after the procedure were favorable: the papilledema disappeared and complete exclusion of the malformation was achieved. A new intracranial pressure measurement showed resolution of intracranial hypertension. Subsequent regulated radiological controls showed complete exclusion of the malformation up to 5 years later.

11.
Angew Chem Int Ed Engl ; : e202410646, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972838

ABSTRACT

Ethylene dimerization is an industrial process that is currently carried out using homogeneous catalysts. Here we present a highly active heterogeneous catalyst containing minute amounts of atomically dispersed Pd. It requires no co-catalyst(s) or activator(s) and significantly outperforms previously reported catalysts tested under similar reaction conditions. The selectivity to C4- and C6-hydrocarbons was about 80% and 10% at 42% ethylene conversion at 200°C using an industrially relevant feed containing 50 vol% ethylene, respectively. Our kinetic and catalyst characterization experiments complemented by density functional theory calculations provide molecular insights into the local environment of isolated Pd(II)Ox species and their role in achieving high activity in the target reaction. When the developed catalyst was rationally integrated with a Mo-containing olefin metathesis catalyst in the same reactor, the formed butenes reacted with ethylene to propylene with a selectivity of 98% at about 24% ethylene conversion.

12.
Planta ; 260(2): 50, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990341

ABSTRACT

MAIN CONCLUSION: BcERF98 is induced by ethylene signaling and inhibits the expression of BcFT by interacting with BcNF-YA2 and BcEIP9, thereby inhibiting plant flowering. Several stresses trigger the accumulation of ethylene, which then transmits the signal to ethylene response factors (ERFs) to participate in the regulation of plant development to adapt to the environment. This study clarifies the function of BcERF98, a homolog of AtERF98, in the regulation of plant flowering time mediated by high concentrations of ethylene. Results indicate that BcERF98 is a nuclear and the cell membrane-localized transcription factor and highly responsive to ethylene signaling. BcERF98 inhibits the expression of BcFT by interacting with BcEIP9 and BcNF-YA2, which are related to flowering time regulation, thereby participating in ethylene-mediated plant late flowering regulation. The results have enriched the theoretical knowledge of flowering regulation in non-heading Chinese cabbage (NHCC), providing the scientific basis and gene reserves for cultivating new varieties of NHCC with different flowering times.


Subject(s)
Ethylenes , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Brassica/genetics , Brassica/physiology , Brassica/metabolism , Brassica/growth & development , Signal Transduction , Plant Growth Regulators/metabolism
13.
Angew Chem Int Ed Engl ; : e202409894, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984418

ABSTRACT

Porous liquids are new types of fluid sorbent investigated mainly for the separation of gas mixtures. Here, we explore their application to the separation of miscible liquids, MEG (monoethylene glycol)/water and EtOH/water) as proof of principle. Recovery of used MEG is industrially important but its extraction from water is difficult. PLs ZIF 8@PDMS (PL1, PDMS = polydimethylsilicone) or ZIF-8@sesame oil (PL2) each consisting of 25wt% of the hydrophobic microporous material ZIF-8 dispersed in PDMS/sesame oil, were formulated and found to be exceedingly physically stable. 5 nm PEEK membranes were used to provide permeable barriers between the PL and the alcohol/water phase. MEG was selectively extracted through the membrane from 50wt% MEG/water mixtures into the PL phase. It was effective for MEG/water mixtures as dilute as 3:97wt%. The PL could be regenerated and re-used, suggesting its potential for continuous cyclic extraction. Furthermore, PL3 (silicalite-1@PDMS) has demonstrated effectiveness in achieving selective alcohol extraction from beverages. It shows great potential for lowering the alcohol concentration in gin/wine due to its excellent chemical stability and nontoxicity. Overall, the enhanced adsorption properties of PLs due the presence of empty pores, which provides unusually high gas solubilities, also makes them, in principle, applicable to liquid-liquid separations.

14.
Plant J ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985498

ABSTRACT

ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.

15.
Plant Cell Environ ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988259

ABSTRACT

Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.

16.
Front Plant Sci ; 15: 1358745, 2024.
Article in English | MEDLINE | ID: mdl-38984156

ABSTRACT

Strigolactones (SLs), a class of carotenoid-derived hormones, play a crucial role in flowering plants by regulating underground communication with symbiotic arbuscular mycorrhizal fungi (AM) and controlling shoot and root architecture. While the functions of core SL genes have been characterized in many plants, their roles in non-tracheophyte plants like liverworts require further investigation. In this study, we employed the model liverwort species Marchantia polymorpha, which lacks detectable SL production and orthologs of key SL biosynthetic genes, including CAROTENOID CLEAVAGE DIOXYGENASE 8 (CCD8) and MORE AXILLARY GROWTH 1 (MAX1). However, it retains some SL pathway components, including DWARF27 (D27) and CCD7. To help elucidate the function of these remaining components in M. polymorpha, knockout mutants were generated for MpD27-1, MpD27-2 and MpCCD7. Phenotypic comparisons of these mutants with the wild-type control revealed a novel role for these genes in regulating the release of gemmae from the gemma cup and the germination and growth of gemmae in the dark. Mpd27-1, Mpd27-2, and Mpccd7 mutants showed lower transcript abundance of genes involved in photosynthesis, such as EARLY LIGHT INDUCED (ELI), and stress responses such as LATE EMBRYOGENESIS ABUNDANT (LEA) but exhibited higher transcript levels of ETHYLENE RESPONSE FACTORS (ERFs) and SL and carotenoid related genes, such as TERPENE SYNTHASE (TS), CCD7 and LECITHIN-RETINAL ACYL TRANSFERASE (LRAT). Furthermore, the mutants of M. polymorpha in the SL pathway exhibited increased contents of carotenoid. This unveils a previously unrecognized role for MpD27-1, MpD27-2 and MpCCD7 in controlling release, germination, and growth of gemmae in response to varying light conditions. These discoveries enhance our comprehension of the regulatory functions of SL biosynthesis genes in non-flowering plants.

17.
Polymers (Basel) ; 16(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932010

ABSTRACT

High-molecular-weight poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) is a flexible and biodegradable bioplastic that has promising potential in flexible food packaging but it has no antibacterial ability. Thus, in this work, the effect of zinc oxide nanoparticles (nano-ZnOs) which have antimicrobial activity on various properties of PLLA-PEG-PLLA was determined. The addition of nano-ZnOs enhanced the crystallization, tensile, UV-barrier, and antibacterial properties of PLLA-PEG-PLLA. However, the crystallization and tensile properties of nanocomposite films decreased again as the nano-ZnO increased beyond 2 wt%. The nano-ZnO was well distributed in the PLLA-PEG-PLLA matrix when the nano-ZnO content did not exceed 2 wt% and exhibited some nano-ZnO agglomerates when the nano-ZnO content was higher than 2 wt%. The thermal stability and moisture uptake of the PLLA-PEG-PLLA matrix decreased and the film's opacity increased as the nano-ZnO content increased. The PLLA-PEG-PLLA/ZnO nanocomposite films showed good antibacterial activity against bacteria such as Escherichia coli and Staphylococcus aureus. It can be concluded that nano-ZnOs can be used as a multi-functional filler of the flexible PLLA-PEG-PLLA. As a result, the addition of nano-ZnOs as a nucleating, reinforcing, UV-screening, and antibacterial agent in the flexible PLLA-PEG-PLLA matrix may provide protection for both the food and the packaging during transportation and storage.

18.
Sci Rep ; 14(1): 14829, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937518

ABSTRACT

The study investigates the heat transfer and friction factor properties of ethylene glycol and glycerol-based silicon dioxide nanofluids flowing in a circular tube under continuous heat flux circumstances. This study tackles the important requirement for effective thermal management in areas such as electronics cooling, the automobile industry, and renewable energy systems. Previous research has encountered difficulties in enhancing thermal performance while handling the increased friction factor associated with nanofluids. This study conducted experiments in the Reynolds number range of 1300 to 21,000 with particle volume concentrations of up to 1.0%. Nanofluids exhibited superior heat transfer coefficients and friction factor values than the base liquid values. The highest enhancement in heat transfer was 5.4% and 8.3% for glycerol and ethylene glycol -based silicon dioxide Nanofluid with a relative friction factor penalty of ∼30% and 75%, respectively. To model and predict the complicated, nonlinear experimental data, five machine learning approaches were used: linear regression, random forest, extreme gradient boosting, adaptive boosting, and decision tree. Among them, the decision tree-based model performed well with few errors, while the random forest and extreme gradient boosting models were also highly accurate. The findings indicate that these advanced machine learning models can accurately anticipate the thermal performance of nanofluids, providing a dependable tool for improving their use in a variety of thermal systems. This study's findings help to design more effective cooling solutions and improve the sustainability of energy systems.

19.
Ecotoxicol Environ Saf ; 281: 116644, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944009

ABSTRACT

The toxic metalloid arsenic is prevalent in the environment and poses a threat to nearly all organisms. However, the mechanism by which phytohormones modulate arsenic resistance is not well-understood. Therefore, we analyzed multiple phytohormones based on the results of transcriptome sequencing, content changes, and related mutant growth under arsenic stress. We found that ethylene was the key phytohormone in Arabidopsis thaliana response to arsenic. Further investigation showed the ethylene-overproducing mutant eto1-1 generated less malondialdehyde (MDA), H2O2, and O2•- under arsenic stress compared to wild-type, while the ethylene-insensitive mutant ein2-5 displayed opposite patterns. Compared to wild-type, eto1-1 accumulated a smaller amount of arsenic and a larger amount of non-protein thiols. Additionally, the immediate ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), enhanced resistance to arsenic in wide-type, but not in mutants with impaired detoxification capability (i.e., cad1-3, pad2-1, abcc1abcc2), which confirmed that ethylene regulated arsenic detoxification by enhancing arsenic chelation. ACC also upregulated the expression of gene(s) involved in arsenic detoxification, among which ABCC2 was directly transcriptionally activated by the ethylene master transcription factor ethylene-insensitive 3 (EIN3). Overall, our study shows that ethylene is the key phytohormone to enhance arsenic resistance by reducing arsenic accumulation and promoting arsenic detoxification at both physiological and molecular levels.

20.
Micromachines (Basel) ; 15(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38930719

ABSTRACT

This study investigated the influence of microstructure on the performance of Ag inkjet-printed, resistive temperature detectors (RTDs) fabricated using particle-free inks based on a silver nitrate (AgNO3) precursor and ethylene glycol as the ink solvent. Specifically, the temperature coefficient of resistance (TCR) and sensitivity for sensors printed using inks that use monoethylene glycol (mono-EG), diethylene glycol (di-EG), and triethylene glycol (tri-EG) and subjected to a low-pressure argon (Ar) plasma after printing were investigated. Scanning electron microscopy (SEM) confirmed previous findings that microstructure is strongly influenced by the ink solvent, with mono-EG inks producing dense structures, while di- and tri-EG inks produce porous structures, with tri-EG inks yielding the most porous structures. RTD testing revealed that sensors printed using mono-EG ink exhibited the highest TCR (1.7 × 10-3/°C), followed by di-EG ink (8.2 × 10-4/°C) and tri-EG ink (7.2 × 10-4/°C). These findings indicate that porosity exhibits a strong negative influence on TCR. Sensitivity was not strongly influenced by microstructure but rather by the resistance of RTD. The highest sensitivity (0.84 Ω/°C) was observed for an RTD printed using mono-EG ink but not under plasma exposure conditions that yield the highest TCR.

SELECTION OF CITATIONS
SEARCH DETAIL
...