Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.153
Filter
1.
Diseases ; 12(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38920546

ABSTRACT

BACKGROUND: The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. Moreover, placental enzymes can metabolize drugs and chemicals into more toxic compounds for the fetus. Thus, evaluating the molecular mechanisms through which drugs and chemicals transfer and undergo metabolism across the placental barrier is of vital importance. In this aspect, this comprehensive literature review aims to provide a holistic approach by critically summarizing and scrutinizing the potential molecular processes and mechanisms governing drugs and chemical transfer and metabolism across the placental barrier, which may lead to fetotoxicity effects, as well as analyzing the currently available experimental methodologies used to assess xenobiotics placental transfer and metabolism. METHODS: A comprehensive and in-depth literature review was conducted in the most accurate scientific databases such as PubMed, Scopus, and Web of Science by using relevant and effective keywords related to xenobiotic placental transfer and metabolism, retrieving 8830 published articles until 5 February 2024. After applying several strict exclusion and inclusion criteria, a final number of 148 relevant published articles were included. RESULTS: During pregnancy, several drugs and chemicals can be transferred from the mother to the fetus across the placental barrier by either passive diffusion or through placental transporters, resulting in fetus exposure and potential fetotoxicity effects. Some drugs and chemicals also appear to be metabolized across the placental barrier, leading to more toxic products for both the mother and the fetus. At present, there is increasing research development of diverse experimental methodologies to determine the potential molecular processes and mechanisms of drug and chemical placental transfer and metabolism. All the currently available methodologies have specific strengths and limitations, highlighting the strong demand to utilize an efficient combination of them to obtain reliable evidence concerning drug and chemical transfer and metabolism across the placental barrier. To derive the most consistent and safe evidence, in vitro studies, ex vivo perfusion methods, and in vivo animal and human studies can be applied together with the final aim to minimize potential fetotoxicity effects. CONCLUSIONS: Research is being increasingly carried out to obtain an accurate and safe evaluation of drug and chemical transport and metabolism across the placental barrier, applying a combination of advanced techniques to avoid potential fetotoxic effects. The improvement of the currently available techniques and the development of novel experimental protocols and methodologies are of major importance to protect both the mother and the fetus from xenobiotic exposure, as well as to minimize potential fetotoxicity effects.

2.
Biosensors (Basel) ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38920566

ABSTRACT

Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), a prevalent catecholamine neurotransmitter in the human brain, is associated with central nervous system activities and directly promotes neuronal communication. For the sensitive and selective estimation of DA, an enzyme-free amperometric sensor based on polyaniline-doped multi-walled carbon nanotubes (PANI-MWCNTs) drop-coated disposable screen-printed carbon electrodes (SPCEs) was fabricated. This PANI-MWCNTs-2/SPCE sensor boasts exceptional accuracy and sensitivity when working directly with ex vivo mouse brain homogenates. The sensor exhibited a detection limit of 0.05 µM (S/N = 3), and a wide linear range from 1.0 to 200 µM. The sensor's high selectivity to DA amidst other endogenous interferents was recognized. Since the constructed sensor is enzyme-free yet biocompatible, it exhibited high stability in DA detection using ex vivo mouse brain homogenates extracted from both Parkinson's disease and control mice models. This research thus presents new insights into understanding DA release dynamics at the tissue level in both of these models.


Subject(s)
Aniline Compounds , Biosensing Techniques , Brain , Dopamine , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Animals , Dopamine/analysis , Dopamine/metabolism , Mice , Aniline Compounds/chemistry , Brain/metabolism , Electrodes , Electrochemical Techniques , Humans
3.
Trop Med Infect Dis ; 9(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38922047

ABSTRACT

The in vitro cultivation of M. leprae has not been possible since it was described as causing leprosy, and the limitation of animal models for clinical aspects makes studies on leprosy and bacteria-human host interaction a challenge. Our aim was to standardize the ex vivo skin model (hOSEC) to maintenance and study of M. leprae as an alternative animal model. Bacillary suspensions were inoculated into human skin explants and sustained in DMEM medium for 60 days. Explants were evaluated by RT-PCR-16SrRNA and cytokine gene expression. The viability and infectivity of bacilli recovered from explants (D28 and D60) were evaluated using the Shepard's model. All explants were RT-PCR-16SrRNA positive. The viability and infectivity of recovered bacilli from explants, analyzed after 5 months of inoculation in mice, showed an average positivity of 31%, with the highest positivity in the D28 groups (80%). Furthermore, our work showed different patterns in cytokine gene expression (TGF-ß, IL-10, IL-8, and TNF-α) in the presence of alive or dead bacilli. Although changes can be made to improve future experiments, our results have demonstrated that it is possible to use the hOSEC to maintain M. leprae for 60 days, interacting with the host system, an important step in the development of experimental models for studies on the biology of the bacillus, its interactions, and drug susceptibility.

4.
Artif Organs ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924545

ABSTRACT

BACKGROUND: Portable ex vivo lung perfusion during lung transplantation is a resource-intensive technology. In light of its increasing use, we evaluated the cost-effectiveness of ex vivo lung perfusion at a low-volume lung transplant center in the USA. METHODS: Patients listed for lung transplantation (2015-2021) in the United Network for Organ Sharing database were included. Quality-of-life was approximated by Karnofsky Performance Status scores 1-year post-transplant. Total transplantation encounter and 1-year follow-up costs accrued by our academic center for patients listed from 2018 to 2021 were obtained. Cost-effectiveness was calculated by evaluating the number of patients attaining various Karnofsky scores relative to cost. RESULTS: Of the 13 930 adult patients who underwent lung transplant in the United Network for Organ Sharing database, 13 477 (96.7%) used static cold storage and 453 (3.3%) used ex vivo lung perfusion, compared to 30/58 (51.7%) and 28/58 (48.3%), respectively, at our center. Compared to static cold storage, median total costs at 1 year were higher for ex vivo lung perfusion ($918 000 vs. $516 000; p = 0.007) along with the cost of living 1 year with a Karnofsky functional status of 100 after transplant ($1 290 000 vs. $841 000). In simulated scenarios, each Karnofsky-adjusted life year gained by ex vivo lung perfusion was 1.00-1.72 times more expensive. CONCLUSIONS: Portable ex vivo lung perfusion is not currently cost-effective at a low-volume transplant centers in the USA, being 1.53 times more expensive per Karnofsky-adjusted life year. Improving donor lung and/or recipient biology during ex vivo lung perfusion may improve its utility for routine transplantation.

5.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928267

ABSTRACT

The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function. In the present study, we investigated the direct effect of AVT on spermatogenesis, using zebrafish as a model organism. Results demonstrate that AVT and its receptors (avpr1aa, avpr2aa, avpr1ab, avpr2ab, and avpr2l) are expressed in the zebrafish brain and testes. The direct action of AVT on spermatogenesis was investigated using an ex vivo culture of mature zebrafish testes for 7 days. Using histological, morphometric, and biochemical approaches, we observed direct actions of AVT on zebrafish testicular function. AVT treatment directly increased the number of spermatozoa in an androgen-dependent manner, while reducing mitotic cells and the proliferation activity of type B spermatogonia. The observed stimulatory action of AVT on spermiogenesis was blocked by flutamide, an androgen receptor antagonist. The present results support the novel hypothesis that AVT stimulates short-term androgen-dependent spermiogenesis. However, its prolonged presence may lead to diminished spermatogenesis by reducing the proliferation of spermatogonia B, resulting in a diminished turnover of spermatogonia, spermatids, and spermatozoa. The overall findings offer an insight into the physiological significance of vasopressin and its homologs in vertebrates as a contributing factor in the multifactorial regulation of male reproduction.


Subject(s)
Receptors, Vasopressin , Spermatogenesis , Testis , Vasotocin , Zebrafish , Animals , Zebrafish/metabolism , Male , Vasotocin/metabolism , Vasotocin/pharmacology , Testis/metabolism , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Spermatozoa/metabolism , Cell Proliferation , Spermatogonia/metabolism , Spermatogonia/cytology
6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240003, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38925868

ABSTRACT

The buccal route has great prospects and possible benefits for the administration of drugs systemically. The present study involves designing, developing and optimising the buccal tablet formulation of Enalapril Maleate (EM) by using the QbD approach. We prepared the EM buccal tablets using the dry granulation method. In the QTPP profile, the CQAs for EM buccal tablets are Mucoadhesive strength, swelling index and drug release (dependent variables); the CMAs identified for EM buccal tablets were Carbopol 934P, HPMC-K100M and chitosan (independent variables). Diluent quantity, blending time and compression force were selected as CPPs; the Box-Behnkentdesign was used to evaluate the relationship between the CMAs and CPPs. Based on the DoE, the composition of the optimised formulation of EM BT-18 consists of 20mg of EM, 15 mg of carbopol 934p, 17 mg of HPMC-K100M, 10mg of chitosan, 30 mg of PVP K-30, 1 mg of magnesium stearate, 16 mg of Mannitol, 1 mg of aspartame, and 50 mg of Ethyl cellulose. The optimised formulation of EM BT 18 was found to have a Mucoadhesive strength of 24.32±0.30g. The swelling index was 90.74±0.25% and drug release was sustained up to 10 hours 98.4±3.62% compared to the marketed product, whose release was up to 8 hours. We attempted to design a buccal tablet of Enalapril Maleate for sustained drug release in the treatment of hypertension. Patients who cannot take oral medication due to trauma or unconscious conditions could receive the formulation. Development of a newly P.ceutical product is very time-consuming, extremely costly and high-risk, with very little chance of a successful outcome. Hence, this study showed EM tablets are already available on the market but we have chosen a buccal drug delivery system using a novel approach using QbD tools to target the quality of the product accurately.


Subject(s)
Enalapril , Tablets , Enalapril/chemistry , Enalapril/administration & dosage , Administration, Buccal , Mouth Mucosa , Drug Compounding , Chemistry, Pharmaceutical/methods
7.
Bioengineering (Basel) ; 11(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927808

ABSTRACT

This study investigates the mechanical behavior of femur bones under loading conditions, focusing on the transition from elastic to plastic deformation and eventual fracture. The force-displacement curves reveal distinct phases of deformation, with an initial linear relationship indicating elastic behavior, followed by deviation from linearity marking the onset of plastic deformation. Fracture occurs beyond a critical load, leading to a sharp drop in the force-displacement curve. The maximum fracture force varies among specimens and is influenced by bone geometry, size, cross-sectional area, and cortical thickness. Post-failure analysis highlights additional insights into fracture mechanics and bone material toughness. Reinforcing bones with screws enhances their strength, which is evident in the higher fracture forces observed in force-displacement diagrams. Fixation procedures following fractures further increase bone strength. Comparing specimens with and without strengthening underscores the effectiveness of reinforcement methods in improving bone mechanical properties. After analyzing the results, it is evident that femur bones with reinforcement can withstand greater loads, and they can also absorb higher impact energies while remaining in the elastic deformation range and without suffering permanent plastic damage. This study provides valuable insights into bone biomechanics and the efficacy of reinforcement techniques in enhancing bone strength and fracture resistance.

8.
FEBS Lett ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831473

ABSTRACT

Fatty acid amide hydrolase (FAAH) is a conserved hydrolase in eukaryotes with promiscuous activity toward a range of acylamide substrates. The native substrate repertoire for FAAH has just begun to be explored in plant systems outside the model Arabidopsis thaliana. Here, we used ex vivo lipidomics to identify potential endogenous substrates for Medicago truncatula FAAH1 (MtFAAH1). We incubated recombinant MtFAAH1 with lipid mixtures extracted from M. truncatula and resolved their profiles via gas chromatography-mass spectrometry (GC-MS). Data revealed that besides N-acylethanolamines (NAEs), sn-1 or sn-2 isomers of monoacylglycerols (MAGs) were substrates for MtFAAH1. Combined with in vitro and computational approaches, our data support both amidase and esterase activities for MtFAAH1. MAG-mediated hydrolysis via MtFAAH1 may be linked to biological roles that are yet to be discovered.

9.
Int Immunopharmacol ; 137: 112378, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852518

ABSTRACT

Psoriasis is a chronic, inflammatory, papulosquamous, noncontagious disease characterized by scaly, demarcated erythematous plaque, affecting skin, nails, and scalp. The IL-23/Th17 axis is the main operator in the development of psoriasis. Psoriasis is affecting worldwide, and new treatment options are urgently needed. Various local and systemic treatments are available for psoriasis but they only provide symptomatic relief because of numerous unknown mechanisms. Clinical trials demand overwhelming resources; therefore, drug development predominantly depends on the in-vivo, in-vitro, and ex-vivo techniques. Immediate attention is required to develop experimental techniques that completely imitate human psoriasis to assist drug development. This review portrays the various in-vivo, in-vitro, and ex-vivo techniques used in psoriasis research. It describes these techniques' characteristics, pathological presentations, and mechanisms. The experimental techniques of psoriasis provide significant information on disease progression mechanisms and possible therapeutic targets. However, until now, it has been challenging to invent a timely, affordable model that precisely imitates a human disease. Only the xenotransplantation model is reckoned as the closer, that mimics the complete genetic, and immunopathogenic event. Imiquimod-induced psoriasis and HaCat cell lines are popular among researchers because of their convenience, ease of use, and cost-effectiveness. There need to further improve the experimental techniques to best serve the disease imitation and meet the research goal.

10.
Ultrasonics ; 142: 107371, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38852549

ABSTRACT

High Intensity Focused Ultrasound (HIFU) is used in clinical practice for thermal ablation of malignant and benign solid tumors located in various organs. One of the reason limiting the wider use of this technology is the long treatment time resulting from i.a. the large difference between the size of the focal volume of the heating beam and the size of the tumor. Therefore, the treatment of large tumors requires scanning their volume with a sequence of single heating beams, the focus of which is moved in the focal plane along a specific trajectory with specific time and distance interval between sonications. To avoid an undesirable increase in the temperature of healthy tissues surrounding the tumor during scanning, the acoustic power and exposure time of each HIFU beam as well as the time intervals between sonications should be selected in such a way as to cover the entire volume of the tumor with necrosis as quickly as possible. This would reduce the costs of treatment. The aim of this study was to quantitatively evaluate the hypothesis that selecting the average acoustic power and exposure time for each individual heating beam, as well as the temporal intervals between sonications, can significantly shorten treatment time. Using 3D numerical simulations, the dependence of the duration of treatment of a tumor with a diameter of 5 mm or 9 mm (requiring multiple exposure to the HIFU beam) on the sonication parameters (acoustic power, exposure time) of each single beam capable of delivering the threshold thermal dose (CEM43 = 240 min) to the treated tissue volume was examined. The treatment duration was determined as the sum of exposure times to individual beams and time intervals between sonications. The tumor was located inside the ex vivo tissue sample at a depth of 12.6 mm. The thickness of the water layer between the HIFU transducer and the tissue was 50 mm. The sonication and scanning parameters selected using the developed algorithm shortened the duration of the ablation procedure by almost 14 times for a 5-mm tumor and 20 times for a 9-mm tumor compared to the duration of the same ablation plan when a HIFU beam was used of a constant acoustic power, constant exposure time (3 s) and constant long time intervals (120 s) between sonications. Results of calculations of the location and size of the necrotic lesion formed were experimentally verified on ex vivo pork loin samples, showing good agreement between them. In this way, it was proven that the proper selection of sonication and scanning parameters for each HIFU beam allows to significantly shorten the time of HIFU therapy.

11.
Front Bioeng Biotechnol ; 12: 1380950, 2024.
Article in English | MEDLINE | ID: mdl-38846805

ABSTRACT

As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.

12.
J Microencapsul ; : 1-18, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829223

ABSTRACT

AIM: The work reports a novel nanophytosomal gel encapsulating Alpinia galanga (L.) Willd leaf essential oil to treat periodontal infections. METHODS: Alpinia oil-loaded nanophytosomes (ANPs) were formulated by lipid layer hydration technique and were evaluated by FESEM, cryo-TEM, loading efficiency, zeta potential, particle size, release profile etc. Selected ANPs-loaded gel (ANPsG) was evaluated by both in vitro and in vivo methods. RESULTS: Selected ANPs were spherical, unilamellar, 49.32 ± 2.1 nm size, 0.45 PDI, -46.7 ± 0.8 mV zeta potential, 9.8 ± 0.5% (w/w) loading, 86.4 ± 3.02% (w/w) loading efficiency with sustained release profile. ANPsG showed good spreadability (6.8 ± 0.3 gm.cm/sec), extrudability (79.33 ± 1.5%), viscosity (36522 ± 0.82 cps), mucoadhesive strength (44.56 ± 3.5 gf) with sustained ex vivo release tendency. Satisfied ZOI and MIC was observed for ANPsG against periodontal bacteria vs. standard/control. ANPsG efficiently treated infection in ligature induced periodontitis model. Key pharmacokinetic parameters like AUC, MRT, Vd were enhanced for ANPsG. CONCLUSION: ANPsG may be investigated for futuristic clinical studies.

13.
J Transl Med ; 22(1): 526, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822352

ABSTRACT

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Subject(s)
Antigens, CD34 , Neutrophils , Humans , Neutrophils/metabolism , Neutrophils/cytology , Antigens, CD34/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Proteomics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Gene Editing , Cell Degranulation , Stem Cells/metabolism , Stem Cells/cytology , Cytokines/metabolism , Phenotype
14.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891981

ABSTRACT

Mesenchymal stem cells (MSCs), pivotal for tissue repair, utilize collagen to restore structural integrity in damaged tissue, preserving its organization through concomitant remodeling. The non-enzymatic glycation of collagen potentially compromises MSC communication, particularly upon advancing the process, underlying various pathologies such as late-stage diabetic complications and aging. However, an understanding of the impact of early-stage collagen glycation on MSC interaction is lacking. This study examines the fate of in vitro glycated rat tail collagen (RTC) upon exposure to glucose for 1 or 5 days in contact with MSCs. Utilizing human adipose tissue-derived MSCs (ADMSCs), we demonstrate their significantly altered interaction with glycated collagen, characterized morphologically by reduced cell spreading, diminished focal adhesions formation, and attenuated development of the actin cytoskeleton. The morphological findings were confirmed by ImageJ 1.54g morphometric analysis with the most significant drop in the cell spreading area (CSA), from 246.8 µm2 for the native collagen to 216.8 µm2 and 163.7 µm2 for glycated ones, for 1 day and 5 days, respectively, and a similar trend was observed for cell perimeter 112.9 µm vs. 95.1 µm and 86.2 µm, respectively. These data suggest impaired recognition of early glycated collagen by integrin receptors. Moreover, they coincide with the reduced fibril-like reorganization of adsorbed FITC-collagen (indicating impaired remodeling) and a presumed decreased sensitivity to proteases. Indeed, confirmatory assays reveal diminished FITC-collagen degradation for glycated samples at 1 day and 5 days by attached cells (22.8 and 30.4%) and reduced proteolysis upon exogenous collagenase addition (24.5 and 40.4%) in a cell-free system, respectively. The mechanisms behind these effects remain uncertain, although differential scanning calorimetry confirms subtle structural/thermodynamic changes in glycated collagen.


Subject(s)
Collagen , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Collagen/metabolism , Glycosylation , Animals , Rats , Cell Communication , Cells, Cultured , Glucose/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Focal Adhesions/metabolism , Focal Adhesions/drug effects
15.
Arch Microbiol ; 206(7): 315, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904672

ABSTRACT

Exploring probiotics for their crosstalk with the host microbiome through the fermentation of non-digestible dietary fibers (prebiotics) for their potential metabolic end-products, particularly short-chain fatty acids (SCFAs), is important for understanding the endogenous host-gut microbe interaction. This study was aimed at a systematic comparison of commercially available probiotics to understand their synergistic role with specific prebiotics in SCFAs production both in vitro and in the ex vivo gut microcosm model. Probiotic strains isolated from pharmacy products including Lactobacillus sporogenes (strain not labeled), Lactobacillus rhamnosus GG (ATCC53103), Streptococcus faecalis (T-110 JPC), Bacillus mesentericus (TO-AJPC), Bacillus clausii (SIN) and Saccharomyces boulardii (CNCM I-745) were assessed for their probiotic traits including survival, antibiotic susceptibility, and antibacterial activity against pathogenic strains. Our results showed that the microorganisms under study had strain-specific abilities to persist in human gastrointestinal conditions and varied anti-infective efficacy and antibiotic susceptibility. The probiotic strains displayed variation in the utilization of six different prebiotic substrates for their growth under aerobic and anaerobic conditions. Their prebiotic scores (PS) revealed which were the most suitable prebiotic carbohydrates for the growth of each strain and suggested xylooligosaccharide (XOS) was the poorest utilized among all. HPLC analysis revealed a versatile pattern of SCFAs produced as end-products of prebiotic fermentation by the strains which was influenced by growth conditions. Selected synbiotic (prebiotic and probiotic) combinations showing high PS and high total SCFAs production were tested in an ex vivo human gut microcosm model. Interestingly, significantly higher butyrate and propionate production was found only when synbiotics were applied as against when individual probiotic or prebiotics were applied alone. qRT-PCR analysis with specific primers showed that there was a significant increase in the abundance of lactobacilli and bifidobacteria with synbiotic blends compared to pre-, or probiotics alone. In conclusion, this work presents findings to suggest prebiotic combinations with different well-established probiotic strains that may be useful for developing effective synbiotic blends.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Prebiotics , Probiotics , Synbiotics , Humans , Probiotics/administration & dosage , Fatty Acids, Volatile/metabolism , Anti-Bacterial Agents/pharmacology , Fermentation , Gastrointestinal Tract/microbiology , Lactobacillus/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Saccharomyces boulardii/metabolism
16.
Res Sq ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38883749

ABSTRACT

Background: Mesenchymal stem cells (MSCs) from gestational tissues represent promising strategies for in utero treatment of congenital malformations, but plasticity and required high-risk surgical procedures limit their use. Here we propose natural exosomes (EXOs) isolated from amniotic fluid-MSCs (AF-MSCs), and their mimetic counterparts (MIMs), as valid, stable, and minimally invasive therapeutic alternatives. Methods: MIMs were generated from AF-MSCs by combining sequential filtration steps through filter membranes with different porosity and size exclusion chromatography columns. Physiochemical and molecular characterization was performed to compare them to EXOs released from the same number of cells. The possibility to exploit both formulations as mRNA-therapeutics was explored by evaluating cell uptake (using two different cell types, fibroblasts, and macrophages) and mRNA functionality overtime in an in vitro experimental setting as well as in an ex vivo, whole embryo culture using pregnant C57BL6 dams. Results: Molecular and physiochemical characterization showed no differences between EXOs and MIMs, with MIMs determining a 3-fold greater yield. MIMs delivered a more intense and prolonged expression of mRNA encoding for green fluorescent protein (GFP) in macrophages and fibroblasts. An ex-vivo whole embryo culture demonstrated that MIMs mainly accumulate at the level of the yolk sac, while EXOs reach the embryo. Conclusions: The present data confirms the potential application of EXOs for the prenatal repair of neural tube defects and proposes MIMs as prospective vehicles to prevent congenital malformations caused by in utero exposure to drugs.

17.
MAbs ; 16(1): 2362789, 2024.
Article in English | MEDLINE | ID: mdl-38845069

ABSTRACT

Bispecific antibodies, including bispecific IgG, are emerging as an important new class of antibody therapeutics. As a result, we, as well as others, have developed engineering strategies designed to facilitate the efficient production of bispecific IgG for clinical development. For example, we have extensively used knobs-into-holes (KIH) mutations to facilitate the heterodimerization of antibody heavy chains and more recently Fab mutations to promote cognate heavy/light chain pairing for efficient in vivo assembly of bispecific IgG in single host cells. A panel of related monospecific and bispecific IgG1 antibodies was constructed and assessed for immunogenicity risk by comparison with benchmark antibodies with known low (Avastin and Herceptin) or high (bococizumab and ATR-107) clinical incidence of anti-drug antibodies. Assay methods used include dendritic cell internalization, T cell proliferation, and T cell epitope identification by in silico prediction and MHC-associated peptide proteomics. Data from each method were considered independently and then together for an overall integrated immunogenicity risk assessment. In toto, these data suggest that the KIH mutations and in vitro assembly of half antibodies do not represent a major risk for immunogenicity of bispecific IgG1, nor do the Fab mutations used for efficient in vivo assembly of bispecifics in single host cells. Comparable or slightly higher immunogenicity risk assessment data were obtained for research-grade preparations of trastuzumab and bevacizumab versus Herceptin and Avastin, respectively. These data provide experimental support for the common practice of using research-grade preparations of IgG1 as surrogates for immunogenicity risk assessment of their corresponding pharmaceutical counterparts.


Subject(s)
Antibodies, Bispecific , Immunoglobulin G , Antibodies, Bispecific/immunology , Antibodies, Bispecific/genetics , Humans , Immunoglobulin G/immunology , Immunoglobulin G/genetics , Risk Assessment , Trastuzumab/immunology , Trastuzumab/genetics , Animals , Bevacizumab/immunology , Bevacizumab/genetics , Mutation
18.
Microbiome Res Rep ; 3(2): 18, 2024.
Article in English | MEDLINE | ID: mdl-38841408

ABSTRACT

Background: The gut and its microbiome have a major impact on many aspects of health and are therefore also an attractive target for drug- or food-based therapies. Here, we report on the added value of combining a microbiome screening model, the i-screen, with fresh intestinal tissue explants in a microfluidic gut-on-a-chip model, the Intestinal Explant Barrier Chip (IEBC). Methods: Adult human gut microbiome (fecal pool of 6 healthy donors) was cultured anaerobically in the i-screen platform for 24 h, without and with exposure to 4 mg/mL inulin. The i-screen cell-free culture supernatant was subsequently applied to the luminal side of adult human colon tissue explants (n = 3 donors), fixed in the IEBC, for 24 h and effects were evaluated. Results: The supplementation of the media with inulin promoted the growth of Anaerostipes, Bifidobacterium, Blautia, and Collinsella in the in vitro i-screen, and triggered an elevated production of butyrate by the microbiota. Human colon tissue exposed to inulin-treated i-screen cell-free culture supernatant or control i-screen cell-free culture supernatant with added short-chain fatty acids (SCFAs) showed improved tissue barrier integrity measured by a 28.2%-34.2% reduction in FITC-dextran 4000 (FD4) leakage and 1.3 times lower transport of antipyrine. Furthermore, the release of pro-inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was reduced under these circumstances. Gene expression profiles confirmed these findings, but showed more profound effects for inulin-treated supernatant compared to SCFA-supplemented supernatant. Conclusion: The combination of i-screen and IEBC facilitates the study of complex intestinal processes such as host-microbial metabolite interaction and gut health.

19.
Materials (Basel) ; 17(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930373

ABSTRACT

In this study, the potential of silk fibroin biomaterials for enhancing wound healing is explored, focusing on their integration into a human 3D ex vivo wound model derived from abdominoplasties. For this purpose, cast silk fibroin membranes and electrospun nonwoven matrices from Bombyx mori silk cocoons were compared to untreated controls over 20 days. Keratinocyte behavior and wound healing were analyzed qualitatively and quantitatively by histomorphometric and immune histochemical methods (HE, Ki67, TUNEL). Findings reveal rapid keratinocyte proliferation on both silk fibroin membrane and nonwoven matrices, along with enhanced infiltration in the matrix, suggesting improved early wound closure. Silk fibroin membranes exhibited a significantly improved early regeneration, followed by nonwoven matrices (p < 0.05) compared to untreated wounds, resulting in the formation of multi-layered epidermal structures with complete regeneration. Overall, the materials demonstrated excellent biocompatibility, supporting cell activity with no signs of increased apoptosis or early degradation. These results underscore silk fibroin's potential in clinical wound care, particularly in tissue integration and re-epithelialization, offering valuable insights for advanced and-as a result of the electrospinning technique-individual wound care development. Furthermore, the use of an ex vivo wound model appears to be a viable option for pre-clinical testing.

20.
Microorganisms ; 12(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38930543

ABSTRACT

Acanthamoeba, a widely distributed free-living amoeba found in various environments, is an opportunistic pathogen responsible for causing Acanthamoeba keratitis, a condition that may lead to blindness. However, identifying the pathogenicity of Acanthamoeba is challenging due to its complex life cycle, ability to adapt to different environments, variable virulence factors, and intricate interactions with the host immune system. Additionally, the development of an effective model for studying Acanthamoeba pathogenicity is limited, hindering a comprehensive understanding of the mechanisms underlying its virulence and host interactions. The aim of this study was to develop an ex vivo model for Acanthamoeba infection using porcine eyeballs and to evaluate the pathogenicity of the Acanthamoeba isolates. Based on slit lamp and biopsy analysis, the developed ex vivo model is capable of successfully infecting Acanthamoeba within 3 days. Histopathological staining revealed that clinical isolates of Acanthamoeba exhibited greater corneal stroma destruction and invasion in this model than environmental isolates. Our results highlight the importance of an ex vivo porcine eye model in elucidating the pathogenesis of Acanthamoeba infection and its potential implications for understanding and managing Acanthamoeba-related ocular diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...