Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Anim Ecol ; 92(9): 1680-1694, 2023 09.
Article in English | MEDLINE | ID: mdl-37173807

ABSTRACT

Mutualistic relationships, such as those between plants and pollinators, may be vulnerable to the local extinctions predicted under global environmental change. However, network theory predicts that plant-pollinator networks can withstand species loss if pollinators switch to alternative floral resources (rewiring). Whether rewiring occurs following species loss in natural communities is poorly known because replicated species exclusions are difficult to implement at appropriate spatial scales. We experimentally removed a hummingbird-pollinated plant, Heliconia tortuosa, from within tropical forest fragments to investigate how hummingbirds respond to temporary loss of an abundant resource. Under the rewiring hypothesis, we expected that behavioural flexibility would allow hummingbirds to use alternative resources, leading to decreased ecological specialization and reorganization of the network structure (i.e. pairwise interactions). Alternatively, morphological or behavioural constraints-such as trait-matching or interspecific competition-might limit the extent to which hummingbirds alter their foraging behaviour. We employed a replicated Before-After-Control-Impact experimental design and quantified plant-hummingbird interactions using two parallel sampling methods: pollen collected from individual hummingbirds ('pollen networks', created from >300 pollen samples) and observations of hummingbirds visiting focal plants ('camera networks', created from >19,000 observation hours). To assess the extent of rewiring, we quantified ecological specialization at the individual, species and network levels and examined interaction turnover (i.e. gain/loss of pairwise interactions). H. tortuosa removal caused some reorganization of pairwise interactions but did not prompt large changes in specialization, despite the large magnitude of our manipulation (on average, >100 inflorescences removed in exclusion areas of >1 ha). Although some individual hummingbirds sampled through time showed modest increases in niche breadth following Heliconia removal (relative to birds that did not experience resource loss), these changes were not reflected in species- and network-level specialization metrics. Our results suggest that, at least over short time-scales, animals may not necessarily shift to alternative resources after losing an abundant food resource-even in species thought to be highly opportunistic foragers, such as hummingbirds. Given that rewiring contributes to theoretical predictions of network stability, future studies should investigate why pollinators might not expand their diets after a local resource extinction.


Subject(s)
Flowers , Pollination , Animals , Plants , Pollen , Birds/anatomy & histology
2.
Ecol Evol ; 12(6): e8956, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35784040

ABSTRACT

Ecosystem engineers that modify the soil and ground-layer properties exert a strong influence on vegetation communities in ecosystems worldwide. Understanding the interactions between animal engineers and vegetation is challenging when in the presence of large herbivores, as many vegetation communities are simultaneously affected by both engineering and herbivory. The superb lyrebird Menura novaehollandiae, an ecosystem engineer in wet forests of south-eastern Australia, extensively modifies litter and soil on the forest floor. The aim of this study was to disentangle the impacts of engineering by lyrebirds and herbivory by large mammals on the composition and structure of ground-layer vegetation. We carried out a 2-year, manipulative exclusion experiment in the Central Highlands of Victoria, Australia. We compared three treatments: fenced plots with simulated lyrebird foraging; fenced plots excluding herbivores and lyrebirds; and open controls. This design allowed assessment of the relative impacts of engineering and herbivory on germination rates, seedling density, vegetation cover and structure, and community composition. Engineering by lyrebirds enhanced the germination of seeds in the litter layer. After 2 years, more than double the number of germinants were present in "engineered" than "non-engineered" plots. Engineering did not affect the density of seedlings, but herbivory had strong detrimental effects. Herbivory also reduced the floristic richness and structural complexity (<0.5 m) of forest vegetation, including the cover of herbs. Neither process altered the floristic composition of the vegetation within the 2-year study period. Ecosystem engineering by lyrebirds and herbivory by large mammals both influence the structure of forest-floor vegetation. The twofold increase in seeds stimulated to germinate by engineering may contribute to the evolutionary adaptation of plants by allowing greater phenotypic expression and selection than would otherwise occur. Over long timescales, engineering and herbivory likely combine to maintain a more-open forest floor conducive to ongoing ecosystem engineering by lyrebirds.

3.
Conserv Biol ; 36(4): e13886, 2022 08.
Article in English | MEDLINE | ID: mdl-35075685

ABSTRACT

Pollinator declines have prompted efforts to assess how land-use change affects insect pollinators and pollination services in agricultural landscapes. Yet many tools to measure insect pollination services require substantial landscape-scale data and technical expertise. In expert workshops, 3 straightforward methods (desk-based method, field survey, and empirical manipulation with exclusion experiments) for rapid insect pollination assessment at site scale were developed to provide an adaptable framework that is accessible to nonspecialist with limited resources. These methods were designed for TESSA (Toolkit for Ecosystem Service Site-Based Assessment) and allow comparative assessment of pollination services at a site of conservation interest and in its most plausible alternative state (e.g., converted to agricultural land). We applied the methods at a nature reserve in the United Kingdom to estimate the value of insect pollination services provided by the reserve. The economic value of pollination services provided by the reserve ranged from US$6163 to US$11,546/year. The conversion of the reserve to arable land would provide no insect pollination services and a net annual benefit from insect-pollinated crop production of approximately $1542/year (US$24∙ha-1 ∙year-1 ). The methods had wide applicability and were readily adapted to different insect-pollinated crops: rape (Brassica napus) and beans (Vicia faba) crops. All methods were rapidly employed under a low budget. The relatively less robust methods that required fewer resources yielded higher estimates of annual insect pollination benefit.


Diversidad y Conservación de Gasterópodos Subterráneos de Agua Dulce en los Estados Unidos y en México Resumen Las declinaciones de los polinizadores han impulsado los esfuerzos por evaluar cómo el cambio del uso de suelo afecta a los insectos polinizadores y los servicios de polinización en los paisajes agrícolas. Aun así, muchas de las herramientas para medir los servicios de los insectos polinizadores requieren datos sustanciales a escala de paisaje y el conocimiento de expertos. Desarrollamos tres métodos sencillos (método de gabinete, censo de campo y manipulación empírica con experimentos de exclusión) durante algunos talleres de expertos para la evaluación rápida de la polinización por insectos a escala de sitio con el objetivo de proporcionar un marco de trabajo adaptable y accesible para quienes no son especialistas y cuentan con recursos limitados. Estos métodos fueron diseñados para TESSA (Toolkit for Ecosystem Service Site-Based Assessment, en inglés) y permiten la evaluación comparativa de los servicios de polinización en los sitios de interés para la conservación y su estado alternativo más plausible (p. ej.: convertido a suelo agrícola). Aplicamos los métodos en una reserva natural del Reino Unido para estimar el valor de los servicios de polinización por insectos que proporciona la reserva. El valor económico de los servicios de polinización que proporciona la reserva varió desde US$6,163 a US$11,546 al año-1 . La conversión de la reserva a suelo arable no proporcionaría servicios de polinización por insectos, pero sí un beneficio anual neto a partir de la producción de cultivos polinizados por insectos de aproximadamente $1,542 al año-1 (US$24 ha-1 año-1 ). Los métodos tuvieron una aplicabilidad generalizada y estaban ya adaptados a los diferentes cultivos polinizados por insectos: cultivos de colza (Brassica napus) y habas (Vicia faba). Todos los métodos pudieron usarse con bajo presupuesto. Los métodos relativamente menos robustos que requirieron menos recursos produjeron estimados más elevados del beneficio anual de la polinización por insectos.


Subject(s)
Crops, Agricultural , Pollination , Animals , Bees , Brassica napus , Conservation of Natural Resources , Ecosystem , Insecta , Vicia faba
4.
PeerJ ; 9: e10696, 2021.
Article in English | MEDLINE | ID: mdl-33614270

ABSTRACT

The Eastern Tropical Pacific (ETP) is one of the most isolated and least studied regions in the world. This particularly applies to the coast of El Salvador, where the only reef between Guatemala and Nicaragua, called Los Cóbanos reef, is located. There is very little published information about the reef's biodiversity, and to our knowledge, no research on its ecology and responses to anthropogenic impacts, such as overfishing, has been conducted. The present study, therefore, described the benthic community of Los Cóbanos reef, El Salvador, using the Line-Point-Intercept-Transect method and investigated changes in the benthic community following the exclusion of piscine macroherbivores over a period of seven weeks. Results showed high benthic algae cover (up to 98%), dominated by turf and green algae, and low coral cover (0-4%). Porites lobata was the only hermatypic coral species found during the surveys. Surprisingly, crustose coralline algae (CCA) showed a remarkable total cover increase by 58%, while turf algae cover decreased by 82%, in experimental plots after seven weeks of piscine macroherbivore exclusion. These findings apparently contradict the results of most previous similar studies. While it was not possible to ascertain the exact mechanisms leading to these drastic community changes, the most likely explanation is grazing on turf by small grazing macroherbivores that had access to the cages during the experiment and clearing of CCA initially covered by epiphytes and sediments. A higher CCA cover would promote the succesful settlement by corals and prevent further erosion of the reef framework. Therefore it is crucial to better understand algal dynamics, herbivory, and implications of overfishing at Los Cóbanos to avoid further reef deterioration. This could be achieved through video surveys of the fish community, night-time observations of the macroinvertebrate community, exclusion experiments that also keep out herbivorous macroinvertebrates, and/or experimental assessments of turf algae/CCA interactions.

5.
New Phytol ; 230(5): 2061-2071, 2021 06.
Article in English | MEDLINE | ID: mdl-33506513

ABSTRACT

Pathogenic and mutualistic fungi have contrasting effects on seedling establishment, but it remains unclear whether density-dependent survival and growth are regulated by access to different types of mycorrhizal fungal networks supported by neighbouring adult trees. Here, we conducted an extensive field survey to test how mycorrhizal and pathogenic fungal colonization of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) seedlings in a subtropical forest respond to density of neighbouring adult trees. In addition, we undertook a hyphal exclusion experiment to explicitly test the role of soil fungal networks in driving density-dependent effects on seedling growth and survival. Conspecific adult density was a strong predictor for the relative abundance of putative pathogens, which was greater in roots of AM than of ECM seedlings, while mycorrhizal fungal abundance and colonization were not consistently affected by conspecific adult density. Both ECM and AM fungal networks counteracted conspecific density-dependent mortality, but ECM fungi were more effective at weakening the negative effects of high seedling density than AM fungi. Our findings reveal a critical role of common fungal networks in mitigating negative density-dependent effects of pathogenic fungi on seedling establishment, which provides mechanistic insights into how soil fungal diversity shapes plant community structure in subtropical forests.


Subject(s)
Mycorrhizae , Seedlings , Forests , Plant Roots , Soil , Soil Microbiology , Trees
6.
Ecol Appl ; 31(1): e02219, 2021 01.
Article in English | MEDLINE | ID: mdl-32810887

ABSTRACT

Ecosystem engineers physically modify their environment, thereby altering habitats for other organisms. Increasingly, "engineers" are recognized as an important focus for conservation and ecological restoration because their actions affect a range of ecosystem processes and thereby influence how ecosystems function. The Superb Lyrebird Menura novaehollandiae is proposed as an ecosystem engineer in forests of southeastern Australia due to the volume of soil and litter it turns over when foraging. We measured the seasonal and spatial patterns of foraging by Lyrebirds and the amount of soil displaced in forests in the Central Highlands, Victoria. We tested the effects of foraging on litter, soil nutrients and soil physical properties by using an experimental approach with three treatments: Lyrebird exclusion, Lyrebird exclusion with simulated foraging, and non-exclusion reference plots. Treatments were replicated in three forest types in each of three forest blocks. Lyrebirds foraged extensively in all forest types in all seasons. On average, Lyrebirds displaced 155.7 Mg/ha of litter and soil in a 12-month period. Greater displacement occurred where vegetation complexity (<50 cm height) was low. After two years of Lyrebird exclusion, soil compaction (top 7.5 cm) increased by 37% in exclusion plots compared with baseline measures, while in unfenced plots it decreased by 22%. Litter depth was almost three times greater in fenced than unfenced plots. Soil moisture, pH, and soil nutrients showed no difference between treatments. The enormous extent of litter and soil turned over by the Superb Lyrebird is unparalleled by any other vertebrate soil engineer in terrestrial ecosystems globally. The profound influence of such foraging activity on forest ecosystems is magnified by its year-round pattern and widespread distribution. The disturbance regime that Lyrebirds impose has implications for diverse ecosystem processes including decomposition and nutrient cycling, the composition of litter- and soil-dwelling invertebrate communities, the shaping of ground-layer vegetation patterns, and fire behavior and post-fire ecosystem recovery. Maintaining Lyrebird populations as a key facilitator of ecosystem function is now timely and critical as unprecedented wildfires in eastern Australia in summer 2019-2020 have severely burned ~12 million ha of forest, including ~30% of the geographic range of the Superb Lyrebird.


Subject(s)
Ecosystem , Fires , Forests , Soil , Trees , Victoria
7.
Plant Cell Environ ; 43(10): 2380-2393, 2020 10.
Article in English | MEDLINE | ID: mdl-32643169

ABSTRACT

The response of small understory trees to long-term drought is vital in determining the future composition, carbon stocks and dynamics of tropical forests. Long-term drought is, however, also likely to expose understory trees to increased light availability driven by drought-induced mortality. Relatively little is known about the potential for understory trees to adjust their physiology to both decreasing water and increasing light availability. We analysed data on maximum photosynthetic capacity (Jmax , Vcmax ), leaf respiration (Rleaf ), leaf mass per area (LMA), leaf thickness and leaf nitrogen and phosphorus concentrations from 66 small trees across 12 common genera at the world's longest running tropical rainfall exclusion experiment and compared responses to those from 61 surviving canopy trees. Small trees increased Jmax , Vcmax , Rleaf and LMA (71, 29, 32, 15% respectively) in response to the drought treatment, but leaf thickness and leaf nutrient concentrations did not change. Small trees were significantly more responsive than large canopy trees to the drought treatment, suggesting greater phenotypic plasticity and resilience to prolonged drought, although differences among taxa were observed. Our results highlight that small tropical trees have greater capacity to respond to ecosystem level changes and have the potential to regenerate resilient forests following future droughts.


Subject(s)
Carbon/metabolism , Trees/metabolism , Dehydration , Droughts , Forests , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Transpiration , Trees/physiology , Tropical Climate
8.
Ecol Lett ; 23(9): 1349-1359, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32455502

ABSTRACT

Aboveground fungal pathogens can substantially reduce biomass production in grasslands. However, we lack a mechanistic understanding of the drivers of fungal pathogen infection and impact. Using a grassland global change and biodiversity experiment we show that the trade-off between plant growth and defense is the main determinant of infection incidence. In contrast, nitrogen addition only indirectly increased incidence via shifting plant communities towards faster growing species. Plant diversity did not decrease incidence, likely because spillover of generalist pathogens or dominance of susceptible plants counteracted negative diversity effects. A fungicide treatment increased plant biomass production and high levels of infection incidence were associated with reduced biomass. However, pathogen impact was context dependent and infection incidence reduced biomass more strongly in diverse communities. Our results show that a growth-defense trade-off is the key driver of pathogen incidence, but pathogen impact is determined by several mechanisms and may depend on pathogen community composition.


Subject(s)
Grassland , Plants , Biodiversity , Biomass , Fungi
9.
Ecology ; 98(7): 1945-1956, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28464275

ABSTRACT

One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators.


Subject(s)
Ants/physiology , Arecaceae/growth & development , Birds/physiology , Chiroptera/physiology , Ecosystem , Animals , Predatory Behavior
10.
AoB Plants ; 9(6): plx062, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29308128

ABSTRACT

When insect activity is limited at low temperature, birds may be comparatively more important pollinators than insects for flowering plants. It has been thought that many large-flowered Rhododendron species are pollinated by local birds in the Himalayan regions because most of these species flower in spring at high elevation with cool atmospheric temperature. However, experimental evidence for the role of bird pollination in this hyperdiverse genus remains scarce. To examine the role of birds and insects in pollination, we observed floral visitors to 15 Rhododendron species with different floral sizes and abundant flowering individuals in the eastern Himalayas, Southwest China. To examine the role of birds and insects in female reproductive success in each species, cages were used to exclude birds but not insects from visiting flowers and net bags were used to exclude all floral visitors. Inflorescences where visitation was excluded did not produce fruits in any of the Rhododendron species, indicating that sexual reproduction in these species depended on pollinator visitation. Bird visits were generally less frequent than bee visits in the studied species. However, in the nine species on which bird visitors were observed, fruit and/or seed set were greatly reduced in inflorescences caged to exclude birds but not bees, compared to open-pollinated inflorescences. In the other six species on which bird visitation was not observed, fruit and seed set did not differ significantly between caged and open inflorescences except in one species (R. wardii). Manipulations to achieve selective exclusion of visitors demonstrated that birds could be effective pollinators for 10 out of 15 studied Rhododendron species in the eastern Himalayas. Floral characteristics of these Rhododendron species and weather conditions might favour the evolution of bird pollination systems in the East Himalayas.

11.
J Anim Ecol ; 83(5): 1149-57, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24666375

ABSTRACT

A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator-herbivore-plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators' offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the pollinators and the plant. Predation is thus a key functional factor that can shape the community structure of a pollinator-plant mutualistic system.


Subject(s)
Ants/physiology , Ficus/parasitology , Food Chain , Pollination , Wasps/physiology , Animals , China , Female , Ficus/physiology , Host-Parasite Interactions , Oviposition/physiology , Predatory Behavior , Seeds/parasitology , Symbiosis
12.
Braz. j. biol ; 68(4): 695-701, Nov. 2008. ilus, mapas, tab
Article in English | LILACS | ID: lil-504486

ABSTRACT

Benthic macroinvertebrates constitute the link between organic matter input in streams and fishes. However, the possibility of influence of predators on the invertebrates is still a controversial issue. The possibility of alteration of the benthic community by the modification in predation in a stream in the South of Brazil was studied by means of an exclusion experiment under semi-natural conditions. The exclusion showed an increase in the abundance of Plecoptera in the river where the rainbow trout was introduced, the larvae of Trichoptera also increased in abundance in the units of fish exclusion. This difference does not confirm the pressure applied by the trout on the benthic macro fauna due to differences in ichthyofauna and in the habitat of both rivers. Nevertheless, it points to the need for the development of studies concerning the trophic relations and the possible effects of this introduction in the aquatic biota.


Os macroinvertebrados bentônicos exercem a ligação entre a entrada de matéria orgânica nos rios e os peixes. Porém, a possibilidade de influência dos predadores sobre os invertebrados é uma questão ainda controversa. A possibilidade de alteração da comunidade bentônica, pela modificação na predação em um rio no sul do Brasil, foi estudada através de um experimento de exclusão em condições seminaturais. A exclusão resultou no aumento na abundância de Plecoptera no rio onde é feita a introdução de truta arco-íris; as larvas de Trichoptera também aumentaram em abundância nas unidades onde se efetuou a exclusão. Essa diferença não pode ser atribuída à presença das trutas, devido às diferenças na ictiofauna e de habitat dos dois rios. Entretanto mostra a necessidade de desenvolvimento de estudos acerca das relações tróficas e possíveis efeitos desta introdução sobre a biota aquática


Subject(s)
Animals , Ecosystem , Fishes/physiology , Invertebrates/physiology , Predatory Behavior/physiology , Brazil , Oncorhynchus mykiss/physiology , Population Dynamics , Rivers
13.
Oecologia ; 98(1): 15-24, 1994 Jun.
Article in English | MEDLINE | ID: mdl-28312791

ABSTRACT

Meat ants (Iridomyrmex purpureus and allies) are perceived to be dominant members of Australian ant communities because of their great abundance, high rates of activity, and extreme aggressiveness. Here we describe the first experimental test of their influence on other ant species, and one of the first experimental studies of the influence of a dominant species on any diverse ant community. The study was conducted at a 0.4 ha savanna woodland site in the seasonal tropics of northern Australia, where the northern meat ant (I. sanguineus) represented 41% of pitfall catches and 73% of all ants at tuna baits, despite a total of 74 species being recorded. Meat ants were fenced out of experimental plots in order to test their influence on the foraging success of other species, as measured by access to tuna baits. The numbers of all other ants and ant species at baits in exclusion plots were approximately double those in controls (controlling for both the fences and for meat ant abundance), and returned rapidly to control levels when fences were removed after 7 weeks. Individual species differend markedly in their response to the fencing treatment, with species of Camponotus and Monomorium showing the strongest responses. Fencing had no effect on pitfall catches of species other than the meat ant, indicating that the effect of meat ants at baits was directly due to interference with foraging workers, and not regulation of general forager abundance. Such interference by meat ants has important implications for the sizes and densities of colonies of other ant species, and ultimately on overall ant community structure.

14.
Oecologia ; 89(2): 166-167, 1992 Feb.
Article in English | MEDLINE | ID: mdl-28312869

ABSTRACT

Gall clusters of Andricus symbioticus secrete a sweet and sticky food attractive to ants. An ant exclusion experiment demonstrated the selective advantage of attending ants and gall aggregation for A. symbioticus. This gall wasp interacts with the gall-attending ants only through the host plant. Evolution of this symbiotic relationship seems to be associated with gall aggregation.

SELECTION OF CITATIONS
SEARCH DETAIL
...