Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.817
Filter
1.
Chemistry ; : e202401446, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958604

ABSTRACT

Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge-especially if it is not from the obvious list of biologic building blocks. Clues from chemicals recently discovered on Mars and in the Taurus Molecular Cloud 1 (TMC-1), show that intriguing organic compounds exist beyond Earth, which could provide a starting point for unconventional exobiotic designs. Here we present a new self-replicating system with structural similarities to recently discovered compounds on Mars and TMC-1. Rather than using DNA's hydrogen-bonding motif for reliable base-paring, our design employs sulfur-nitrogen interactions to selectively template unique benzothiadiazole units in sequence. We synthesized and studied two versions of this system, one reversible and the other irreversible, and found experimental evidence of self-replication in d-chloroform solvent. These results are part of a larger pursuit in our lab for developing a basis for a potential exobiological system using starting blocks closely related to these cosmic compounds.

2.
Int J Astrobiol ; 22(4): 247-271, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38046673

ABSTRACT

Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.

3.
Life (Basel) ; 13(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36983831

ABSTRACT

The field of astrobiology aims to understand the origin of life on Earth and searches for evidence of life beyond our planet. Although there is agreement on some of the requirements for life on Earth, the exact process by which life emerged from prebiotic conditions is still uncertain, leading to various theories. In order to expand our knowledge of life and our place in the universe, scientists look for signs of life through the use of biosignatures, observations that suggest the presence of past or present life. These biosignatures often require up-close investigation by orbiters and landers, which have been employed in various space missions. Mars, because of its proximity and Earth-like environment, has received the most attention and has been explored using (sub)surface sampling and analysis. Despite its inhospitable surface conditions, Venus has also been the subject of space missions due to the presence of potentially habitable conditions in its atmosphere. In addition, the discovery of habitable environments on icy moons has sparked interest in further study. This article provides an overview of the origin of life on Earth and the astrobiology studies carried out by orbiters and landers.

4.
Life (Basel) ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36836908

ABSTRACT

The origin of life must have included an abiotic stage of carbon redox reactions that involved electron transport chains and the production of lifelike patterns. Chemically oscillating reactions (COR) are abiotic, spontaneous, out-of-equilibrium, and redox reactions that involve the decarboxylation of carboxylic acids with strong oxidants and strong acids to produce CO2 and characteristic self-similar patterns. Those patterns have circular concentricity, radial geometries, characteristic circular twins, colour gradients, cavity structures, and branching to parallel alignment. We propose that COR played a role during the prebiotic cycling of carboxylic acids, furthering the new model for geology where COR can also explain the patterns of diagenetic spheroids in sediments. The patterns of COR in Petri dishes are first considered and compared to those observed in some eukaryotic lifeforms. The molecular structures and functions of reactants in COR are then compared to key biological metabolic processes. We conclude that the newly recognised similarities in compositions and patterns warrant future research to better investigate the role of halogens in biochemistry; COR in life-forms, including in humans; and the COR-stage of prebiotic carbon cycling on other planets, such as Mars.

5.
Astrobiology ; 23(5): 496-512, 2023 05.
Article in English | MEDLINE | ID: mdl-36827584

ABSTRACT

Astrobiology is often defined as the study of the origin, evolution, distribution, and future of life on Earth and in the Universe. As a discipline that emerged in the past decades of the 20th century, its contours have not always been straightforward, resulting from the interweaving of several lines of research as early as the 1960s. By applying computational topic-modeling approaches to the complete full-text corpus of three flagship journals in the field, Origins of Life and Evolution of Biospheres (1968-2020), Astrobiology (2001-2020), and the International Journal of Astrobiology (2002-2020), we identify specific topics that characterize the early blossoming of the discipline. We also map their evolution through time, as emphasis changed between different readings of astrobiology, from an exobiology and origins-of-life perspective to a more space- and planetary-sciences view of the discipline.


Subject(s)
Exobiology , Origin of Life , Planets , Earth, Planet , Extraterrestrial Environment
6.
Soc Stud Sci ; 52(2): 199-226, 2022 04.
Article in English | MEDLINE | ID: mdl-35212246

ABSTRACT

How do scientists maintain their research programs in the face of not finding anything? Continual failure to produce results can result in declining support, scientific controversy and credibility challenges. We elaborate on a crucial mechanism for sustaining the credibility of research programs through periods of non-detection: the maintenance of ambiguity. By this, we refer to scientific strategies that resist closure or an experiment's premature end by creating doubt in negative findings and fostering hope for future positive results. To illustrate this concept, we draw upon the recent history of Martian exobiology. Since the 1960s, planetary scientists have continually tried and failed to find evidence of life on Mars. And yet, interest in extraterrestrial life detection remains high, with more missions to Mars underway. Through three destabilizing events of non-detection, we show how exobiologists sustained the search for Martian life by casting doubt on negative findings, pointing to other possible unexplored routes to success, and finally reconfiguring operations around new methods or goals. New approaches may take the form of shifts in scale, method and object of interest. By pivoting to a different scale, method or object, exobiologists have continued to study a subject continually lacking proof of existence and made important discoveries about life on Earth.


Subject(s)
Exobiology , Mars , Earth, Planet , Extraterrestrial Environment
7.
Life (Basel) ; 11(10)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34685422

ABSTRACT

Natural selection is commonly seen not just as an explanation for adaptive evolution, but as the inevitable consequence of "heritable variation in fitness among individuals". Although it remains embedded in biological concepts, such a formalisation makes it tempting to explore whether this precondition may be met not only in life as we know it, but also in other physical systems. This would imply that these systems are subject to natural selection and may perhaps be investigated in a biological framework, where properties are typically examined in light of their putative functions. Here we relate the major questions that were debated during a three-day workshop devoted to discussing whether natural selection may take place in non-living physical systems. We start this report with a brief overview of research fields dealing with "life-like" or "proto-biotic" systems, where mimicking evolution by natural selection in test tubes stands as a major objective. We contend the challenge may be as much conceptual as technical. Taking the problem from a physical angle, we then discuss the framework of dissipative structures. Although life is viewed in this context as a particular case within a larger ensemble of physical phenomena, this approach does not provide general principles from which natural selection can be derived. Turning back to evolutionary biology, we ask to what extent the most general formulations of the necessary conditions or signatures of natural selection may be applicable beyond biology. In our view, such a cross-disciplinary jump is impeded by reliance on individuality as a central yet implicit and loosely defined concept. Overall, these discussions thus lead us to conjecture that understanding, in physico-chemical terms, how individuality emerges and how it can be recognised, will be essential in the search for instances of evolution by natural selection outside of living systems.

8.
Life (Basel) ; 11(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34575032

ABSTRACT

As we expand the search for life beyond Earth, a water-dominated planet, we turn our eyes to other aquatic worlds. Microbial life found in Earth's many extreme habitats are considered useful analogs to life forms we are likely to find in extraterrestrial bodies of water. Modern-day benthic microbial mats inhabiting the low-oxygen, high-sulfur submerged sinkholes of temperate Lake Huron (Michigan, USA) and microbialites inhabiting the shallow, high-carbonate waters of subtropical Laguna Bacalar (Yucatan Peninsula, Mexico) serve as potential working models for exploration of extraterrestrial life. In Lake Huron, delicate mats comprising motile filaments of purple-pigmented cyanobacteria capable of oxygenic and anoxygenic photosynthesis and pigment-free chemosynthetic sulfur-oxidizing bacteria lie atop soft, organic-rich sediments. In Laguna Bacalar, lithification by cyanobacteria forms massive carbonate reef structures along the shoreline. Herein, we document studies of these two distinct earthly microbial mat ecosystems and ponder how similar or modified methods of study (e.g., robotics) would be applicable to prospective mat worlds in other planets and their moons (e.g., subsurface Mars and under-ice oceans of Europa). Further studies of modern-day microbial mat and microbialite ecosystems can add to the knowledge of Earth's biodiversity and guide the search for life in extraterrestrial hydrospheres.

9.
Appl Environ Microbiol ; 87(19): e0097221, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34288700

ABSTRACT

Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly cored permafrost from the Siberian Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as Aminicenantes, Atribacteria, Chloroflexi, and Actinobacteria within bacteria and Thermoprofundales within archaea. MAGs from these taxa have been obtained previously from nonpermafrost environments and have been suggested to show adaptations to long-term energy starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had greater proportions in the Clusters of Orthologous Groups (COGs) categories of energy production and conversion and carbohydrate transport and metabolism than did their nonpermafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis, and cellulose degradation, which were less prevalent in nonpermafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high-ionic-strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA of high enough quality to assemble MAGs from microorganisms with adaptations to survive long-term freezing in this extreme environment. IMPORTANCE Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture-independent techniques can give a glimpse into how these microorganisms function under these extreme low-temperature and low-energy conditions. This will facilitate understanding how they will change with the environment. This study presents genomic data from this unique environment ∼20,000 to 1,000,000 years of age.


Subject(s)
Metagenome , Permafrost/microbiology , Adaptation, Physiological , Siberia
10.
NOVA publ. cient ; 19(36): 19-30, ene.-jun. 2021. tab
Article in Spanish | LILACS | ID: biblio-1356540

ABSTRACT

Resumen Introducción. Los microorganismos xerófilos han adquirido una mayor relevancia para la realización de investigaciones relacionadas con sus mecanismos adaptativos frente al estrés hídrico, así como la caracterización e identificación de sus hábitats. En Colombia, las zonas semiáridas y desérticas como el desierto de la Tatacoa han sido poco estudiadas a nivel microbiano. Objetivo. Aislar y caracterizar microorganismos xerófilos provenientes del suelo de la zona semiárida de la Tatacoa del departamento del Huila (Colombia). Materiales y métodos. Se colectaron muestras en los sectores denominados localmente como Cuzco y La Victoria, las cuales fueron procesadas para el aislamiento de microorganismos xerófilos en medio selectivo M40Y para posterior caracterización macro y microscópica, así como evaluación mediante pruebas bioquímicas para la utilización de sustratos. Resultados. Fueron aislados 29 morfotipos entre los cuales se pudieron diferenciar: Bacilos y cocos Gram positivos presentes exclusivamente en el sector del Cuzco y bacterias filamentosas ramificadas (actinobacterias) únicamente en el sector de La Victoria. Se estableció la presencia de los géneros Streptomyces, Micrococcus y Corynebacterium. Conclusiones. La presencia de microorganismos relacionados con los géneros anteriormente mencionados permitirá comprender las posibles interacciones que se presentan en este ecosistema, lo que aportará al desarrollo de este lugar como un posible análogo para estudios de búsqueda de vida en otros planetas como Marte. Además, incentivar estudios más detallados donde se puedan recuperar microorganismos que sean de utilidad para diferentes procesos biotecnológicos.


Abstract Introduction. Xerophilic microorganisms have become more relevant for conducting research related to their adaptive mechanisms against water stress, as well as the characterization and identification of their habitats. In Colombia, semi-arid and desert areas such as the Tatacoa desert have been little studied at the microbial level. Objective. Isolation and characterization of cultivable xerophilic microorganisms from the soil of the semi-arid zone of Tatacoa, in the department of Huila (Colombia). Material and methods. For this, samples were collected in the sectors locally called Cuzco and La Victoria, which were processed for the isolation of xerophilic microorganisms in selective M40Y medium for subsequent macro and microscopic characterization, as well as evaluation by biochemical tests for the use of substrates. Results. 29 morphotypes were isolated among which it was possible to differentiate: Gram-positive bacilli and cocci present exclusively in the Cuzco sector and branched filamentous bacteria (Actinobacteria) only in the La Victoria sector. The presence of the genera Streptomyces, Micrococcus and Corynebacterium was established. Conclusions. The presence of microorganisms related to the mentioned genera will allow us to understand the possible interactions that occur in this ecosystem, which will contribute to the development of this place as a possible analogue of studies for the search for life on other planets such as Mars. In addition, promote more detailed studies where microorganisms that are useful for different biotechnological processes can be recovered.


Subject(s)
Corynebacterium , Streptomyces , Bacteria , Substrates for Biological Treatment , Semi-Arid Zone , Desert
11.
FEMS Microbes ; 2: xtab009, 2021.
Article in English | MEDLINE | ID: mdl-37334230

ABSTRACT

In research, sometimes sheer happenstance and serendipity make for an unexpected discovery. Once revealed and if interesting enough, such a finding and its follow-up investigations can lead to advances by others that leave its originators 'scooped' and mulling about what next to do with their unpublished data, specifically what journals could it still be published in and be perceived as original. This is what occurred with us nearly 40 years ago with regard to our follow-up observations of acetylene fermentation and led us to concoct a 'cock-and-bull' story. We hypothesized about a plausible role for acetylene metabolism in the primordial biogeochemistry of Earth and the possibility of acetylene serving as a key life-sustaining substrate for alien microbes dwelling in the orbs of the outer solar system. With the passage of time, advances were made in whole-genome sequencing coupled with major in silico progress in bioinformatics. In parallel came the results of explorations of the outer solar system (i.e. the Cassini mission to Saturn and its moons). It now appears that these somewhat harebrained ideas of ours, arisen at first out of a sense of desperation, actually ring true in fact, and particularly well in song: 'Tell a tale of cock and bull, Of convincing detail full Tale tremendous, Heav'n defend us! What a tale of cock and bull!' From 'The Yeoman of the Guard' by Gilbert & Sullivan.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118818, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32862060

ABSTRACT

Organic minerals occur rather rarely in some types of peat bogs, sedimentary geological environments, and hydrothermal veins. Commonly, calcium oxalates are produced by several plants, terpenoids are often associated with conifers. Because of the organic precursor, these minerals, from the smallest group of the mineralogical system, are sometimes considered as biomarkers. Potential detection of these compounds has high relevance in the fields of exobiology or geobiology. Here we show the potential of four portable Raman spectrometers, using different excitation wavelengths and technologies (operating at 532, 785, and 1064nm together with an advanced spectrometer using the sequentially shifted excitation (SSE) technology), for the rapid and non-destructive identification of these phases. For the organic minerals investigated here, the most intense Raman bands are generally detected at the expected wavenumber positions ±1-4cm-1 in the region 100-2000cm-1 in the spectra obtained from all spectrometers. Additionally, two spectrometers (the 532nm instrument and the SSE) are capable of detecting Raman bands in the higher wavenumber shift region of 2000-3500cm-1, allowing the more detailed characterization and differentiation of the related phases. From this work, and on the basis of the experimental data obtained, it is clear that the longer laser excitation wavelengths are more preferable for organic minerals identification due to the better mitigation of fluorescence emission. In contrast, the Raman spectrometer equipped with the shortest excitation wavelength (532nm) gives a significantly higher spectral resolution and a more detailed discrimination of the Raman bands, provided that the conditions of general lower level of fluorescence emission are met. The results presented in the current study complement the knowledge on minerals and biomarkers of relevance for Martian environments which have been measured with mobile Raman spectrometers. The outcome creates a solid base towards the use of lightweight mobile Raman systems that can be used outdoors and on terrestrial outcrops. Moreover, these results and conclusions are of use for the further development of dedicated spectrometers destined for the instrumental suites on planetary rovers, in the frame of the forthcoming exobiology focused missions to Mars to be launched by NASA and ESA.

13.
Microorganisms ; 8(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32708909

ABSTRACT

The discovery of liquid water at several locations in the solar system raises the possibility that microbial life may have evolved outside Earth and as such could be accidently introduced into the Earth's ecosystem. Unusual sugars or amino acids, like non-proteinogenic isovaline and α-aminoisobutyric acid that are vanishingly rare or absent from life forms on Earth, have been found in high abundance on non-terrestrial carbonaceous meteorites. It is therefore conceivable that exo-microorganisms might contain proteins that include these rare amino acids. We therefore asked whether the mammalian immune system would be able to recognize and induce appropriate immune responses to putative proteinaceous antigens that include these rare amino acids. To address this, we synthesised peptide antigens based on a backbone of ovalbumin and introduced isovaline and α-aminoisobutyric acid residues and demonstrated that these peptides can promote naïve OT-I cell activation and proliferation, but did so less efficiently than the canonical peptides. This is relevant to the biosecurity of missions that may retrieve samples from exoplanets and moons that have conditions that may be permissive for life, suggesting that accidental contamination and exposure to exo-microorganisms with such distinct proteomes might pose an immunological challenge.

14.
Front Microbiol ; 10: 1155, 2019.
Article in English | MEDLINE | ID: mdl-31191483

ABSTRACT

We present a comparison of the performance of four miniature portable Raman spectrometers for the discrimination of carotenoids in samples of carotene-producing microorganisms. Two spectrometers using a green laser allowing to obtain Resonance Raman (or pre-Resonance Raman) signals, one instrument with a 785 nm laser, and a recently developed Portable Sequentially Shifted Excitation Raman spectrometer (PSSERS) were used for identifying major pigments of different halophilic (genera Halobacterium, Halorubrum, Haloarcula, Salinibacter, Ectothiorhodospira, Dunaliella) and non-halophilic microorganisms (Micrococcus luteus, Corynebacterium glutamicum). Using all the tested instruments including the PSSERS, strong carotenoids signals corresponding to the stretching vibrations in the polyene chain and in-plane rocking modes of the attached CH3 groups were found at the correct positions. Raman spectra of carotenoids can be obtained from different types of microbiological samples (wet pellets, lyophilized culture biomass and pigment extracts in organic solvents), and can be collected fast and without time-consuming procedures.

15.
Astrobiology ; 19(4): 624-627, 2019 04.
Article in English | MEDLINE | ID: mdl-30694694

ABSTRACT

This paper treats the very specific history of one aspect of space policy and how it, or more specifically its name, developed in the first two decades of the Space Age. The concepts of preventing the biological and organic contamination of other planetary bodies, which also protect the biosphere from the consequences of finding extraterrestrial life and returning it to Earth, were established in the late 1950s with the beginning of the Space Age. Within their first decade, those concepts were labeled "planetary quarantine," a name that suggested the concepts but unfortunately came with latent baggage of its own. Over time, that sobriquet was replaced by the more prosaic "planetary protection," which has less of a baggage problem and has come to be used in common parlance to describe this contamination avoidance within the spaceflight community. This paper does not duplicate material found in the "official" NASA history of planetary protection (Meltzer, 2011 ), which covered this specific subject only broadly, nor was the same material presented by Meltzer's predecessor (Phillips, 1974 ), who could not cover it because it had not happened yet.


Subject(s)
Internationality , Planets , United States National Aeronautics and Space Administration/history , Exobiology , Extraterrestrial Environment , History, 20th Century , History, 21st Century , Mars , Space Flight , United States
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 262-271, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30658280

ABSTRACT

We tested the potential of Raman microspectroscopy to determine carotenoid pigments - both primary (lutein, beta-carotene) and secondary (astaxanthin) carotenoids - in the different species and life-cycle stages of snow algae from the order Chlamydomonadales (Chlorophyta). We compared the performance of Raman spectrometry to a reference method of biological pigment analysis, high-performance liquid chromatography (HPLC). The three main carotenoid Raman bands of the astaxanthin-rich red cysts were located at 1520, 1156 and 1006 cm-1. The shifts (orange aplanozygotes and green motile cells with flagella) in the position of the ν1(CC) Raman band of the polyenic chain is consistent with the expected changes in the ratios of the various carotenoid pigments. Flagellated green cells commonly contain lutein as a major carotenoid, together with minor amounts of ß­carotene and varying amounts of antheraxanthin, violaxanthin and neoxanthin. Aplanozygotes contain mixtures of both primary and secondary carotenoids. In most cases, the ν1(CC) band is an overlapping set of bands, which is due to the signal of all carotenoid pigments in the sample, and a deconvolution along with the band position shifts (mainly ν1) could be used to characterize the mixture of carotenoids. However, the ability of Raman spectroscopy to discriminate between structurally slightly differing carotenoid pigments or several carotenoids in an admixture in an unknown biological system remains limited.


Subject(s)
Carotenoids/analysis , Chromatography, High Pressure Liquid/methods , Snow , Spectrum Analysis, Raman/methods , Chlorophyll/analysis , Chlorophyll A/analysis , Europe , Geography , Microalgae , Microspectrophotometry
17.
Bioinformation ; 14(6): 346-349, 2018.
Article in English | MEDLINE | ID: mdl-30237680

ABSTRACT

The use of quantum computers and Artificial Intelligence (AI) is imperative for use in space exploration and astrobiology investigations. Considerable progress has been made since the commencement of origin of life laboratory and theoretical studies in the mid 20th century. However, the sheer amount of data amassed to date in all these studies including exoplanetary and astrobiological studies is enormous and increasing steadily. Thus, there is the need for AI and quantum computers. As AI develops, it will become crucial in the development of the statistical and database programs that are indispensable to analyze the huge quantity of cumulative data. Diverse biotic and geochemical processes have been shown to produce methane on the Earth. Elsewhere in the solar system, on other planets (e.g. Mars) and moons (e.g. Titan), as well as on exoplanets, abiotic processes are considered the primary sources of methane. Astronomers and astro-biologists infer that the presence of methane supports the possibility of the presence of at least microbial life. In addition, on the Earth, there are also degradative reactions that include smog-related compounds and hazes that are produced as artefacts of intrinsic methane geochemistry as well as due to human footprint. Astronomers and astro-biologists envision life, away from the Earth, elsewhere in the solar system and on exoplanets, to occur under conditions similar or related to terrestrial life (goldilocks zone) conditions. These properties that are compatible with life as we know it on the Earth, include planetary orbits, gravitation, star radiant energy, presence of liquid water, and compatible temperatures and pressures, found on Earth. Generally, extraterrestrial life is also considered to resemble the biochemistry, molecular biology, and physiology of life on Earth - thus the focus on detection of supposed biosignatures of microbial life that resemble the Earth's. Nevertheless a crucial factor is absent in these deliberations - viruses. On the Earth, viruses that infect Archaea and bacteria form local and widespread global ecosystems. These viruses play a crucial role and facilitate the molecular transfer of host genes among various hosts. This essential function is underestimated in evolutionary as well as astrobiological speculations. Thus, it is of substantial importance to consider the roles that viruses may have played during the origin of life as well as in any exobiology.

18.
Orig Life Evol Biosph ; 48(1): 55-71, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28702783

ABSTRACT

This study explores the collaborative nature and interdisciplinarity of the origin(s) of life (OoL) research community. Although OoL research is one of the oldest topics in philosophy, religion, and science; to date there has been no review of the field utilizing bibliometric measures. A dataset of 5647 publications that are tagged as OoL, astrobiology, exobiology, and prebiotic chemistry is analyzed. The most prolific authors (Raulin, Ehrenfreund, McKay, Cleaves, Cockell, Lazcano, etc.), most cited scholars and their articles (Miller 1953, Gilbert 1986, Chyba & Sagan 1992, Wȁchtershȁuser 1988, etc.), and popular journals (Origins of Life and Evolution of Biospheres and Astrobiology) for OoL research are identified. Moreover, interdisciplinary research conducted through research networks, institutions (NASA, Caltech, University of Arizona, University of Washington, CNRS, etc.), and keywords & concepts (astrobiology, life, Mars, amino acid, prebiotic chemistry, evolution, RNA) are explored.


Subject(s)
Bibliometrics , Exobiology , Origin of Life , Research
19.
Orig Life Evol Biosph ; 47(4): 453-480, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28361301

ABSTRACT

In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.


Subject(s)
Environment , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Origin of Life , Aerobiosis , Anaerobiosis , Hydrolysis , Magnesium/chemistry , Silicates/chemistry , Sulfides/chemistry
20.
Extremophiles ; 21(3): 573-580, 2017 May.
Article in English | MEDLINE | ID: mdl-28321614

ABSTRACT

This is the first study of the highest elevation cyanobacteria-dominated microbial mat yet described. The desiccated mat was sampled in 2010 from an ephemeral rock pool at 5500 m above sea level in the Cordillera Vilcanota of southern Perú. After being frozen for 6 years at -20 °C in the lab, pieces of the mat were sequenced to fully characterize both the 16 and 18S microbial communities and experiments were conducted to determine if organisms in the mat could revive and become active under the extreme freeze-thaw conditions that these mats experience in the field. Sequencing revealed an unexpectedly diverse, multi-trophic microbial community with 16S OTU richness comparable to similar, seasonally desiccated mats from the Dry Valleys of Antarctica and low elevation sites in the Atacama Desert region. The bacterial community of the mat was dominated by phototrophs in the Cyanobacteria (Nostoc) and the Rhodospirillales, whereas the eukaryotic community was dominated by predators such as bdelloid rotifers (Philodinidae). Microcosm experiments showed that bdelloid rotifers in the mat were able to come out of dormancy and actively forage even under realistic field conditions (diurnal temperature fluctuations of -12 °C at night to + 27 °C during the day), and after being frozen for 6 years. Our results broaden our understanding of the diversity of life in periodically desiccated, high-elevation habitats and demonstrate that extreme freeze-thaw cycles per se are not a major factor limiting the development of at least some members of these unique microbial mat systems.


Subject(s)
Biodiversity , Cyanobacteria/isolation & purification , Ice Cover/microbiology , Rhodospirillales/isolation & purification , Rotifera/isolation & purification , Altitude , Animals , Cyanobacteria/genetics , Desiccation , Extreme Environments , Freezing , Peru , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Rhodospirillales/genetics , Rotifera/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...