Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
Biodivers Data J ; 12: e119539, 2024.
Article in English | MEDLINE | ID: mdl-38841134

ABSTRACT

Background: Biological invasions pose an increasing risk to nature, social security and the economy, being ranked amongst the top five threats to biodiversity. Managing alien and invasive species is a priority for the European Union, as outlined in the EU Biodiversity Strategy for 2030 and the Kunming-Montreal Global Biodiversity Framework. Alien plant species are acknowledged to impact the economy and biodiversity; thus, analysing the distribution of such species provides valuable inputs for the management and decision-making processes. The database presented in the current study is the first consolidated checklist of alien plant species that are present in Romania, both of European Union concern and of national interest. This database complements a prior published distribution, based only on records from literature, bringing new information regarding the occurrence of alien plants in Romania, as revealed by a nationwide field survey. We consider this database a valuable instrument for managing biological invasions at both national and regional levels, as it can be utilised in further research studies and in drafting management and action plans, assisting stakeholders in making informed decisions and implementing management actions. New information: We present the results of the first nationwide survey of alien plant species in Romania, conducted between 2019 and 2022, in the framework of a national project coordinated by the Ministry of Environment, Waters and Forests and the University of Bucharest. The present database complements and updates the database published by Sirbu et. al (2022), which included occurrence records published until 2019. The new database includes 98323 occurrence records for 396 alien plant species in 77 families, with most species belonging to the Asteraceae family. One alien plant species in our database, the black locust Robiniapseudoacacia L., had more than 10,000 occurrence records. The distribution database also includes information on newly-reported invasive alien plant species of European Union concern in Romania (i.e. the floating primrose-willow Ludwigiapeploides (Kunth) P.H.Raven) and documents the presence of plants in 44 additional families compared to Sirbu et al. (2022). Each entry includes information on species taxonomy, location, year, person who recorded and identified the alien plant, geographical coordinates and taxon rank.

2.
Mar Environ Res ; 199: 106599, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38865872

ABSTRACT

The Mediterranean Sea is a highly susceptible area to climate change, that facilitates the introduction of warm-affinity exotic species, contributing to the expansion of their biogeographical range. One such thermophilic species is the Atlantic fish Seriola fasciata, which has colonised this area over the past three decades. The present study analyzed its spatial distribution in the Mediterranean Sea to identify aggregation areas and dynamics over time, and the environmental predictors influencing its presence. The utilized statistical tools and the Species Distribution Model proved effective in identifying specific spatial and temporal distribution patterns, as well as discerning some environmental variables influencing the species presence, with distinctions recorded between juveniles and adults. S. fasciata was observed to be established in the central Mediterranean, with Fishing Aggregating Devices potentially influencing its presence, particularly of juveniles. Sea floor temperature and habitats emerged as the primary factors driving species distribution. An aggregation area in the Levant Sea, conducive mainly for the adults, was identified and is expected to intensify over time. These findings contribute valuable insights into a relatively understudied species and its presence in the Mediterranean Sea, where climate change is affecting marine biodiversity.

3.
Biodivers Data J ; 12: e120736, 2024.
Article in English | MEDLINE | ID: mdl-38779570

ABSTRACT

The Atlantic croaker Micropogoniasundulatus, a sciaenid fish native to the North Atlantic American coast, holds importance in recreational and commercial fisheries. Moreover, its potential as an invasive species should be noted, given its expansion and establishment in Atlantic European waters. This study reports its southernmost occurrence in Europe, in the Gulf of Cadiz. Morphological and molecular analysis confirmed its identity, revealing genetic similarities to US sequences. A comprehensive review of historical non-native distribution records underscored the species' expansion throughout European waters, suggesting human-mediated introduction. The escalating frequency of such arrivals emphasises the critical need for effective monitoring and management efforts in order to control non-native species in this region.

4.
Environ Toxicol Pharmacol ; 107: 104434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582069

ABSTRACT

The potential toxic effects of linear alkylbenzene sulfonate (LAS), widely used in commercial detergents and cleaners, on submerged macrophytes remain unclear. We conducted a two-week exposure experiment to investigate LAS toxicity on five submerged macrophytes (four native and one exotic), focusing on their growth and physiological responses. The results showed that lower concentrations of LAS (< 5 mg/L) slightly stimulated the growth of submerged macrophytes, while higher doses inhibited it. Increasing LAS concentration resulted in decreased chlorophyll content, increased MDA content and POD activity, and initially increased SOD and CAT activities before declining. Moreover, Elodea nuttallii required a higher effective concentration for growth compared to native macrophytes. These findings suggest that different species of submerged macrophytes exhibited specific responses to LAS, with high doses (exceeding 5 ∼ 10 mg/L) inhibited plant growth and physiology. However, LAS may promote the dominance of surfactant-tolerant exotic submerged macrophytes in polluted aquatic environments.


Subject(s)
Alkanesulfonic Acids , Antioxidants , Chlorophyll , Surface-Active Agents/toxicity , Alkanesulfonic Acids/toxicity
5.
Mov Ecol ; 12(1): 32, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664784

ABSTRACT

BACKGROUND: The wild pig (Sus scrofa) is an exotic species that has been present in the southeastern United States for centuries yet continues to expand into new areas dominated by bottomland and upland forests, the latter of which are less commonly associated with wild pigs. Here, we aimed to investigate wild pig movement and space use attributes typically used to guide wild pig management among multiple spatiotemporal scales. Our investigation focused on a newly invaded landscape dominated by bottomland and upland forests. METHODS: We examined (1) core and total space use using an autocorrelated kernel density estimator; (2) resource selection patterns and hot spots of space use in relation to various landscape features using step-selection analysis; and (3) daily and hourly differences in movement patterns between non-hunting and hunting seasons using generalized additive mixed models. RESULTS: Estimates of total space use among wild pigs (n = 9) were smaller at calculated core (1.2 ± 0.3 km2) and 90% (5.2 ± 1.5 km2) isopleths than estimates reported in other landscapes in the southeastern United States, suggesting that wild pigs were able to meet foraging, cover, and thermoregulatory needs within smaller areas. Generally, wild pigs selected areas closer to herbaceous, woody wetlands, fields, and perennial streams, creating corridors of use along these features. However, selection strength varied among individuals, reinforcing the generalist, adaptive nature of wild pigs. Wild pigs also showed a tendency to increase movement from fall to winter, possibly paralleling increases in hard mast availability. During this time, there were also increases in anthropogenic pressures (e.g. hunting), causing movements to become less diurnal as pressure increased. CONCLUSIONS: Our work demonstrates that movement patterns by exotic generalists must be understood across individuals, the breadth of landscapes they can invade, and multiple spatiotemporal scales. This improved understanding will better inform management strategies focused on curbing emerging invasions in novel landscapes, while also protecting native natural resources.

6.
Genes (Basel) ; 15(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38674438

ABSTRACT

The green monkey Chlorocebus sabaeus, L. 1766, native to West Africa, was introduced to the Cabo Verde Archipelago in the 16th century. Historical sources suggest that, due to the importance of Cabo Verde as a commercial entrepôt in the Atlantic slave trade, establishing the precise place of origin of this introduced species is challenging. Non-invasive fecal samples were collected from feral and captive green monkey individuals in Cabo Verde. Two mitochondrial fragments, HVRI and cyt b, were used to confirm the taxonomic identification of the species and to tentatively determine the geographic origin of introduction to the archipelago from the African continent. By comparing the new sequences of this study to previously published ones, it was shown that Cabo Verde individuals have unique haplotypes in the HVRI, while also showing affinities to several populations from north-western coastal Africa in the cyt b, suggesting probable multiple sources of introduction and an undetermined most probable origin. The latter is consistent with historical information, but may also have resulted from solely using mtDNA as a genetic marker and the dispersal characteristics of the species. The limitations of the methodology are discussed and future directions of research are suggested.


Subject(s)
DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Chlorocebus aethiops/genetics , Cabo Verde , Phylogeny , Cytochromes b/genetics , Haplotypes , Introduced Species , Phylogeography , Feces/chemistry
7.
Ecol Lett ; 27(3): e14384, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426584

ABSTRACT

Although native species diversity is frequently reported to enhance invasion resistance, within-species diversity of native plants can also moderate invasions. While the positive diversity-invasion resistance relationship is often attributed to competition, indirect effects mediated through plant-soil feedbacks can also influence the relationship. We manipulated the genotypic diversity of an endemic species, Scirpus mariqueter, and evaluated the effects of abiotic versus biotic feedbacks on the performance of a global invader, Spartina alterniflora. We found that invader performance on live soils decreased non-additively with genotypic diversity of the native plant that trained the soils, but this reversed when soils were sterilized to eliminate feedbacks through soil biota. The influence of soil biota on the feedback was primarily associated with increased levels of microbial biomass and fungal diversity in soils trained by multiple-genotype populations. Our findings highlight the importance of plant-soil feedbacks mediating the positive relationship between genotypic diversity and invasion resistance.


Subject(s)
Plants , Soil , Feedback , Poaceae , Genotype , Soil Microbiology , Introduced Species
8.
J Anim Ecol ; 93(5): 606-618, 2024 May.
Article in English | MEDLINE | ID: mdl-38414265

ABSTRACT

Human-induced species declines and extinctions have led to the downsizing of large-herbivore assemblages, with implications for many ecosystem processes. Active reintroduction of extirpated large herbivores or their functional equivalents may help to reverse this trend and restore diverse ecosystems and their processes. However, it is unclear whether resource competition between native and non-native herbivores could threaten restoration initiatives, or to what extent (re)introduced species may influence local vegetation dynamics. To answer these questions, we investigated the diets of a novel South American herbivore assemblage that includes resident native species, reintroduced native species and introduced non-native species. We examined plant composition, diet breadth and the overlap between species to describe the local herbivory profile and the potential for resource competition. Using DNA metabarcoding on faecal samples (n = 465), we analysed the diets of the herbivore assemblage in the Rincón del Socorro rewilding area of Iberá National Park, Argentina. We compared the species richness of faecal samples, the occurrence of plant families/growth forms and the compositional similarity of samples (inter- and intraspecifically). Our results indicate species-level taxonomic partitioning of plant resources by herbivores in this system. Differences in sample richness, composition and diet breadth reflected a diverse range of herbivory strategies, from grazers (capybara) to mixed feeders/browsers (brocket deer, lowland tapir). Differences in diet compositional similarity (Jaccard) revealed strong taxonomic resource partitioning. The two herbivores with the most similar diets (Pampas deer and brocket deer) still differed by more than 80%. Furthermore, all but one species (axis deer) had more similar diet composition intraspecifically than compared to the others. Overall, we found little evidence for resource competition between herbivore species. Instead, recently reintroduced native species and historically introduced non-natives are likely expanding the range of herbivory dynamics in the ecosystem. Further research will be needed to determine the full ecological impacts of these (re)introduced herbivores. In conclusion, we show clear differences in diet breadth and composition among native, reintroduced and non-native herbivore species that may be key to promoting resource partitioning, species coexistence and the restoration of ecological function.


La disminución y extinción de especies ocasionada por el hombre ha llevado a la reducción de tamaño de las comunidades de grandes herbívoros, con implicaciones para muchos procesos ecosistémicos. La reintroducción activa de grandes herbívoros extirpados, o sus equivalentes funcionales, puede ayudar a revertir esta tendencia y restaurar diversos ecosistemas y sus procesos. Sin embargo, no está claro si la competencia por recursos entre herbívoros nativos y no nativos podría amenazar las iniciativas de restauración, o en qué medida las especies (re)introducidas pueden influir la dinámica de la vegetación local. Para responder a estas preguntas, investigamos las dietas de una comunidad de herbívoros sudamericanos que incluye especies nativas, especies nativas reintroducidas y especies no nativas introducidas. Examinamos la composición de plantas, la amplitud de la dieta y la superposición entre especies para describir el perfil herbívoro local y el potencial de competencia por los recursos. Utilizando metabarcoding de ADN en muestras fecales (n = 465), analizamos las dietas de la comunidad de herbívoros en el sitio de rewilding Rincón del Socorro dentro del Parque Nacional Iberá, Argentina. Comparamos la riqueza de especies en las muestras fecales, la ocurrencia de familias de plantas/formas de crecimiento y la similitud en la composición de las muestras (interespecíficamente e intraespecíficamente). Nuestros resultados indican la partición taxonómica a nivel de especie de los recursos vegetales por parte de los herbívoros en este sistema. Las diferencias en la riqueza de las muestras, la composición y la amplitud de las dietas reflejaron una amplia gama de estrategias de herbivoría, desde pastoreadores (capibara) hasta herbívoros mixtos/ramoneadores (corzuela, tapir amazónico). Las diferencias en la similitud de la composición de la dieta (Jaccard) revelaron una fuerte partición taxonómica de los recursos. Los dos herbívoros con las dietas más similares (venado de las pampas y corzuela), aún así diferían en más del 80%. Además, todas las especies menos una (ciervo axis) tenían una composición dietética más similar intraespecíficamente que en comparación con las demás. En general, encontramos poca evidencia de competencia por recursos entre las especies de herbívoros. En cambio, las especies nativas reintroducidas recientemente y las no nativas introducidas históricamente probablemente estén ampliando el rango de dinámica de herbivoría en el ecosistema. Se necesitarán más investigaciones para determinar todos los impactos ecológicos de estos herbívoros (re)introducidos. En conclusión, mostramos diferencias claras en la amplitud y composición de la dieta entre especies de herbívoros nativas, reintroducidas y no nativas que pueden ser clave para promover la partición de recursos, la coexistencia de especies y la restauración de las funciones ecológicas.


Subject(s)
Diet , Feces , Herbivory , Introduced Species , Animals , Argentina , Diet/veterinary , Plants
9.
Animals (Basel) ; 14(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38254389

ABSTRACT

The escape of pet birds into the wild raises concerns about the introduction of invasive avian species. This study investigated the impact of escaped pet birds on the introduction of non-native species in Japan. Data sourced from four lost-and-found pet websites between January 2018 and December 2021 revealed 12,125 recorded escapes exhibiting both daily occurrences and seasonal fluctuations. Statistical modeling identified the monthly average temperature (positively correlated) and maximum electricity demand (negatively correlated) as influential factors. Text analysis revealed "window" and "open" as frequently cited reasons for escapes. Budgerigars (Melopsittacus undulatus) and Cockatiels (Nymphicus hollandicus) accounted for 76% of the total escape, suggesting a low perceived risk of establishment in nonnative environments. Interestingly, two globally established invasive species, the Rose-ringed Parakeet (Psittacula krameri) and Monk Parakeet (Myiopsitta monachus), were among the escaped birds. While the Rose-ringed Parakeet is locally naturalized in Tokyo and its adjacent prefectures, the Monk Parakeet failed to establish itself in Japan. Despite the limited number of escaped Monk Parakeets, ongoing efforts are crucial for preventing the potential re-establishment of species with such capabilities.

10.
Mar Environ Res ; 193: 106293, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103302

ABSTRACT

Here we provide evidence, along an 8-year period time-series based on multifaceted data from a Mediterranean marine protected area (MPA), whether protection can tackle invasive and range expanding herbivore fishes, and their effects on the algal resource availability, taking into account the population trends of predatory fishes, fisheries catches of herbivore fishes and sea surface temperature (SST) through time. Our findings pointed out that an ineffective in restoring top-down control process MPA may facilitate, rather than alleviate, the sudden and enduring population burst of invasive and range-expanding herbivorous fishes at tipping points of abrupt change. This subsequently results in the deterioration of rocky reef habitats and the depletion of algal resources, with the tipping points of abrupt change for algal and herbivore fish species not overlapping chronologically. As sea temperature increases, ineffective or recently established MPAs may inadvertently facilitate the proliferation of invasive and range-expanding species, posing a significant challenge to management effectiveness and conservation objectives.


Subject(s)
Ecosystem , Herbivory , Animals , Fishes , Fisheries , Temperature , Conservation of Natural Resources
11.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37961388

ABSTRACT

The long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can lead to the emergence of novel tick-borne pathogens or the re-emergence of previously eradicated ones. This study assessed the prevalence of exotic tick species parasitizing resident, short-distance, and long-distance songbirds during spring and autumn at stopover sites in the northern Gulf of Mexico using the mitochondrial 12S rDNA gene. Birds were captured for tick collection from six different sites from late August to early November in both 2018 and 2019. The highest number of ticks were collected in the 2019 season. Most ticks were collected off the Yellow-breasted Chat (Icteria virens) and Common Yellowthroat (Geothlypis trichas), and 54% of the total ticks collected were from Grand Chenier, LA. A high throughput 16S ribosomal RNA sequencing approach was followed to characterize the microbial communities and identify pathogenic microbes in all tick samples. Tick microbial communities, diversity, and community structure were determined using quantitative insight into microbial ecology (QIIME). The sparse correlations for compositional data (SparCC) approach was then used to construct microbial network maps and infer microbial correlations. A total of 421 individual ticks in the genera Amblyomma, Haemaphysalis, and Ixodes were recorded from 28 songbird species, of which Amblyomma and Amblyomma longirostre was the most abundant tick genus and species, respectively. Microbial profiles showed that Proteobacteria was the most abundant phylum. The most abundant bacteria include the pathogenic Rickettsia and endosymbiont Francisella, Candidatus Midichloria, and Spiroplasma. BLAST analysis and phylogenetic reconstruction of the Rickettsia sequences revealed the highest similarities to pathogenic spotted and non-spotted fever groups, including R. buchneri, R. conorii, R. prowazekii, R. bellii, R. australis, R. parkeri, R. monacensis, and R. monteiroi. Permutation multivariate analysis of variance revealed that the relative abundance of Francisella and Rickettsia drives microbial patterns across the tick genera. We also observed a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a) Francisella and Rickettsia and, b) Francisella and Cutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing means dispersal distances from 421-5003 kilometers. These findings strongly highlight the potential role of migratory birds in the epidemiology of tick-borne pathogens.

12.
J Fungi (Basel) ; 9(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37623581

ABSTRACT

Antifungals are used in exotic avian and reptile species for the treatment of fungal diseases. Dose extrapolations across species are common due to lack of species-specific pharmacological data. This may not be ideal because interspecies physiological differences may result in subtherapeutic dosing or toxicity. This critical review aims to collate existing pharmacological data to identify antifungals with the most evidence to support their safe and effective use. In the process, significant trends and gaps are also identified and discussed. An extensive search was conducted on PubMed and JSTOR, and relevant data were critically appraised. Itraconazole or voriconazole showed promising results in Japanese quails, racing pigeons and inland bearded dragons for the treatment of aspergillosis and CANV-related infections. Voriconazole neurotoxicity manifested as seizures in multiple penguins, but as lethargy or torticollis in cottonmouths. Itraconazole toxicity was predominantly hepatotoxicity, observed as liver abnormalities in inland bearded dragons and a Parson's chameleon. Differences in formulations of itraconazole affected various absorption parameters. Non-linearities in voriconazole due to saturable metabolism and autoinduction showed opposing effects on clearance, especially in multiple-dosing regimens. These differences in pharmacokinetic parameters across species resulted in varying elimination half-lives. Terbinafine has been used in dermatomycoses, especially in reptiles, due to its keratinophilic nature, and no significant adverse events were observed. The use of fluconazole has declined due to resistance or its narrow spectrum of activity.

13.
Plant Divers ; 45(4): 363-368, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37601543

ABSTRACT

Invasive species may pose significant threats to biodiversity and ecosystem structure and functioning. The number of introduced species that have become invasive is substantial and is rapidly increasing. Identifying potentially invasive species and preventing their expansion are of critical importance in invasion ecology. Phylogenetic relatedness between invasive and native species has been used in predicting invasion success. Previous studies on the phylogenetic relatedness of plants at the transition from naturalization to invasion have shown mixed results, which may be because different methods were used in different studies. Here, I use the same method to analyze two comprehensive data sets from South Africa and China, using two phylogenetic metrics reflecting deep and shallow evolutionary histories, to address the question whether the probability of becoming invasive is higher for naturalized species distantly related to the native flora. My study suggests that the probability of becoming invasive is higher for naturalized species closely related to the native flora. The finding of my study is consistent with Darwin's preadaptation hypothesis.

14.
BMC Zool ; 8(1): 11, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37568190

ABSTRACT

BACKGROUND: This is the first record of the alien shrimp Mierspenaeopsis sculptilis in Brazil. The invasion was detected within Marine Extractive Reserves based on eight specimens accidentally caught by local fishermen using trawlnets focused on fisheries of native species. These specimens were transported to the Laboratory of Applied Genetics and morphologically identified as Mierspenaeopsis sculptilis (rainbow shrimp). The taxonomic status of analyzed samples was confirmed by DNA barcoding using a 627-bp fragment of the Cytochrome C Oxidase Subunit I (COI) gene. RESULTS: A single haplotype was recovered from the eight specimens, being identical to a haplotype reported in India, where this species naturally occurs, and in Mozambique, where the rainbow shrimp is considered an invasive species. The present analyses indicated a putative invasive route (i.e., India-Mozambique-Brazil) mediated by shipping trade. CONCLUSIONS: This study presents the first record of Mierspenaeopsis sculptilis in Brazil, in areas of extractive reserves on the Amazon coast. Notably exotic species can cause imbalance in the ecosystem, harming native species. In view of this, the registration of new invasions is essential as they contribute to the implementation of control plans.

15.
Biology (Basel) ; 12(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37508363

ABSTRACT

Biological invasions are a human-induced environmental disturbance that can cause major changes in ecosystem structure and functioning. Located in the northeastern Mediterranean basin, the Aegean Sea is a hotspot of biological invasions. Although the presence of alien species in the Aegean has been studied and monitored, no assessment has been conducted on their cumulative impacts on native biodiversity. To address this gap, we applied the CIMPAL index, a framework developed for mapping the cumulative impacts of invasive species, to identify the most affected areas and habitat types and determine the most invasive species in the region. Coastal areas showed stronger impacts than the open sea. The highest CIMPAL scores were four times more frequent in the South than in the North Aegean. Shallow (0-60 m) hard substrates were the most heavily impacted habitat type, followed by shallow soft substrates and seagrass meadows. We identified Caulerpa cylindracea, Lophocladia lallemandii, Siganus luridus, Siganus rivulatus, and Womersleyella setacea as the most impactful species across their range of occurrence in the Aegean but rankings varied depending on the habitat type and impact indicator applied. Our assessment can support marine managers in prioritizing decisions and actions to control biological invasions and mitigate their impacts.

16.
Environ Monit Assess ; 195(8): 985, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488362

ABSTRACT

Planorbella trivolvis (ramshorn snail) is one of India's most extensively sold exotic aquarium pet snails. The unintentional or deliberate release of P. trivolvis may result in the colonisation and establishment as an invasive snail in freshwater ecosystems. However, the successful invasion of P. trivolvis will depend on several abiotic and biotic factors of the concerned freshwater ecosystem. We have assessed the possibility of overcoming the opposing factors in P. trivolvis invasion through laboratory-based experiments and examined the effects of household-derived pollutants on egg hatchability, adult survivability and fecundity, and temperature (15 to 35 °C) on growth, sexual maturity, and reproduction. Additionally, we have evaluated the potential of native predators as biotic resistance to invasion by prey-choice experiment. The results indicated that egg hatchability, adult survivability, and fecundity were reduced with increasing pollutant concentration. However, the same traits did not differ from a native freshwater snail, Indoplanorbis exustus. The fecundity of P. trivolvis increased with increasing body size, but no considerable differences at different temperature levels suggest a wide range of adaptation to temperature. Faster growth and the requirement of comparatively few days to attain sexual maturity were observed in the higher temperatures. The native predators, Glossiphonia weberi and Diplonychus rusticus, avoided P. trivolvis as prey over the alternative prey snails in most instances, suggesting the masking of biotic resistance against the colonisation. Our observations indicate that the chance dispersal of P. trivolvis from household or commercial aquaria may lead to a possible invasion of freshwater ecosystems under suitable conditions.


Subject(s)
Ecosystem , Environmental Pollutants , Animals , Environmental Monitoring , India , Snails
17.
One Health ; 17: 100577, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37332883

ABSTRACT

Wild boars have been listed among the 100 most invasive species worldwide, spreading impacts to all continents, with the exception of Antarctica. In Brazil, a major source of introduction was a commercial livestock importation for exotic meat market, followed by successive escapes and releases to natural ecosystems. Currently found in all six Brazilian biomes, with reports in 11 Brazilian states, wild boars have invaded natural and agricultural areas. Wild boars have been reportedly indicated as hosts and reservoirs of several zoonotic diseases in Brazil, including toxoplasmosis, salmonelosis, leptospirosis, brucellosis, tuberculosis, trichinellosis, and hepatitis E. Wild boars have been also associated with Brazilian spotted fever and rabies, infected while providing plentiful exotic blood supply for native ticks and hematophagous bats. Due to their phylogenetic proximity, wild boars may present ecological niche overlapping and direct disease risk to native white-lipped and collared peccaries. Moreover, wild boars may post an economical threat to Brazilian livestock industry due to restrictive diseases such as Aujeszky, enzootic pneumonia, neosporosis, hemoplasmosis, and classic swine fever. Finally, wild boars have directly impacted in environmentally protected areas, silting up water springs, rooting and wallowing native plants, decreasing native vegetal coverage, disbalancing of soil components, altering soil structure and composition. Wild boar hunting has failed as a control measure to date, according to the Brazilian Ministry of Environment, due to private hunting groups mostly targeting males, intentionally leaving females and piglets alive, disseminating wild boar populations nationwide. Meanwhile, non-government animal welfare organizations have pointed to animal cruelty of hunting dogs and wild boars (and native species) during hunting. Despite unanimous necessity of wild boar control, eradication and prevention, methods have been controversial and should focus on effective governmental measures instead occasional game hunting, which has negatively impacted native wildlife species while wild boars have continuously spread throughout Brazil.

18.
PeerJ ; 11: e15456, 2023.
Article in English | MEDLINE | ID: mdl-37334117

ABSTRACT

Non-indigenous species tend to colonize aquaculture installations, especially when they are near international ports. In addition to the local environmental hazard that colonizing non-indigenous species pose, they can also take advantage of local transport opportunities to spread elsewhere. In this study, we examined the risk of the spread of eight invasive fouling species that are found in mussel farms in southern Brazil. We used ensemble niche models based on worldwide occurrences of these species, and environmental variables (ocean temperature and salinity) to predict suitable areas for each species with three algorithms (Maxent, Random Forest, and Support Vector Machine). As a proxy for propagule pressure, we used the tonnage transported by container ships from Santa Catarina (the main mariculture region) that travel to other Brazilian ports. We found that ports in the tropical states of Pernambuco, Ceará, and Bahia received the largest tonnage, although far from Santa Catarina and in a different ecoregion. The ascidians Aplidium accarense and Didemnum perlucidum are known from Bahia, with a high risk of invasion in the other states. The bryozoan Watersipora subtorquata also has a high risk of establishment in Pernambuco, while the ascidian Botrylloides giganteus has a medium risk in Bahia. Paraná, a state in the same ecoregion as Santa Catarina is likely to be invaded by all species. A second state in this region, Rio Grande do Sul, is vulnerable to A. accarense, the barnacle Megabalanus coccopoma, and the mussel Mytilus galloprovincialis. Climate change is changing species latitudinal distributions and most species will gain rather than lose area in near future (by 2050). As an ideal habitat for fouling organisms and invasive species, aquaculture farms can increase propagule pressure and thus the probability that species will expand their distributions, especially if they are close to ports. Therefore, an integrated approach of the risks of both aquaculture and nautical transport equipment present in a region is necessary to better inform decision-making procedures aiming at the expansion or establishment of new aquaculture farms. The risk maps provided will allow authorities and regional stakeholders to prioritize areas of concern for mitigating the present and future spread of fouling species.


Subject(s)
Bryozoa , Urochordata , Animals , Introduced Species , Ecosystem , Aquaculture , Ships
19.
J Environ Manage ; 342: 118297, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37269722

ABSTRACT

Understanding the spatiotemporal landscape dynamics and spread pathways of invasive plants, as well as their interactions with geomorphic landscape features, are of great importance for predicting and managing their future range-expansion in non-native habitats. Although previous studies have linked geomorphic landscape features such as tidal channels to plant invasions, the potential mechanisms and critical characteristics of tidal channels that affect the landward invasion by Spartina alterniflora, an aggressive plant in global coastal wetlands, remain unclear. Here, using high-resolution remote-sensing images of the Yellow River Delta from 2013 to 2020, we first quantified the evolution of tidal channel networks by analyzing the spatiotemporal dynamics of their structural and functional characteristics. The invasion patterns and pathways of S. alterniflora were then identified. Based on the above-mentioned quantification and identification, we finally quantified the influences of tidal channel characteristics on S. alterniflora invasion. The results showed that tidal channel networks presented increasing growth and development over time, and their spatial structure evolved from simple to complex. The external isolated expansion of S. alterniflora played a dominant role during the initial invasion stage, and then they connected the discrete patches into the meadow through marginal expansion. Afterwards, tidal channel-driven expansion gradually increased and became the primary way during the late invasion stage, accounting for about 47.3%. Notably, tidal channel networks with higher drainage efficiency (shorter OPL, higher D and E) attained larger invasion areas. The longer the tidal channels and the more sinuous the channel structure, the greater the invasion potential by S. alterniflora. These findings highlight the importance of structural and functional properties of tidal channel networks in driving plant invasion landward, which should be incorporated into future control and management of invasive plants in coastal wetlands.


Subject(s)
Introduced Species , Wetlands , Rivers , Ecosystem , Poaceae , China , Soil/chemistry
20.
Plants (Basel) ; 12(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37176800

ABSTRACT

In this paper, based on fieldwork and herbaria surveys, new data concerning the presence of 32 native and alien vascular species for Sicily (Italy) are provided. Among the native species, the occurrence of the following taxa is reported for the first time or confirmed after many decades of non-observation: Aira multiculmis, Arum maculatum, Carex flacca subsp. flacca, Mentha longifolia, Oxybasis chenopodioides, Najas minor and Xiphion junceum. Furthermore, we document the presence of three native species (Cornus mas, Juncus foliosus and Limonium avei) that, despite being repeatedly observed in Sicily and reported in the literature, are inexplicably omitted by the most recent authoritative checklists regarding the flora of Italy. Finally, fifteen alien species new to Sicily (including one new to Europe, i.e., Pyrus betulifolia) are reported and seven poorly documented allochthonous taxa are confirmed for the island, and for two of them, a status change is proposed. These new or confirmed records allow us to better define the European and national distribution of the targeted taxa and offer new insights on the native and alien flora of Sicily.

SELECTION OF CITATIONS
SEARCH DETAIL
...