Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
Add more filters











Publication year range
1.
Plant J ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39364769

ABSTRACT

Plant trichomes are an excellent model for studying cell differentiation and development, providing crucial defenses against biotic and abiotic stresses. There is a well-established inverse relationship between trichome density and aphid prevalence, indicating that higher trichome density leads to reduced aphid infestations. Here we present the cloning and characterization of a dominant quantitative trait locus, HIC (hirsute cotton), which significantly enhances cotton trichome density. This enhancement leads to markedly improved resistance against cotton aphids. The HIC encodes an HD-ZIP IV transcriptional activator, crucial for trichome initiation. Overexpression of HIC leads to a substantial increase in trichome density, while knockdown of HIC results in a marked decrease in density, confirming its role in trichome regulation. We identified a variant in the HIC promoter (-810 bp A to C) that increases transcription of HIC and trichome density in hirsute cotton compared with Gossypium hirsutum cultivars with fewer or no trichomes. Interestingly, although the -810 variant in the HIC promoter is the same in G. barbadense and hirsute cotton, the presence of a copia-like retrotransposon insertion in the coding region of HIC in G. barbadense causes premature transcription termination. Further analysis revealed that HIC positively regulates trichome density by directly targeting the EXPANSIN A2 gene, which is involved in cell wall development. Taken together, our results underscore the pivotal function of HIC as a primary regulator during the initial phases of trichome formation, and its prospective utility in enhancing aphid resistance in superior cotton cultivars via selective breeding.

2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273303

ABSTRACT

Expansins are cell wall (CW) proteins that mediate the CW loosening and regulate salt tolerance in a positive or negative way. However, the role of Populus trichocarpa expansin A6 (PtEXPA6) in salt tolerance and the relevance to cell wall loosening is still unclear in poplars. PtEXPA6 gene was transferred into the hybrid species, Populus alba × P. tremula var. glandulosa (84K) and Populus tremula × P. alba INRA '717-1B4' (717-1B4). Under salt stress, the stem growth, gas exchange, chlorophyll fluorescence, activity and transcription of antioxidant enzymes, Na+ content, and Na+ flux of root xylem and petiole vascular bundle were investigated in wild-type and transgenic poplars. The correlation analysis and principal component analysis (PCA) were used to analyze the correlations among the characteristics and principal components. Our results show that the transcription of PtEXPA6 was downregulated upon a prolonged duration of salt stress (48 h) after a transient increase induced by NaCl (100 mM). The PtEXPA6-transgenic poplars of 84K and 717-1B4 showed a greater reduction (42-65%) in stem height and diameter growth after 15 days of NaCl treatment compared with wild-type (WT) poplars (11-41%). The Na+ accumulation in roots, stems, and leaves was 14-83% higher in the transgenic lines than in the WT. The Na+ buildup in the transgenic poplars affects photosynthesis; the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and the transcription of PODa2, SOD [Cu-Zn], and CAT1. Transient flux kinetics showed that the Na+ efflux of root xylem and leaf petiole vascular bundle were 1.9-3.5-fold greater in the PtEXPA6-transgenic poplars than in the WT poplars. PtEXPA6 overexpression increased root contractility and extensibility by 33% and 32%, indicating that PtEXPA6 increased the CW loosening in the transgenic poplars of 84K and 717-1B4. Noteworthily, the PtEXPA6-promoted CW loosening was shown to facilitate Na+ efflux of root xylem and petiole vascular bundle in the transgenic poplars. We conclude that the overexpression of PtEXPA6 leads to CW loosening that facilitates the radial translocation of Na+ into the root xylem and the subsequent Na+ translocation from roots to leaves, resulting in an excessive Na+ accumulation and consequently, reducing salt tolerance in transgenic poplars. Therefore, the downregulation of PtEXPA6 in NaCl-treated Populus trichocarpa favors the maintenance of ionic and reactive oxygen species (ROS) homeostasis under long-term salt stress.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Populus , Salt Stress , Sodium , Populus/genetics , Populus/metabolism , Populus/growth & development , Populus/drug effects , Sodium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Xylem/metabolism , Xylem/genetics , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Salt Tolerance/genetics , Biological Transport
3.
Gene ; 933: 148927, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255860

ABSTRACT

Cadmium (Cd) is a harmful heavy metal that is highly toxic to plants and animals. Expansins are cell wall proteins inducing cell wall loosening and participate in all plant growth and development processes which are associated with cell wall modifications. We investigated lettuce's expansin gene LsEXPA6 and found that LsEXPA6 overexpression Arabidopsis lines were much more resistant to cadmium stress. Our results revealed that the root system of the expa6 mutant was suppressed under cadmium stress, resulting in shorter plant height, reduced biomass, and a significant increase in cadmium content in the plants compared with wild-type plants, whereas LsEXPA6 overexpression lines had a well-developed root system and reduced cadmium accumulation in the roots and shoots of the plants. The above results indicated that overexpression of LsEXPA6 affected root development and reduced Cd absorption in Arabidopsis. In addition, the higher absorption capacity of nutrients, increased antioxidant enzymes activities, improved chlorophyll and photosynthetic function in the overexpression Arabidopsis plants, supported the Cd stress tolerance mechanism. Taken together, these results provided a new insight on the role of expansin proteins in the tolerance of plants to Cd stress by root cell elongation.

4.
J Plant Physiol ; 303: 154361, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39332321

ABSTRACT

Expansins (EXPs) are unique plant cell wall proteins with the ability to induce cell wall expansion and play potential roles in xylem development. In the present study, a total of 25 BpEXP genes were identified in Betula platyphylla. Results of bioinformatics analysis described that BpEXP gene family was highly conserved in the process of evolution. All these genes were clustered into four groups, EXPA (Expansin A), EXPB (Expansin B), EXLA (Expansin-like A) and EXLB (Expansin-like B), according to phylogenetic analysis and BpEXPA1 was highly homologous to PttEXP1 and PttEXP2. The results of RT-qPCR showed that BpEXPA1 was expressed higher in stems and preferentially expressed in the first internodes, followed by apical buds and the third internodes, promoter expression analysis with GUS assay demonstrated that it was expressed in developing xylem, suggesting that BpEXPA1 might be involved in the development of the primary stems of birch. Overexpression of BpEXPA1 can promote cortex cell expansion and then enlarge the cortex cell area and layer, however inhibit the secondary cell wall deposition and result in the thinner cell wall and larger lumens of xylem fiber in transgenic plants. This study will provide information for investigating the regulation mechanism of BpEXP family genes and gene resources for birch genetics improvement.

5.
J Fungi (Basel) ; 10(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39330391

ABSTRACT

Sporisorium scitamineum is a biotrophic fungus responsible for inducing sugarcane smut disease that results in significant reductions in sugarcane yield. Resistance mechanisms against sugarcane smut can be categorized into structural, biochemical, and physiological resistance. However, structural resistance has been relatively understudied. This study found that sugarcane variety ZZ9 displayed structural resistance compared to variety GT42 when subjected to different inoculation methods for assessing resistance to smut disease. Furthermore, the stomatal aperture and density of smut-susceptible varieties (ROC22 and GT42) were significantly higher than those of smut-resistant varieties (ZZ1, ZZ6, and ZZ9). Notably, S. scitamineum was found to be capable of entering sugarcane through the stomata on buds. According to the RNA sequencing of the buds of GT42 and ZZ9, seven Expansin protein-encoding genes were identified, of which six were significantly upregulated in GT42. The two genes c111037.graph_c0 and c113583.graph_c0, belonging to the α-Expansin and ß-Expansin families, respectively, were functionally characterized, revealing their role in increasing the stomatal aperture. Therefore, these two sugarcane Expansin protein-coding genes contribute to the stomatal aperture, implying their potential roles in structural resistance to sugarcane smut. Our findings deepen the understanding of the role of the stomata in structural resistance to sugarcane smut and highlight their potential in sugarcane breeding for disease resistance.

6.
Front Plant Sci ; 15: 1412540, 2024.
Article in English | MEDLINE | ID: mdl-38966148

ABSTRACT

Introduction: Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods: In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion: These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.

7.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062950

ABSTRACT

Expansin is a cell wall relaxant protein that is common in plants and directly or indirectly participates in the whole process of plant root growth, development and morphogenesis. A well-developed root system helps plants to better absorb water and nutrients from the soil while effectively assisting them in resisting osmotic stress, such as salt stress. In this study, we observed and quantified the morphology of the roots of Arabidopsis overexpressing the TaEXPAs gene obtained by the research group in the early stage of development. We combined the bioinformatics analysis results relating to EXPA genes in five plants and identified TaEXPA7-B, a member of the EXPA family closely related to root development in winter wheat. Subcellular localization analysis of the TaEXPA7-B protein showed that it is located in the plant cell wall. In this study, the TaEXPA7-B gene was overexpressed in rice. The results showed that plant height, root length and the number of lateral roots of rice overexpressing the TaEXPA7-B gene were significantly higher than those of the wild type, and the expression of the TaEXPA7-B gene significantly promoted the growth of lateral root primordium and cortical cells. The plants were treated with 250 mM NaCl solution to simulate salt stress. The results showed that the accumulation of osmotic regulators, cell wall-related substances and the antioxidant enzyme activities of the overexpressed plants were higher than those of the wild type, and they had better salt tolerance. This paper discusses the effects of winter wheat expansins in plant root development and salt stress tolerance and provides a theoretical basis and relevant reference for screening high-quality expansin regulating root development and salt stress resistance in winter wheat and its application in crop molecular breeding.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Salt Stress , Triticum , Gene Expression Regulation, Plant/drug effects , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oryza/drug effects , Oryza/physiology , Osmotic Pressure , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Salt Stress/genetics , Salt Tolerance/genetics , Triticum/genetics , Triticum/growth & development , Triticum/metabolism
8.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931088

ABSTRACT

As a type of cell-wall-relaxing protein that is widely present in plants, expansins have been shown to actively participate in the regulation of plant growth and responses to environmental stress. Wild soybeans have long existed in the wild environment and possess abundant resistance gene resources, which hold significant value for the improvement of cultivated soybean germplasm. In our previous study, we found that the wild soybean expansin gene GsEXLB14 is specifically transcribed in roots, and its transcription level significantly increases under salt and drought stress. To further identify the function of GsEXLB14, in this study, we cloned the CDS sequence of this gene. The transcription pattern of GsEXLB14 in the roots of wild soybean under salt and drought stress was analyzed by qRT-PCR. Using an Agrobacterium rhizogenes-mediated genetic transformation, we obtained soybean hairy roots overexpressing GsEXLB14. Under 150 mM NaCl- and 100 mM mannitol-simulated drought stress, the relative growth values of the number, length, and weight of transgenic soybean hairy roots were significantly higher than those of the control group. We obtained the transcriptomes of transgenic and wild-type soybean hairy roots under normal growth conditions and under salt and drought stress through RNA sequencing. A transcriptomic analysis showed that the transcription of genes encoding expansins (EXPB family), peroxidase, H+-transporting ATPase, and other genes was significantly upregulated in transgenic hairy roots under salt stress. Under drought stress, the transcription of expansin (EXPB/LB family) genes increased in transgenic hairy roots. In addition, the transcription of genes encoding peroxidases, calcium/calmodulin-dependent protein kinases, and dehydration-responsive proteins increased significantly. The results of qRT-PCR also confirmed that the transcription pattern of the above genes was consistent with the transcriptome. The differences in the transcript levels of the above genes may be the potential reason for the strong tolerance of soybean hairy roots overexpressing the GsEXLB14 gene under salt and drought stress. In conclusion, the expansin GsEXLB14 can be used as a valuable candidate gene for the molecular breeding of soybeans.

9.
Plant Cell Rep ; 43(6): 159, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822842

ABSTRACT

KEY MESSAGE: AcEXPA1, an aluminum (Al)-inducible expansin gene, is demonstrated to be involved in carpetgrass (Axonopus compressus) root elongation under Al toxicity through analyzing composite carpetgrass plants overexpressing AcEXPA1. Aluminum (Al) toxicity is a major mineral toxicity that limits plant productivity in acidic soils by inhibiting root growth. Carpetgrass (Axonopus compressus), a dominant warm-season turfgrass widely grown in acidic tropical soils, exhibits superior adaptability to Al toxicity. However, the mechanisms underlying its Al tolerance are largely unclear, and knowledge of the functional genes involved in Al detoxification in this turfgrass is limited. In this study, phenotypic variation in Al tolerance, as indicated by relative root elongation, was observed among seventeen carpetgrass genotypes. Al-responsive genes related to cell wall modification were identified in the roots of the Al-tolerant genotype 'A58' via transcriptome analysis. Among them, a gene encoding α-expansin was cloned and designated AcEXPA1 for functional characterization. Observed Al dose effects and temporal responses revealed that Al induced AcEXPA1 expression in carpetgrass roots. Subsequently, an efficient and convenient Agrobacterium rhizogenes-mediated transformation method was established to generate composite carpetgrass plants with transgenic hairy roots for investigating AcEXPA1 involvement in carpetgrass root growth under Al toxicity. AcEXPA1 was successfully overexpressed in the transgenic hairy roots, and AcEXPA1 overexpression enhanced Al tolerance in composite carpetgrass plants through a decrease in Al-induced root growth inhibition. Taken together, these findings suggest that AcEXPA1 contributes to Al tolerance in carpetgrass via root growth regulation.


Subject(s)
Aluminum , Gene Expression Regulation, Plant , Plant Proteins , Plant Roots , Plants, Genetically Modified , Aluminum/toxicity , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Poaceae/genetics , Poaceae/drug effects
10.
Rice (N Y) ; 17(1): 36, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780864

ABSTRACT

BACKGROUND: Yield and quality are the two most important traits in crop breeding. Exploring the regulatory mechanisms that affect both yield and quality traits is of great significance for understanding the molecular genetic networks controlling these key crop attributes. Expansins are cell wall loosening proteins that play important roles in regulating rice grain size. RESULTS: We investigated the effect of OsEXPA7, encoding an expansin, on rice grain size and quality. OsEXPA7 overexpression resulted in increased plant height, panicle length, grain length, and thousand-grain weight in rice. OsEXPA7 overexpression also affected gel consistency and amylose content in rice grains, thus affecting rice quality. Subcellular localization and tissue expression analyses showed that OsEXPA7 is localized on the cell wall and is highly expressed in the panicle. Hormone treatment experiments revealed that OsEXPA7 expression mainly responds to methyl jasmonate, brassinolide, and gibberellin. Transcriptome analysis and RT-qPCR experiments showed that overexpression of OsEXPA7 affects the expression of OsJAZs in the jasmonic acid pathway and BZR1 and GE in the brassinosteroid pathway. In addition, OsEXPA7 regulates the expression of key quantitative trait loci related to yield traits, as well as regulates the expression levels of BIP1 and bZIP50 involved in the seed storage protein biosynthesis pathway. CONCLUSIONS: These results reveal that OsEXPA7 positively regulates rice yield traits and negatively regulates grain quality traits by involving plant hormone pathways and other trait-related pathway genes. These findings increase our understanding of the potential mechanism of expansins in regulating rice yield and quality traits and will be useful for breeding high-yielding and high-quality rice cultivars.

11.
Annu Rev Cell Dev Biol ; 40(1): 329-352, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38724021

ABSTRACT

Expansins comprise an ancient group of cell wall proteins ubiquitous in land plants and their algal ancestors. During cell growth, they facilitate passive yielding of the wall's cellulose networks to turgor-generated tensile stresses, without evidence of enzymatic activity. Expansins are also implicated in fruit softening and other developmental processes and in adaptive responses to environmental stresses and pathogens. The major expansin families in plants include α-expansins (EXPAs), which act on cellulose-cellulose junctions, and ß-expansins, which can act on xylans. EXPAs mediate acid growth, which contributes to wall enlargement by auxin and other growth agents. The genomes of diverse microbes, including many plant pathogens, also encode expansins designated expansin-like X. Expansins are proposed to disrupt noncovalent bonding between laterally aligned polysaccharides (notably cellulose), facilitating wall loosening for a variety of biological roles.


Subject(s)
Cell Wall , Plant Proteins , Cell Wall/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants/metabolism , Cellulose/metabolism , Plant Cells/metabolism
12.
Biochem Biophys Res Commun ; 720: 150086, 2024 08 06.
Article in English | MEDLINE | ID: mdl-38761478

ABSTRACT

Root-knot nematode (RKN) is one of the most damaging plant pathogen in the world. They exhibit a wide host range and cause serious crop losses. The cell wall, encasing every plant cell, plays a crucial role in defending of RKN invasion. Expansins are a group of cell wall proteins inducing cell wall loosening and extensibility. They are widely involved in the regulation of plant growth and the response to biotic and abiotic stresses. In this study, we have characterized the biological function of tobacco (Nicotiana tabacum) NtEXPA7, the homologue of Solyc08g080060.2 (SlEXPA18), of which the transcription level was significantly reduced in susceptible tomato upon RKN infection. The expression of NtEXPA7 was up-regulated after inoculation of RKNs. The NtEXPA7 protein resided in the cell wall. Overexpression of NtEXPA7 promoted the seedling growth of transgenic tobacco. Meanwhile the increased expression of NtEXPA7 was beneficial to enhance the resistance against RKNs. This study expands the understanding of biological role of expansin in coordinate plant growth and disease resistance.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Nicotiana , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Seedlings , Nicotiana/parasitology , Nicotiana/genetics , Nicotiana/metabolism , Animals , Seedlings/parasitology , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/parasitology , Plant Diseases/genetics , Disease Resistance/genetics , Plants, Genetically Modified/parasitology , Tylenchoidea/physiology , Cell Wall/metabolism , Cell Wall/parasitology , Plant Roots/parasitology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics
13.
Biotechnol Biofuels Bioprod ; 17(1): 56, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654330

ABSTRACT

BACKGROUND: Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp. RESULTS: Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20-25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%. CONCLUSION: This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.

14.
Heliyon ; 10(8): e29643, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38655343

ABSTRACT

Chitin is a polysaccharide similar to cellulose that contains abundant hydrogen bonds. Expansin-like proteins disrupt hydrogen bond networks, causing cellulose to swell and accelerating its degradation. We examined the effects of pretreatment with two expansin-like proteins, CxEXL22 (Arthrobotrys sp. CX1) and HcEXL (Hahella chejuensis), on chitin depolymerisation and enzymatic degradation. The efficiency of chitin degradation increased more than two-fold after pretreatment with expansin-like proteins. Following pretreatment with expansin-like proteins, chitin had a lower crystallinity index, greater d-spacing and crystallite size, and weaker hydrogen bonds, and the loosened porous microfibrils were more exposed than in untreated chitin. The rupture characterisation of crystalline chitin indicated that expansin-like proteins loosened the hydrogen bonds of the chitin polysaccharide chains, causing significant depolymerisation to expose more porous structures and enhance chitin accessibility.

15.
Plant Cell Environ ; 47(7): 2640-2659, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558078

ABSTRACT

Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.


Subject(s)
Cell Wall , Chenopodiaceae , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Xylem , Salt Tolerance/genetics , Xylem/physiology , Xylem/genetics , Xylem/metabolism , Chenopodiaceae/genetics , Chenopodiaceae/physiology , Cell Wall/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Size , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/growth & development , Oryza/genetics , Oryza/physiology , Oryza/growth & development , Genes, Plant , Cell Differentiation/genetics , Lignin/metabolism
16.
Pestic Biochem Physiol ; 201: 105893, 2024 May.
Article in English | MEDLINE | ID: mdl-38685255

ABSTRACT

Potato virus Y (PVY) is one of the most important pathogens in the genus Potyvirus that seriously harms agricultural production. Copper (Cu), as a micronutrient, is closely related to plant immune response. In this study, we found that foliar application of Cu could inhibit PVY infection to some extent, especially at 7 days post inoculation (dpi). To explore the effect of Cu on PVY infection, transcriptome sequencing analysis was performed on PVY-infected tobacco with or without Cu application. Several key pathways regulated by Cu were identified, including plant-pathogen interaction, inorganic ion transport and metabolism, and photosynthesis. Moreover, the results of virus-induced gene silencing (VIGS) assays revealed that NbMLP423, NbPIP2, NbFd and NbEXPA played positive roles in resistance to PVY infection in Nicotiana benthamiana. In addition, transgenic tobacco plants overexpressing NtEXPA11 showed increased resistance to PVY infection. These results contribute to clarify the role and regulatory mechanism of Cu against PVY infection, and provide candidate genes for disease resistance breeding.


Subject(s)
Copper , Disease Resistance , Nicotiana , Plant Diseases , Potyvirus , Nicotiana/virology , Nicotiana/genetics , Potyvirus/physiology , Copper/pharmacology , Plant Diseases/virology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Plants, Genetically Modified/virology , Gene Expression Regulation, Plant , Transcriptome
18.
Genes (Basel) ; 15(2)2024 02 06.
Article in English | MEDLINE | ID: mdl-38397202

ABSTRACT

Seed weight is an important target trait in pomegranate breeding and culture. Expansins act by loosening plant cell walls and cellulosic materials, permitting turgor-driven cell enlargement. However, the role of expansin genes (EXPs) in pomegranate seed weight remains elusive. A total of 29 PgrEXPs were identified in the 'Dabenzi' genome. These genes were classified into four subfamilies and 14 subgroups, including 22 PgrEXPAs, 5 PgrEXPBs, 1 PgrEXPLA, and 1 PgrEXPLB. Transcriptome analysis of PgrEXPs in different tissues (root, leaf, flower, peel, and seed testa) in 'Dabenzi', and the seed testa of the hard-seeded pomegranate cultivar 'Dabenzi' and soft-seeded cultivar 'Tunisia' at three development stages showed that three PgrEXPs (PgrEXPA11, PgrEXPA22, PgrEXPA6) were highly expressed throughout seed development, especially in the sarcotesta. SNP/Indel markers of these PgrEXPs were developed and used to genotype 101 pomegranate accessions. The association of polymorphic PgrEXPs with seed weight-related traits (100-seed weight, 100-kernel weight, 100-sarcotesta weight, and the percentage of 100-sarcotesta to 100-seed weight) were analyzed. PgrEXP22 was significantly associated with 100-seed weight and 100-sarcotesta weight and is a likely candidate for regulating seed weight and sarcotesta development in particular. This study provides an effective tool for the genetic improvement of seed weight in pomegranate breeding programs.


Subject(s)
Lythraceae , Pomegranate , Pomegranate/genetics , Lythraceae/genetics , Plant Breeding , Fruit/genetics , Seeds/genetics
19.
Chin Med ; 19(1): 22, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311790

ABSTRACT

BACKGROUND: Expansins (EXP) are important enzymes that are involved in the extension of plant cells and regulation of root configurations, which play important roles in resisting various stresses. As a model medicinal plant, Salvia miltiorrhiza is well recognized for treating coronary heart disease, myocardial infection, and other cardiovascular and cerebrovascular diseases; however, the SmEXP gene family has not yet been analyzed. METHODS: The SmEXP family was systematically analyzed using bioinformatics. Quantitative real-time PCR was employed to analyze the tissue expression patterns of the SmEXP family, as well as its expression under abscisic acid (ABA) treatment and abiotic stress. Subcellular localization assay revealed the localization of SmEXLA1, SmEXLB1, and SmEXPA2. RESULTS: This study identified 29 SmEXP that belonged to four different subfamilies. SmEXP promoter analysis suggested that it may be involved in the growth, development, and stress adaptation of S. miltiorrhiza. An analysis of the expression patterns of SmEXP revealed that ABA, Cu2+, and NaCl had regulatory effects on its expression. A subcellular localization assay showed that SmEXLA1 and SmEXLB1 were located on the nucleus and cell membrane, while SmEXPA2 was located on the cell wall. CONCLUSION: For this study, the SmEXP family was systematically analyzed for the first time, which lays a foundation for further elucidating its physiological and biological functionality.

20.
Plant Reprod ; 37(2): 259-270, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38285171

ABSTRACT

KEY MESSAGE: EXPANSIN15 is involved in petal cell morphology and size, the fusion of the medial tissues in the gynoecium and expansion of fruit valve cells. It genetically interacts with SPATULA and FRUITFULL. Cell expansion is fundamental for the formation of plant tissues and organs, contributing to their final shape and size during development. To better understand this process in flower and fruit development, we have studied the EXPANSIN15 (EXPA15) gene, which showed expression in petals and in the gynoecium. By analyzing expa15 mutant alleles, we found that EXPA15 is involved in petal shape and size determination, by affecting cell morphology and number. EXPA15 also has a function in fruit size, by affecting cell size and number. Furthermore, EXPA15 promotes fusion of the medial tissues in the gynoecium. In addition, we observed genetic interactions with the transcription factors SPATULA (SPT) and FRUITFULL (FUL) in gynoecium medial tissue fusion, style and stigma development and fruit development in Arabidopsis. These findings contribute to the importance of EXPANSINS in floral and fruit development in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Fruit , Gene Expression Regulation, Plant , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/growth & development , Flowers/genetics , Fruit/growth & development , Fruit/genetics , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL