Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Front Pharmacol ; 15: 1388540, 2024.
Article in English | MEDLINE | ID: mdl-39108744

ABSTRACT

Background: Atherosclerosis (AS) is a chronic arterial pathology and a leading cause of vascular disease-related mortality. Fatty streaks in the arterial wall develop into atherosclerosis and characteristic plaques. Clinical interventions typically involve lipid-lowering medications and drugs for stabilizing vulnerable plaques, but no direct therapeutic agent specifically targets atherosclerosis. Garlic, also locally known as DASUAN, is recognized as a widely sold herbal dietary supplement esteemed for its cardiovascular benefits. However, the specific mechanisms of garlic's anti-atherosclerotic effects remain unclear. Aims: This study aims to elucidate the pharmacological mechanisms through which garlic ameliorates atherosclerosis. Methods: The study identified the major active components and targets of garlic by screening the TCMSP, TCM-ID, and, ETCM databases. Atherosclerosis-associated targets were obtained from the DisGeNET, GeneCards, and DiGSeE databases, and garlic intervention targets were determined through intersection. Utilizing the intersected genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using R software. A garlic component-disease target network was constructed using Cytoscape. RNA-seq datasets from the GEO database were utilized to identify differentially expressed genes (DEGs) associated with atherosclerosis. The target genes were intersected with DEGs and the FerrDb (ferroptosis database). Molecular docking predicted the binding interactions between active components and the core targets. In vitro and in vivo experiments validated the identified core targets. Results: The integration of garlic drug targets with atherosclerotic disease targets identified 230 target genes. Intersection with RNA-seq DEGs revealed 15 upregulated genes, including 8 target genes related to ferroptosis. Molecular docking indicated favorable affinities between garlic active components [Sobrol A, (+)-L-Alliin, Benzaldoxime, Allicin] and target genes (DPP4, ALOX5, GPX4). Experimental validation showed that GARLIC reduces the expression of ferroptosis-related genes in AS, suggesting its therapeutic potential through the regulation of ferroptosis. Conclusion: Garlic ameliorates atherosclerosis by targeting intra-plaque ferroptosis and reducing lipid peroxidation. These findings provide novel insights into the pharmacological mechanisms underlying the efficacy of garlic in treating AS.

2.
Anal Biochem ; 694: 115629, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39069245

ABSTRACT

Xiaochaihu Decoction(XCHD)is a classic prescription for the treatment of fever, but the mechanism is not clear. In this study, We elucidated the mechanism of action through network pharmacology and molecular docking. A rat fever model was established to verify the prediction results of network pharmacology. The analysis revealed that 120 intersection targets existed between XCHD and fever. The TP53, STAT3, RELA, MAPK1, AKT1, TNF and MAPK14 as potential core targets of XCHD in fever treatment. GO and KEGG pathway enrichment analyses indicated that XCHD may act through pathways such as the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway. Molecular docking results demonstrated that quercetin, kaempferol, ß-sitosterol, stigmasterol and baicalein exhibited strong binding activity to key targets. Animal experiments showed that XCHD significantly reduced body temperature and levels of IL-1ß, IL-6, TNF-α, NO, PGE2, and cAMP in rats with fever. Importantly, no significant difference was observed between the XCHD self-emulsifying nano phase plus suspension phase and XCHD group. XCHD exerts its therapeutic effects on fever through a multi-ingredient, multi-target, and multi-pathway approach.

3.
Am J Med Sci ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009282

ABSTRACT

BACKGROUND: Whether Astragalus membranaceus is an effective drug in treatment of ulcerative colitis (UC) and how it exhibit activity effect on UC is unclear. METHODS: TCMSP, GeneCards, String, and DAVID database were used to screening target genes construct PPI network and performed for GO and KEGG pathway enrichment analysis respectively. Molecular docking and animal experiment were performed. The body weight and disease activity index (DAI) of mice were recorded. ELISA kits were used to detect the levels of CAT, SOD, MDA and IL-6, IL-10, TNF-α in the blood of mice. Western blot kits were utilized to measured the expressions of MAPK14, RB1, MAPK1, JUN, ATK1, and IL2 proteins. RESULTS: The active components of Astragalus membranaceus mainly including 7-O-methylisomucronulatol, quercetin, kaempferol, formononetin and isrhamnetin. Astragalus membranaceus may inhibited the expression of TNF-α, IL-6, MDA, and promoted the expression of CAT, SOD, IL-10. The expression levels of MAPK14, RB1, MAPK1, JUN and ATK1 proteins were significantly decreased while IL2 protein increased administrated with Astragalus membranaceus. CONCLUSIONS: Astragalus membranaceus is an effective drug in treatment of UC according to related to above targets that may exhibits the anti-UC effect via its antioxidant pathway and regulating the balance of pro-inflammatory and anti-inflammatory factors.

4.
Article in English | MEDLINE | ID: mdl-39076096

ABSTRACT

BACKGROUND: Precancerous Lesions of Gastric Cancer (PLGC) are critical in the secondary prevention of gastric cancer. Despite the notable effects of natural products on PLGC, the specific mechanisms by which compounds, like 6-gingerol, influence these lesions are not fully understood. AIMS: This study aimed to confirm the effect and mechanism of 6-gingerol in the treatment of precancerous lesions of gastric cancer (PLGC). OBJECTIVE: The objective of this study was to elucidate the effects and mechanisms of 6-gingerol against PLGC using network pharmacology and in vitro experiments. METHODS: We employed network pharmacology to identify potential targets and pathways influenced by 6-gingerol, followed by validation through in vitro experiments using a PLGC cell model. RESULTS: Network pharmacology analysis highlighted the PI3K/Akt signaling pathway as significantly influenced by 6-gingerol. In vitro experiments confirmed that 6-gingerol effectively inhibited proliferation, invasion, and metastasis of MC cells, promoted apoptosis, and induced cell cycle arrest, primarily through modulation of the PI3K/Akt pathway. Statistical analysis revealed significant inhibition (p < 0.05) across these cellular processes in a dose-dependent manner. CONCLUSION: This study demonstrated that 6-gingerol acts as an effective agent against PLGC, with clear dose-dependent effects that pave the way for further experimental and clinical exploration.

5.
Front Endocrinol (Lausanne) ; 15: 1331488, 2024.
Article in English | MEDLINE | ID: mdl-39050570

ABSTRACT

Background: Among bone diseases, osteoporosis-like skeleton, such as trabecular thinning, fracture and so on, is the main pathological change of cadmium-induced osteoporosis(Cd-OP), accompanied by brittle bone and increased fracture rate. However, the mechanism underlying cadmium-induced osteoporosis has remained elusive. Compound Lurong Jiangu Capsule (CLJC) is an experienced formula for the treatment of bone diseases, which has the effect of tonifying kidney and strengthening bones, promoting blood circulation and relieving pain. Objective: Network pharmacology and molecular docking technology combined with experiments were used to investigate the potential mechanism of CLJC in treating Cd-OP. Method: The active compounds and corresponding targets of each herb in CLJC were searched in the TCMSP and BATMAN-TCM databases. The DisGeNet, OMIM, and GeneCards databases searched for Cd-OP targets. The relationship between both of them was visualized by establishing an herb-compound-target network using Cytoscape 3.9.1 software. Gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed after determining the intersection of the targets from CLJC and Cd-OP. What's more, molecular docking was performed to validate the results. All of them were aim to obtain hud signaling pathways for further study. Finally, BAX, BCL-2, and CASPASE-3 were screened and selected for further experiments, which included bone imaging and reconstruction analysis (Micro-CT), hematoxylin-eosin Staining (HE), and western blot (WB). Results: 106 common targets from CLJC and Cd-OP targets were identified. KEGG pathway analysis suggested that multiple signaling pathways, such as the pathways in cancer, may play roles in treatment. Verification of the molecular docking was successful. Here we showed that Cd-OP displayed Tb.Th and Tb.N significantly reduced and even broke, irregular proliferation of bone cortex, uneven and loose trabecular bone arrangement, changed in apoptosis-related proteins, such as significant upregulation of CASPASE-3, BAX protein and significant downregulation of BCL-2 protein in vivo, while CLJC rescued these phenotypes. Conclusion: This study revealed that CLJC can reduce the expression of apoptosis-related proteins, and multiple components and multiple targets inhibit Cd-OP through apoptosis signaling pathway.


Subject(s)
Cadmium , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Osteoporosis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/chemically induced , Osteoporosis/metabolism , Osteoporosis/pathology , Cadmium/toxicity , Animals , Rats , Apoptosis/drug effects , Female , Rats, Sprague-Dawley , Signal Transduction/drug effects , Capsules
6.
Bioinspir Biomim ; 19(5)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38991522

ABSTRACT

This work examines the acoustically actuated motions of artificial flagellated micro-swimmers (AFMSs) and compares the motility of these micro-swimmers with the predictions based on the corrected resistive force theory (RFT) and the bar-joint model proposed in our previous work. The key ingredient in the theory is the introduction of a correction factorKin drag coefficients to correct the conventional RFT so that the dynamics of an acoustically actuated AFMS with rectangular cross-sections can be accurately modeled. Experimentally, such AFMSs can be easily manufactured based on digital light processing of ultra-violet (UV)-curable resins. We first determined the viscoelastic properties of a UV-cured resin through dynamic mechanical analysis. In particular, the high-frequency storage moduli and loss factors were obtained based on the assumption of time-temperature superposition (TTS), which were then applied in theoretical calculations. Though the extrapolation based on the TTS implied the uncertainty of high-frequency material response and there is limited accuracy in determining head oscillation amplitude, the differences between the measured terminal velocities of the AFMSs and the predicted ones are less than 50%, which, to us, is well acceptable. These results indicate that the motions of acoustic AFMS can be predicted, and thus, designed, which pave the way for their long-awaited applications in targeted therapy.


Subject(s)
Computer Simulation , Equipment Design , Models, Biological , Swimming , Swimming/physiology , Equipment Failure Analysis , Biomimetic Materials/chemistry , Biomimetics/methods , Robotics/methods , Robotics/instrumentation , Sound , Acoustics , Computer-Aided Design , Animals
7.
Ultrasonics ; 142: 107371, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852549

ABSTRACT

High Intensity Focused Ultrasound (HIFU) is used in clinical practice for thermal ablation of malignant and benign solid tumors located in various organs. One of the reason limiting the wider use of this technology is the long treatment time resulting from i.a. the large difference between the size of the focal volume of the heating beam and the size of the tumor. Therefore, the treatment of large tumors requires scanning their volume with a sequence of single heating beams, the focus of which is moved in the focal plane along a specific trajectory with specific time and distance interval between sonications. To avoid an undesirable increase in the temperature of healthy tissues surrounding the tumor during scanning, the acoustic power and exposure time of each HIFU beam as well as the time intervals between sonications should be selected in such a way as to cover the entire volume of the tumor with necrosis as quickly as possible. This would reduce the costs of treatment. The aim of this study was to quantitatively evaluate the hypothesis that selecting the average acoustic power and exposure time for each individual heating beam, as well as the temporal intervals between sonications, can significantly shorten treatment time. Using 3D numerical simulations, the dependence of the duration of treatment of a tumor with a diameter of 5 mm or 9 mm (requiring multiple exposure to the HIFU beam) on the sonication parameters (acoustic power, exposure time) of each single beam capable of delivering the threshold thermal dose (CEM43 = 240 min) to the treated tissue volume was examined. The treatment duration was determined as the sum of exposure times to individual beams and time intervals between sonications. The tumor was located inside the ex vivo tissue sample at a depth of 12.6 mm. The thickness of the water layer between the HIFU transducer and the tissue was 50 mm. The sonication and scanning parameters selected using the developed algorithm shortened the duration of the ablation procedure by almost 14 times for a 5-mm tumor and 20 times for a 9-mm tumor compared to the duration of the same ablation plan when a HIFU beam was used of a constant acoustic power, constant exposure time (3 s) and constant long time intervals (120 s) between sonications. Results of calculations of the location and size of the necrotic lesion formed were experimentally verified on ex vivo pork loin samples, showing good agreement between them. In this way, it was proven that the proper selection of sonication and scanning parameters for each HIFU beam allows to significantly shorten the time of HIFU therapy.


Subject(s)
High-Intensity Focused Ultrasound Ablation , High-Intensity Focused Ultrasound Ablation/methods , Time Factors , Neoplasms/diagnostic imaging , Animals , Computer Simulation , Humans
8.
Sensors (Basel) ; 24(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38894243

ABSTRACT

Increasing airspace safety is an important challenge, both for unmanned aerial vehicles (UAVs) as well as manned aircraft. Future developments of collision avoidance systems are supposed to utilize information from multiple sensing systems. A compact sensing system could employ a multi-mode multi-port antenna (M 3PA). Their ability to radiate multiple orthogonal patterns simultaneously makes them suitable for communication applications as well as bearing and ranging applications. Furthermore, they can be designed to flexibly originate near-omnidirectional and/or directional radiation patterns. This option of flexibility with respect to the radiation characteristic is desired for antennas integrated in collision avoidance systems. Based on the aforementioned properties, M 3PAs represent a compelling option for aircraft transponders. In this paper, direction-of-arrival (DoA) estimation using an M 3PA designed for aerial applications is put to the test. First, a DoA estimation scheme suitable to be employed with M 3PAs is introduced. Next, the validity of the proposed method is confirmed through numerical simulations. Lastly, practical experiments are conducted in an antenna measurement chamber to verify the numerical results.

9.
Comput Biol Med ; 178: 108693, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850960

ABSTRACT

AIM: Kaempferitrin is an active component in Chenopodium ambrosioides, showing medicinal functions against liver cancer. This study aimed to identify the potential targets and pathways of kaempferitrin against liver cancer using network pharmacology and molecular docking, and verify the essential hub targets and pathway in mice model of SMMC-7721 cells xenografted tumors and SMMC-7721 cells. METHODS: Kaempferitrin therapeutical targets were obtained by searching SwissTargetPrediction, PharmMapper, STITCH, DrugBank, and TTD databases. Liver cancer specific genes were obtained by searching GeneCards, DrugBank, TTD, OMIM, and DisGeNET databases. PPI network of "kaempferitrin-targets-liver cancer" was constructed to screen the hub targets. GO, KEGG pathway and MCODE clustering analyses were performed to identify possible enrichment of genes with specific biological subjects. Molecular docking and molecular dynamics simulation were employed to determine the docking pose, potential and stability of kaempferitrin with hub targets. The potential anti-liver cancer mechanisms of kaempferitrin, as predicted by network pharmacology analyses, were verified by in vitro and in vivo experiments. RESULTS: 228 kaempferitrin targets and 2186 liver cancer specific targets were identified, of which 50 targets were overlapped. 8 hub targets were identified through network topology analysis, and only SIRT1 and TP53 had a potent binding activity with kaempferitrin as indicated by molecular docking and molecular dynamics simulation. MCODE clustering analysis revealed the most significant functional module of PPI network including SIRT1 and TP53 was mainly related to cell apoptosis. GO and KEGG enrichment analyses suggested that kaempferitrin exerted therapeutic effects on liver cancer possibly by promoting apoptosis via p21/Bcl-2/Caspase 3 signaling pathway, which were confirmed by in vivo and in vitro experiments, such as HE staining of tumor tissues, CCK-8, qRT-PCR and Western blot. CONCLUSION: This study provided not only insight into how kaempferitrin could act against liver cancer by identifying hub targets and their associated signaling pathways, but also experimental evidence for the clinical use of kaempferitrin in liver cancer treatment.


Subject(s)
Kaempferols , Liver Neoplasms , Molecular Docking Simulation , Animals , Humans , Kaempferols/pharmacology , Kaempferols/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Mice , Cell Line, Tumor , Network Pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Mice, Nude
10.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38739003

ABSTRACT

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Subject(s)
Aurora Kinase A , Cisplatin , Epithelial-Mesenchymal Transition , Indole Alkaloids , Triple Negative Breast Neoplasms , Female , Humans , Antineoplastic Agents/pharmacology , Aurora Kinase A/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Drug Synergism , Epithelial-Mesenchymal Transition/drug effects , Indole Alkaloids/pharmacology , Molecular Docking Simulation , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
11.
Article in English | MEDLINE | ID: mdl-38757315

ABSTRACT

BACKGROUND AND OBJECTIVES: Premature Ovarian Insufficiency (POI) is a disease suffered by women under the age of 40 when ovarian function has declined, seriously affecting both the physical and mental health of women. Guiluoshi Anzang decoction (GLSAZD) has been used for a long time and has a unique therapeutic effect on improving ovarian function. This study aims to investigate the mechanism of GLSAZD in treating POI through network pharmacology, molecular docking, and experimental verification. METHODS: In this study, the active ingredients of Guiluoshi Anzang Decoction and the targets of POI were obtained from TCMSP, BATMANN-TCM, Uniprot, GeneCards, and other databases, and network pharmacology analysis was performed. Molecular docking was conducted to validate the affinity of the main active ingredient of GLSAZD to key POI targets. A POI SD rat model was established, and HE staining, ELISA, Real-time PCR, and Western blot experiments were performed to verify the predicted core targets and the therapeutic effects. RESULTS: 10 core targets and the top 5 ingredients were screened out. Molecular docking showed core targets AKT1, CASP3, TNF, TP53, and IL6 had stable binding with the core 5 ingredients quercetin, kaempferol, beta-sitosterol, luteolin, and Stigmasterol. GO and KEGG enrichment analysis demonstrated the mechanism involved in the positive regulation of gene expression, PI3K-AKT signaling pathway, and apoptosis signaling pathways. Animal experiments indicated GLSAZD could up-regulate the protein expression of p-PI3K and p-AKT1 and the mRNA expression of STAT3 and VEGF, down-regulate TP53 and Cleaved Caspase-3 protein expression in rat`s ovarian tissues and serum TNF-α and IL-6 protein levels, activate PI3K-AKT signaling pathway and inhibit the apoptosis signaling pathway. CONCLUSION: GLSAZD treats POI through multi-component, multi-target, and multi-pathway approaches. This study provided evidence for its clinical application in treating POI and shed light on the study of traditional medicine of the Guangxi Zhuang Autonomous Region in China.

12.
BMC Oral Health ; 24(1): 530, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704553

ABSTRACT

OBJECTIVE: Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS: Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS: Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION: CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.


Subject(s)
Berberine , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Periodontitis , Humans , Periodontitis/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Berberine/pharmacology , Berberine/therapeutic use , Coptis chinensis , Rhizome , Interleukin-17/metabolism , Signal Transduction/drug effects , In Vitro Techniques , Enzyme-Linked Immunosorbent Assay , Flow Cytometry
13.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Article in English | MEDLINE | ID: mdl-38707616

ABSTRACT

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Molecular Docking Simulation , Network Pharmacology , Phenols , Polyphenols , Streptozocin , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Animals , Rats , Glucosides/pharmacology , Glucosides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Phenols/pharmacology , Phenols/chemistry , Rats, Sprague-Dawley
14.
Article in English | MEDLINE | ID: mdl-38808725

ABSTRACT

BACKGROUND: Gushukang (GSK), a traditional Chinese medical prescription, has made a great and extensive contribution to the treatment of different forms of osteoporosis, but polypharmacology studies of its mechanism of action are lacking. This study investigates the pharmacological mechanism of osteoporosis using network pharmacology and molecular docking. Experimental verification was carried out to confirm the efficacy of GSK on RANKLinduced osteoclast differentiation in RAW264.7 cells to verify the network pharmacology studies. METHODS: The effective chemical components and corresponding targets of osteoporosis with oral bioavailability of more than 30% and drug-like properties greater than 0.18 were searched in the TCMSP and TCM-ID databases. DrugBank, GeneCards, OMIM, TTD, and other databases were examined for targets related to osteoporosis. Using Cytoscape software, a network of possible TCM-active ingredient-osteoporosis targets was created. STRING software was used to create the networks of protein-protein interactions. The DAVID program was carried out to conduct GO and KEGG pathway enrichment analyses of the targets. Molecular docking and pattern of action analysis were carried out using software like AutoDock Vina and Discovery Studio Visualizer. The growth media for RAW264.7 cells contained varying doses of GSK serum and 50 ng/mL RANKL. The activity of TRAP was altered. Additionally, genes related to osteoclasts were examined using an RT-PCR assay. RESULTS: Network pharmacological analysis revealed that the primary efficacy targets of osteoporosis were PTGS2, PTGS1, HSP90AA1, NCOA2, ADRB2, ESR1, NCOA1, and AR. The pharmacological targets of osteoporosis may be mediated by substances including quercetin, kaempferol, luteolin, naringenin, icariin, anthocyanin, tanshinone IIA, and cryptotanshinone. GSK markedly inhibited RANKL-induced TRAP activity. qRT-PCR results revealed decreased expression of the PTGS2 and ADRB2 genes upon GSK treatment. CONCLUSION: The findings of network pharmacology, molecular docking, as well as experimental verification provide a new further study for elucidating the pharmacodynamic substance basis and polypharmacology mechanism of GSK in treating osteoporosis.

15.
J Cancer ; 15(11): 3566-3579, 2024.
Article in English | MEDLINE | ID: mdl-38817861

ABSTRACT

Precancerous Lesions of Gastric Cancer (PLGC) are an essential step in the advancement of Gastric cancer (GC). Early intervention represents the most effective strategy to impede the development of PLGC. However, additional research is necessary to comprehend the molecular mechanism of PLGC. YQHXD is originated from Si Wu Decoction, has been utilized as an empirical formula for the treatment of PLGC for several years. In this study, we employed network pharmacology, molecular docking, and experimental validation to examine the inhibitory and ameliorative properties of YQHXD on PLGC. Multiple databases were utilized to gather genetic information on drugs in PLGC and YQHXD, in order to obtain cross-targets. We discovered 142 common targets between YQHXD and PLGC. GO and KEGG enrichment analyses indicate that YQHXD treatment of PLGC might be linked with cellular response to oxygen levels and the HIF-1α signaling pathway. Finally, we performed in vitro experiments, of which the results reveal that YQHXD mitigates gastric mucosal atrophy, intestinalization, and heterogeneous hyperplasia, and reduces the expression of inflammatory factors in rats. Therefore, we considered that YQHXD has the potential to delay the PLGC process by inhibiting the HIF-1α signaling pathway.

16.
Curr Pharm Des ; 30(15): 1178-1193, 2024.
Article in English | MEDLINE | ID: mdl-38561613

ABSTRACT

BACKGROUND: Spinal Muscular Atrophy (SMA) is a severe motor neuronal disorder with high morbidity and mortality. Securinine has shown the potential to treat SMA; however, its anti-SMA role remains unclear. OBJECTIVE: This study aims to reveal the anti-SMA mechanisms of securinine. METHODS: Securinine-associated targets were acquired from Herbal Ingredients' Targets (HIT), Similarity Ensemble Approach (SEA), and SuperPred. SMA-associated targets were obtained from GeneCards and Dis- GeNET. Protein-protein Interaction (PPI) network was constructed using GeneMANIA, and hug targets were screened using cytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfifiler. Molecular docking was conducted using Pymol and Auto- Dock. In vitro assays were used to verify the anti-SMA effects of securinine. RESULTS: Twenty-six intersection targets of securinine and SMA were obtained. HDAC1, HDAC2, TOP2A, PIK3R1, PRMT5, JAK2, HSP90AB1, TERT, PTGS2, and PAX8 were the core targets in PPI network. GO analysis demonstrated that the intersecting targets were implicated in the regulation of proteins, steroid hormones, histone deacetylases, and DNA transcription. KEGG analysis, pathway-pathway, and hub target-pathway networks revealed that securinine might treat SMA through TNF, JAK-STAT, Ras, and PI3K-Akt pathways. Securinine had a favorable binding affinity with HDAC1, HSP90AB, JAK2, PRMT5, PTGS2, and TERT. Securinine rescued viability suppression, mitochondria damage, and SMN loss in the SMA cell model. Furthermore, securinine increased HDAC1 and PRMT5 expression, decreased PTGS2 expression, suppressed the JAK2-STAT3 pathway, and promoted the PI3K-Akt pathway. CONCLUSION: Securinine might alleviate SMA by elevating HDAC1 and PRMT5 expression and reducing PTGS2 via JAK2-STAT3 suppression and PI3K-Akt activation.


Subject(s)
Muscular Atrophy, Spinal , Network Pharmacology , Plants, Medicinal , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Humans , Plants, Medicinal/chemistry , Molecular Docking Simulation , Azepines/pharmacology , Azepines/chemistry , Azepines/isolation & purification , Lactones/pharmacology , Lactones/chemistry , Lactones/isolation & purification , Molecular Structure , Heterocyclic Compounds, Bridged-Ring , Piperidines
17.
Sci Rep ; 14(1): 9434, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658778

ABSTRACT

To enhance the vibration system characteristic distortion and pressure loss, we propose a novel rotary valve control vibration system. The paper presents the designed structural composition and generation mechanism of the rotary valve control vibration system. It also derives the mathematical model for the rotary valve distribution process and the overall system. The flow field inside the rotary valve is dynamically simulated using the multiple reference frame model, allowing for the determination of the change rule of the rotary valve's output characteristics. An AMESim model was developed to analyze the vibration characteristics of the rotary valve control system. The effects of parameters such as inlet pressure, motor speed, and oil supply pump displacement were investigated. A rotary valve control vibration system experimental bench was constructed to experimentally verify the output characteristics of the rotary valve and the vibration characteristics of the system. The results indicate that the characteristic curve of the designed vibration system closely resembles a sinusoidal wave. Additionally, the rotary valve exhibits low pressure loss, making it more suitable for vibration stress relief applications. By appropriately increasing the inlet pressure and decreasing the motor speed, the vibration characteristics of the system can be improved.

18.
Comb Chem High Throughput Screen ; 27(11): 1661-1675, 2024.
Article in English | MEDLINE | ID: mdl-38504574

ABSTRACT

BACKGROUND AND PURPOSE: Emodin, a compound derived from rhubarb and various traditional Chinese medicines, exhibits a range of pharmacological actions, including antiinflammatory, antiviral, and anticancer properties. Nevertheless, its pharmacological impact on bladder cancer (BLCA) and the underlying mechanism are still unclear. This research aimed to analyze the pharmacological mechanisms of Emodin against BLCA using network pharmacology analysis and experimental verification. METHODS: Initially, network pharmacology was employed to identify core targets and associated pathways affected by Emodin in bladder cancer. Subsequently, the expression of key targets in normal bladder tissues and BLCA tissues was assessed by searching the GEPIA and HPA databases. The binding energy between Emodin and key targets was predicted using molecular docking. Furthermore, in vitro experiments were carried out to confirm the predictions made with network pharmacology. RESULTS: Our analysis identified 148 common genes targeted by Emodin and BLCA, with the top ten target genes including TP53, HSP90AA1, EGFR, MYC, CASP3, CDK1, PTPN11, EGF, ESR1, and TNF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated a significant correlation between Emodin and the PI3KAKT pathway in the context of BLCA. Molecular docking investigations revealed a strong affinity between Emodin and critical target proteins. In vitro experiments demonstrated that Emodin inhibits T24 proliferation, migration, and invasion while inducing cell apoptosis. The findings also indicated that Emodin reduces both PI3K and AKT protein and mRNA expression, suggesting that Emodin may mitigate BLCA by modulating the PI3K-AKT signaling pathway. CONCLUSION: This study integrates network pharmacology with in vitro experimentation to elucidate the potential mechanisms underlying the action of Emodin against BLCA. The results of this research enhance our understanding of the pharmacological mechanisms by which Emodin may be employed in treating BLCA.


Subject(s)
Cell Proliferation , Emodin , Molecular Docking Simulation , Network Pharmacology , Urinary Bladder Neoplasms , Emodin/pharmacology , Emodin/chemistry , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Humans , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Movement/drug effects
19.
Article in English | MEDLINE | ID: mdl-38446216

ABSTRACT

This study aimed to evaluate the pharmacological mechanism of Hedyotis diffusa Willd against CRC (colorectal cancer) using network pharmacological analysis combined with experimental validation. The active components and potential targets of Hedyotis diffusa Willd were screened from the tax compliance management program public database using network pharmacology. The core anti-CRC targets were screened using a protein-protein interaction (PPI) network. The mRNA and protein expression of core target genes in normal colon and CRC tissues and their relationship with overall CRC survival were evaluated using The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Functional and pathway enrichment analyses of the potential targets were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The first six core targets with stable binding were molecular-docked with the active components quercetin and ß-sitosterol. Finally, the results of network pharmacology were verified using in vitro experiments. In total, 149 potential targets were identified by searching for seven types of active components and the intersection of all potential and CRC targets. PPI network analysis showed that ten target genes, including tumor protein p53 (TP53) and recombinant cyclin D1 (CCND1), were pivotal genes. GO enrichment analysis involved 2043 biological processes, 52 cellular components, and 191 molecular functions. KEGG enrichment analysis indicated that the anticancer effects of H. alba were mediated by tumor necrosis factor, interleukin-17, and nuclear factor-κB (NF-κB) signaling pathways. Validation of key targets showed that the validation results for most core genes were consistent with those in this study. Molecular docking revealed that the ten core target proteins could be well combined with quercetin and ß-sitosterol and the structure remained stable after binding. The results of the in vitro experiment showed that ß-sitosterol inhibited proliferation and induced apoptosis in SW620 cells. This study identified a potential target plant for CRC through network pharmacology and in vitro validation.

20.
Front Vet Sci ; 11: 1361552, 2024.
Article in English | MEDLINE | ID: mdl-38496310

ABSTRACT

The aim of this study was to investigate the anti-Eimeria tenella mechanism of Qingchang Compound (QCC) and provide a basis for its clinical application. The active ingredients, active ingredient-disease intersection targets, and possible pathways of QCC for the treatment of chicken coccidiosis were analyzed, the binding ability of pharmacodynamic components and target proteins was determined by network pharmacology and the molecular docking, and a model of infection with coccidiosis was constructed to verify and analyze the mechanism of action of QCC against coccidiosis. Among the 57 components that met the screening conditions, the main bioactive components were quercetin, dichroine, and artemisinin, with IL-1ß, IL-6, IL-10, IFN-γ, and IL-8 as the core targets. Simultaneously, the KEGG signaling pathway of QCC anti-coccidiosis in chickens was enriched, including cytokine-cytokine receptor interactions. The results showed that the main pharmacodynamic components of QCC and the core targets could bind well; artemisinin and alpine possessed the largest negative binding energies and presented the most stable binding states. In addition, in vivo studies showed that QCC reduced blood stool in chickens with coccidiosis, restored cecal injury, and significantly reduced the mRNA and protein expression levels of IL-1ß, IL-10, and IFN-γ in ceca (p < 0.01). Our results suggest that the main active ingredients of QCC are artemisinin and alpine and its mechanism of action against coccidiosis may be related to the reduction of the inflammatory response by acting on specific cytokines.

SELECTION OF CITATIONS
SEARCH DETAIL
...