ABSTRACT
INTRODUCTION: In X-linked agammaglobulinemia (XLA), the diversity of BTK variants complicates the study of genotype-phenotype correlations. Since BTK negatively regulates toll-like receptors (TLRs), we investigated if distinct BTK mutation types selectively modulate TLR pathways, affecting disease expression. METHODS: Using reverse transcription-quantitative polymerase chain reaction, we quantified ten TLR signaling-related genes in XLA patients with missense (n = 3) and nonsense (n = 5) BTK mutations and healthy controls (n = 17). RESULTS: BTK, IRAK2, PIK3R4, REL, TFRC, and UBE2N were predominantly downregulated, while RIPK2, TLR3, TLR10, and TLR6 showed variable regulation. The missense XLA group exhibited significant downregulation of IRAK2, PIK3R4, REL, and TFRC and upregulation of TLR3 and/or TLR6. CONCLUSION: Hypo-expression of TLR3, TLR6, and TLR10 may increase susceptibility to infections, while hyper-expression might contribute to chronic inflammatory conditions like arthritis or inflammatory bowel disease. Our findings shed light on the important inflammatory component characteristic of some XLA patients, even under optimal therapeutic conditions.
Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Agammaglobulinemia , Genetic Association Studies , Genetic Diseases, X-Linked , Signal Transduction , Toll-Like Receptors , Humans , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Agammaglobulinaemia Tyrosine Kinase/genetics , Signal Transduction/genetics , Male , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Adolescent , Child , Gene Expression Regulation , Adult , Child, Preschool , Young Adult , Female , MutationABSTRACT
Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy linked to high-risk human papillomavirus (HPV) infection, which develops from precursor lesions like low-grade squamous intraepithelial lesions and high-grade squamous intraepithelial lesions (HGSILs). ASCC incidence varies across populations and poses increased risk for people living with HIV. Our investigation focused on transcriptomic and metatranscriptomic changes from squamous intraepithelial lesions to ASCC. Metatranscriptomic analysis highlighted specific bacterial species (e.g., Fusobacterium nucleatum, Bacteroides fragilis) more prevalent in ASCC than precancerous lesions. These species correlated with gene-encoding enzymes (Acca, glyQ, eno, pgk, por) and oncoproteins (FadA, dnaK), presenting potential diagnostic or treatment markers. Unsupervised transcriptomic analysis identified distinct sample clusters reflecting histological diagnosis, immune infiltrate, HIV/HPV status, and pathway activities, recapitulating anal cancer progression's natural history. Our study unveiled molecular mechanisms in anal cancer progression, aiding in stratifying HGSIL cases based on low or high risk of progression to malignancy.
Subject(s)
Anus Neoplasms , Carcinoma, Squamous Cell , Transcriptome , Humans , Anus Neoplasms/genetics , Anus Neoplasms/immunology , Anus Neoplasms/pathology , Anus Neoplasms/virology , Anus Neoplasms/microbiology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/microbiology , Carcinoma, Squamous Cell/pathology , Microbiota/immunology , Male , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Papillomavirus Infections/immunology , Squamous Intraepithelial Lesions/genetics , Squamous Intraepithelial Lesions/pathology , Squamous Intraepithelial Lesions/virology , Female , Disease Progression , Middle Aged , HIV Infections/complications , HIV Infections/immunologyABSTRACT
This revised consensus statement of the Spanish Society of Medical Oncology (SEOM) and the Spanish Society of Pathological Anatomy (SEAP) updates the recommendations for biomarkers use in the diagnosis and treatment of breast cancer that we first published in 2018. The expert group recommends determining in early breast cancer the estrogen receptor (ER), progesterone receptor (PR), Ki-67, and Human Epidermal growth factor Receptor 2 (HER2), as well as BReast CAncer (BRCA) genes in high-risk HER2-negative breast cancer, to assist prognosis and help in indicating the therapeutic options, including hormone therapy, chemotherapy, anti-HER2 therapy, and other targeted therapies. One of the four available genetic prognostic platforms (Oncotype DX®, MammaPrint®, Prosigna®, or EndoPredict®) may be used in ER-positive patients with early breast cancer to establish a prognostic category and help decide with the patient whether adjuvant treatment may be limited to hormonal therapy. In second-line advanced breast cancer, in addition, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and estrogen receptor 1 (ESR1) should be tested in hormone-sensitive cases, BRCA gene mutations in HER2-negative cancers, and in triple-negative breast cancer (TNBC), programmed cell death-1 ligand (PD-L1). Newer biomarkers and technologies, including tumor-infiltrating lymphocytes (TILs), homologous recombination deficiency (HRD) testing, serine/threonine kinase (AKT) pathway activation, and next-generation sequencing (NGS), are at this point investigational.
ABSTRACT
METHODS: One-hundred-six patients diagnosed with non-muscle invasive bladder cancer and treated with intravesical BCG were included and divided into two groups, BCG-responsive (n = 47) and -unresponsive (n = 59). Immunohistochemistry was used to evaluate PD-L1 expression and MSI was assessed by a commercial multiplex PCR kit. The mRNA expression profile of 15 immune checkpoints was performed using the nCounter technology. For in silico validation, two distinct cohorts sourced from the Gene Expression Omnibus (GEO) database were used. RESULTS: Among the 106 patients, only one (<1 %) exhibited MSI instability. PD-L1 expression was present in 9.4 % of cases, and no association was found with BCG-responsive status. We found low gene expression of canonic actionable immune checkpoints PDCD1 (PD-1), CD274 (PD-L1), and CTLA4, while high expression was observed for CD276 (B7-H3), CD47, TNFRSF14, IDO1 and PVR (CD155) genes. High IDO1 expression levels was associated with worst overall survival. The PDCD1, CTLA4 and TNFRSF14 expression levels were associated with BCG responsiveness, whereas TIGIT and CD276 were associated with unresponsiveness. Finally, CD276 was validated in silico cohorts. CONCLUSION: In NMIBC, MSI is rare and PD-L1 expression is present in a small subset of cases. Expression levels of PDCD1, CTLA4, TNFRSF14, TIGIT and CD276 could constitute predictive biomarkers of BCG responsiveness.
ABSTRACT
Introduction: Understanding compartmentalized immune responses in target organs is crucial for elucidating the pathogenesis of various diseases. However, obtaining samples from affected vital organs often poses safety challenges. In this study, we aimed to investigate potential correlations between the levels of disease-associated immune molecules in the bloodstream with their gene expression profiles in the hearts of patients suffering from Chagas Cardiomyopathy (CCC). This debilitating and often fatal condition is caused by infection with the protozoan Trypanosoma cruzi. Methods: Blood samples were analyzed using the Bio-Plex platform. Gene Expression Omnibus (GEO) database was used to determine gene expression profile in heart tissue from CCC and non-Chagas controls (CTRL). Results: Elevated levels of inflammatory cytokines were detected in the plasma of CCC patients, and these levels correlated with clinical indicators of deteriorating cardiac function. Notably, 75% of the soluble factors assessed in the plasma exhibited a consistent relationship with their gene expression levels in the cardiac tissue of CCC patients. Analysis of interactions and signaling pathways related to these molecules revealed an overrepresentation of inflammatory pathways in both blood and heart compartments. Moreover, we identified that differentially expressed genes in CCC cardiac tissue were primarily associated with T-cell signaling pathways and correlated with the presence of CD8+ T cells in the myocardium. Discussion: Our findings establish a strong correlation between relevant immune molecules and their signaling pathways in both the blood and heart tissue in CCC. This validates the use of blood as a non-invasive medium for understanding immunopathology and identifying markers for cardiac dysfunction in Chagas disease.
Subject(s)
Chagas Cardiomyopathy , Trypanosoma cruzi , Humans , Transcriptome , Heart , Myocardium/pathologyABSTRACT
Cell proliferation and invasion are characteristic of many tumors, including ameloblastoma, and are important features to target in possible future therapeutic applications. OBJECTIVE: The objective of this study was the identification of key genes and inhibitory drugs related to the cell proliferation and invasion of ameloblastoma using bioinformatic analysis. METHODS: The H10KA_07_38 gene profile database was analyzed by Rstudio and ShinyGO Gene Ontology enrichment. String, Cytoscape-MCODE, and Kaplan-Meier plots were generated, which were subsequently validated by RT-qPCR relative expression and immunoexpression analyses. To propose specific inhibitory drugs, a bioinformatic search using Drug Gene Budger and DrugBank was performed. RESULTS: A total of 204 significantly upregulated genes were identified. Gene ontology enrichment analysis identified four pathways related to cell proliferation and cell invasion. A total of 37 genes were involved in these pathways, and 11 genes showed an MCODE score of ≥0.4; however, only SLC6A3, SOX10, and LRP5 were negatively associated with overall survival (HR = 1.49 (p = 0.0072), HR = 1.55 (p = 0.0018), and HR = 1.38 (p = 0.025), respectively). The RT-qPCR results confirmed the significant differences in expression, with overexpression of >2 for SLC6A3 and SOX10. The immunoexpression analysis indicated positive LRP5 and SLC6A3 expression. The inhibitory drugs bioinformatically obtained for the above three genes were parthenolide and vorinostat. CONCLUSIONS: We identify LRP5, SLC6A3, and SOX10 as potentially important genes related to cell proliferation and invasion in the pathogenesis of ameloblastomas, along with both parthenolide and vorinostat as inhibitory drugs that could be further investigated for the development of novel therapeutic approaches against ameloblastoma.
Subject(s)
Ameloblastoma , Humans , Ameloblastoma/genetics , Vorinostat , Cell Proliferation/genetics , Computational Biology , SOXE Transcription Factors/genetics , Low Density Lipoprotein Receptor-Related Protein-5 , Dopamine Plasma Membrane Transport ProteinsABSTRACT
Zika virus (ZIKV) is a neurotropic teratogen that causes congenital Zika syndrome (CZS), characterized by brain and eye anomalies. Impaired gene expression in neural cells after ZIKV infection has been demonstrated; however, there is a gap in the literature of studies comparing whether the differentially expressed genes in such cells are similar and how it can cause CZS. Therefore, the aim of this study was to compare the differential gene expression (DGE) after ZIKV infection in neural cells through a meta-analysis approach. Through the GEO database, studies that evaluated DGE in cells exposed to the Asian lineage of ZIKV versus cells, of the same type, not exposed were searched. From the 119 studies found, five meet our inclusion criteria. Raw data of them were retrieved, pre-processed, and evaluated. The meta-analysis was carried out by comparing seven datasets, from these five studies. We found 125 upregulated genes in neural cells, mainly interferon-stimulated genes, such as IFI6, ISG15, and OAS2, involved in the antiviral response. Furthermore, 167 downregulated, involved with cellular division. Among these downregulated genes, classic microcephaly-causing genes stood out, such as CENPJ, ASPM, CENPE, and CEP152, demonstrating a possible mechanism by which ZIKV impairs brain development and causes CZS.
Subject(s)
Microcephaly , Teratogenesis , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Zika Virus Infection/genetics , Zika Virus Infection/congenital , Microcephaly/genetics , RNA-Seq , Down-Regulation , Cell Cycle Proteins/geneticsABSTRACT
Treatment options for advanced gallbladder cancer (GBC) are scarce and usually rely on cytotoxic chemotherapy, but the effectiveness of any regimen is limited and recurrence rates are high. Here, we investigated the molecular mechanisms of acquired resistance in GBC through the development and characterization of two gemcitabine-resistant GBC cell sublines (NOZ GemR and TGBC1 GemR). Morphological changes, cross-resistance, and migratory/invasive capabilities were evaluated. Then, microarray-based transcriptome profiling and quantitative SILAC-based phosphotyrosine proteomic analyses were performed to identify biological processes and signaling pathways dysregulated in gemcitabine-resistant GBC cells. The transcriptome profiling of parental and gemcitabine-resistant cells revealed the dysregulation of protein-coding genes that promote the enrichment of biological processes such as epithelial-to-mesenchymal transition and drug metabolism. On the other hand, the phosphoproteomics analysis of NOZ GemR identified aberrantly dysregulated signaling pathways in resistant cells as well as active kinases, such as ABL1, PDGFRA, and LYN, which could be novel therapeutic targets in GBC. Accordingly, NOZ GemR showed increased sensitivity toward the multikinase inhibitor dasatinib compared to parental cells. Our study describes transcriptome changes and altered signaling pathways occurring in gemcitabine-resistant GBC cells, which greatly expands our understanding of the underlying mechanisms of acquired drug resistance in GBC.
Subject(s)
Carcinoma in Situ , Gallbladder Neoplasms , Humans , Gemcitabine , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Proteomics , Cell Line, TumorABSTRACT
Metabolic reprogramming (MR) influences progression of chronic myeloid leukaemia (CML) to blast crisis (BC), but metabolic programs may change transiently in a second dimension (metabolic plasticity, MP), driven by environments as hypoxia, affecting cytotoxic potency (CPot) of drugs targeting mitochondria or mitochondria-related cell stress responses (MRCSR) such as mitophagy and mitochondrial biogenesis. We assessed mitochondrial membrane potential (MMP), mitochondrial mass (MM), apoptosis, glucose uptake (GU), and CPot of arsenic trioxide (ATO), CCCP, valproic acid (VPA), vincristine (VCR), Mdivi1, and dichloroacetic acid (DCA) in CML BC cells K562 (BC-K562) under hypoxia through flow cytometry, and gene expression from GEO database. About 60% of untreated cells were killed after 72 h under hypoxia, but paradoxically, all drugs but ATO rescued cells and increased survival rates to almost 90%. Blocking mitophagy either with VCR or Mdivi1, or increasing mitochondrial biogenesis with VPA enhanced cell-survival with increased MM. DCA increased MM and rescued cells in spite of its role in activating pyruvate dehydrogenase and Krebs cycle. Cells rescued by DCA, VPA and CCCP showed decreased GU. ATO showed equal CPot in hypoxia and normoxia. MP was evidenced by differential expression of genes (DEG) under hypoxia related to Krebs cycle, lipid synthesis, cholesterol homeostasis, mitophagy, and mitochondrial biogenesis (GSE144527). A 25-gene MP-signature of BC-K562 cells under hypoxia identified BC cases among 113 transcriptomes from CML patients (GSE4170). We concluded that hypoxic environment drove a MP change evidenced by DEG that was reflected in a paradoxical pro-survival, instead of cytotoxic, effect of drugs targeting mitochondria and MRCSR.
ABSTRACT
Leishmania amazonensis and Leishmania major are the causative agents of cutaneous and mucocutaneous diseases. The infections' outcome depends on host-parasite interactions and Th1/Th2 response, and in cutaneous form, regulation of Th17 cytokines has been reported to maintain inflammation in lesions. Despite that, the Th17 regulatory scenario remains unclear. With the aim to gain a better understanding of the transcription factors (TFs) and genes involved in Th17 induction, in this study, the role of inducing factors of the Th17 pathway in Leishmania-macrophage infection was addressed through computational modeling of gene regulatory networks (GRNs). The Th17 GRN modeling integrated experimentally validated data available in the literature and gene expression data from a time-series RNA-seq experiment (4, 24, 48, and 72 h post-infection). The generated model comprises a total of 10 TFs, 22 coding genes, and 16 cytokines related to the Th17 immune modulation. Addressing the Th17 induction in infected and uninfected macrophages, an increase of 2- to 3-fold in 4-24 h was observed in the former. However, there was a decrease in basal levels at 48-72 h for both groups. In order to evaluate the possible outcomes triggered by GRN component modulation in the Th17 pathway. The generated GRN models promoted an integrative and dynamic view of Leishmania-macrophage interaction over time that extends beyond the analysis of single-gene expression.
Subject(s)
Leishmania major , Leishmania mexicana , Leishmaniasis , Cytokines/metabolism , Gene Regulatory Networks , Humans , Leishmania mexicana/genetics , Leishmania mexicana/metabolism , MacrophagesABSTRACT
Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-ß, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.
ABSTRACT
The Epstein-Barr virus (EBV) is a ubiquitous γ herpesvirus strongly associated with nasopharyngeal carcinomas, and the viral oncogenicity in part relies on cellular effects of the viral latent membrane protein 1 (LMP1). It was previously described that EBV strains B95.8 and M81 differ in cell tropism and the activation of the lytic cycle. Nonetheless, it is unknown whether LMP1 from these strains have different effects when expressed in nasopharyngeal cells. Thus, herein we evaluated the effects of EBV LMP1 derived from viral strains B95.8 and M81 and expressed in immortalized nasopharyngeal cells NP69SV40T in the regulation of 91 selected cellular miRNAs. We found that cells expressing either LMP1 behave similarly in terms of NF-kB activation and cell migration. Nonetheless, the miRs 100-5p, 192-5p, and 574-3p were expressed at higher levels in cells expressing LMP1 B95.8 compared to M81. Additionally, results generated by in silico pathway enrichment analysis indicated that LMP1 M81 distinctly regulate genes involved in cell cycle (i.e., RB1), mRNA processing (i.e., NUP50), and mitochondrial biogenesis (i.e., ATF2). In conclusion, LMP1 M81 was found to distinctively regulate miRs 100-5p, 192-5p, and 574-3p, and the in silico analysis provided valuable clues to dissect the molecular effects of EBV LMP1 expressed in nasopharyngeal cells.
Subject(s)
Epstein-Barr Virus Infections , MicroRNAs , Nasopharyngeal Neoplasms , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Humans , Membrane Proteins , MicroRNAs/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Viral Proteins/geneticsABSTRACT
OBJECTIVES: This study aimed to evaluate the effect of micro-osteoperforations (MOPs) on the gene expression profile of the periodontal ligament (PDL) of orthodontically moved teeth. MATERIALS AND METHODS: Fifteen participants were randomly assigned into two groups: tooth movement only (Tr1, n = 7) and tooth movement supplemented with MOPs (Tr2, n = 8). In each subject, orthodontic tooth movement (OTM) was performed on premolar in one side, while no force was applied on contralateral premolar (Unt, n = 15). Seven days after loading, premolars were extracted for orthodontic reasons. RNA extraction from PDL and subsequent RNA-sequencing were performed. False discovery rates (Padj < 0.05) and log2 fold change (+ / - 1.5) thresholds were used to identify sets of differentially expressed genes (DEGs) among the groups. DEGs were analyzed with gene ontology enrichment, KEGG, and network analysis. RESULTS: Three hundred thirty-one DEGs were found between Tr1 and Unt, and 356 between Tr2 and Unt. Although, there were no significantly DEGs between Tr2 and Tr1, DEGs identified exclusively in Tr1 vs. Unt were different from those identified exclusively in Tr2 vs. Unt. In Tr1, genes were related to bone metabolism processes, such as osteoclast and osteoblast differentiation. In Tr2, genes were associated to inflammation processes, like inflammatory and immune responses, and cellular response to tumor necrosis factor. CONCLUSIONS: MOPs do not significantly alter the PDL gene expression profile of orthodontically moved human teeth. This study provides for the first time evidence on the whole PDL gene expression profiles associated to OTM in humans. Novel biomarkers for OTM are suggested for additional research. Clinical relevance The identified biomarkers provide new insights into the molecular mechanisms that would occur when OTM is supplemented with MOPs. These markers are expected to be useful in the near future for the application of personalized strategies related to the OTM.
Subject(s)
Periodontal Ligament , Transcriptome , Humans , Osteoclasts , Osteogenesis , Tooth Movement TechniquesABSTRACT
Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-β, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.
ABSTRACT
MicroRNAs (miRNAs) play an important role in the pathophysiology of preeclampsia (PE). However, the expression of circulating miRNAs was not analyzed in the second trimester of pregnancy, a period of major relevance to identify predictive biomarkers for PE. Therefore, we examined the expression profiles of 84 circulating miRNAs using a PCR array in plasma collected between 20 and 25 weeks of gestation from pregnant women, who subsequently developed PE and those who remained healthy during pregnancy, randomly selected from a prospective cohort. Overall, 23 miRNAs had a fold change > 2.0 and were considered to be upregulated in plasma from pregnant women who subsequently developed PE, even before the onset of clinical symptoms of PE. However, only miR-204-5p was statistically significant (P = 0.0082). Experimentally validated interactions for the target genes of miR-204-5p extracted from miRTarBase were used in the gene set functional enrichment analysis to identify Reactome pathways. The network connecting the 37 target genes for miR-204-5p revealed pathways of known pathophysiological relevance during the early development of PE and included key genes related to PE, such as BDNF, MMP-9, MALAT1, TGFBR2, and SIRT1. We further depicted downstream targets of SIRT1 that are related to the vascular endothelial function or implicated in the pathophysiology of PE, namely, FOXO1, NFκB, HIF-1α, NOS3, and PPAR-γ. Our novel findings provide for circulating miRNAs upregulated in the second trimester on plasma from pregnant women who subsequently developed PE that is potentially related to the early development of PE, which may guide further studies focused on the validation of potential predictive biomarkers in PE.
ABSTRACT
Glioblastoma (GBM) is the most lethal and frequent type of brain tumor, leading patients to death in approximately 14 months after diagnosis. GBM treatment consists in surgical removal followed by radio and chemotherapy. However, tumors commonly relapse and the treatment promotes only a slight increase in patient survival. Thus, uncovering the cellular mechanisms involved in GBM resistance is of utmost interest, and the use of cell lines has been shown to be an extremely important tool. In this work, the exploration of RNAseq data from different GBM cell lines revealed different expression signatures, distinctly correlated with the behavior of GBM cell lines regarding proliferation indexes and radio-resistance. U87MG and U138MG cells, which presented expressively reduced proliferation and increased radio-resistance, showed a particular expression signature encompassing enrichment in many extracellular matrix (ECM) and receptor genes. Contrasting, U251MG and T98G cells, that presented higher proliferation and sensibility to radiation, exhibited distinct signatures revealing consistent enrichments for DNA repair processes and although several genes from the ECM-receptor pathway showed up-regulation, enrichments for this pathway were not detected. The ECM-receptor is a master regulatory pathway that is known to impact several cellular processes including: survival, proliferation, migration, invasion, and DNA damage signaling and repair, corroborating the associations we found. Furthermore, searches to The Cancer Genome Atlas (TCGA) repository revealed prognostic correlations with glioma patients for the majority of genes highlighted in the signatures and led to the identification of 31 ECM-receptor genes individually correlated with radiation responsiveness. Interestingly, we observed an association between the number of upregulated genes and survivability greater than 5 years after diagnosis, where almost all the patients that presented 21 or more upregulated genes were deceased before 5 years. Altogether our findings suggest the clinical relevance of ECM-receptor genes signature found here for radiotherapy decision and as biomarkers of glioma prognosis.
ABSTRACT
Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte development, we performed a genome-wide identification and characterization of genes encoding ZFP (VviZFP family). A total of 98 genes were identified and renamed based on the gene distribution into grapevine genome. The analysis performed indicate significant changes throughout VviZFP genes evolution explained by high heterogeneity in sequence, length, number of ZF and presence of another conserved domains. Moreover, segmental duplication participated in the gene family expansion in grapevine. The VviZFPs were classified based on domain and phylogenetic analysis into three sets and different groups. Heat-map demonstrated differential and tissue-specific expression patterns of these genes and k-means clustering allowed to identify a group of putative orthologs to some ZFPs related to pollen development. In transgenic plants carrying the promVviZFP13::GUS and promVviZFP68::GUS constructs, GUS signals were detectable in the anther and mature pollen grains. Expression profiling of selected VviZFP genes showed differential expression pattern during flower development and provides a basis for deepening in the understanding of VviZFPs role on grapevine reproductive development.
Subject(s)
CYS2-HIS2 Zinc Fingers/genetics , Gene Expression Regulation, Plant , Multigene Family , Plant Development/genetics , Pollen/genetics , Vitis/physiology , Amino Acid Sequence , Conserved Sequence , Models, Molecular , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism , Vitis/classificationABSTRACT
We investigated the gene-expression variation among humans by analysing previously published mRNA-seq and ribosome footprint profiling of heart left-ventricles from healthy donors. We ranked the genes according to their coefficient of variation values and found that the top 5% most variable genes had special features compared to the rest of the genome, such as lower mRNA levels and shorter half-lives coupled to increased translation efficiency. We observed that these genes are mostly involved with immune response and have a pleiotropic effect on disease phenotypes, indicating that asymptomatic conditions contribute to the gene expression diversity of healthy individuals.
Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Myocardium/chemistry , Databases, Genetic , Gene Expression Regulation , Humans , Sequence Analysis, RNAABSTRACT
Lupinus albus γ-conglutin is proposed to positively affect glucose metabolism through inhibition of hepatic glucose production and insulin-mimetic activity; however, the action mechanism is not entirely known. Besides, most studies had focused on its effect on molecular targets directly related to glucose metabolism, and few studies have investigated how γ-conglutin may affect the liver gene expression or if it plays a role in other metabolic processes. Therefore, we investigated the influence of γ-conglutin on the liver transcriptome of streptozotocin-induced diabetic rats using DNA microarrays, ontological analyses, and quantitative PCR. Of the 22,000 genes evaluated, 803 and 173 were downregulated and upregulated, respectively. The ontological analyses of the differentially expressed genes revealed that among others, the mitochondria, microtubules, cytoskeleton, and oxidoreductase activity terms were enriched, implying a possible role of γ-conglutin on autophagy. To corroborate the microarray results, we selected and quantified, by PCR, the expression of two genes associated with autophagy (Atg7 and Snx18) and found their expression augmented two and threefold, respectively; indicating a higher autophagy activity in animals treated with γ-conglutin. Although complementary studies are required, our findings indicate for the first time that the hypoglycaemic effects of γ-conglutin may involve an autophagy induction mechanism, a pivotal process for the preservation of cell physiology and glucose homeostasis.
Subject(s)
Collectins/pharmacology , Lupinus/metabolism , Serum Globulins/pharmacology , Transcriptome/genetics , Animals , Blood Glucose/metabolism , Collectins/metabolism , Collectins/physiology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin/metabolism , Liver/metabolism , Liver/pathology , Lupinus/genetics , Male , Plant Proteins/genetics , Rats , Rats, Wistar , Seeds/metabolism , Serum Globulins/metabolism , Serum Globulins/physiologyABSTRACT
OBJECTIVE: Data normalization and clustering are mandatory steps in gene expression and downstream analyses, respectively. However, user-friendly implementations of these methodologies are available exclusively under expensive licensing agreements, or in stand-alone scripts developed, reflecting on a great obstacle for users with less computational skills. RESULTS: We developed an online tool called CORAZON (Correlations Analyses Zipper Online), which implements three unsupervised learning methods to cluster gene expression datasets in a friendly environment. It allows the usage of eight gene expression normalization/transformation methodologies and the attribute's influence. The normalizations requiring the gene length only could be performed to RNA-seq, meanwhile the others can be used with microarray and/or NanoString data. Clustering methodologies performances were evaluated through five models with accuracies between 92 and 100%. We applied our tool to obtain functional insights of non-coding RNAs (ncRNAs) based on Gene Ontology enrichment of clusters in a dataset generated by the ENCODE project. The clusters where the majority of transcripts are coding genes were enriched in Cellular, Metabolic, Transports, and Systems Development categories. Meanwhile, the ncRNAs were enriched in the Detection of Stimulus, Sensory Perception, Immunological System, and Digestion categories. CORAZON source-code is freely available at https://gitlab.com/integrativebioinformatics/corazon and the web-server can be accessed at http://corazon.integrativebioinformatics.me .