Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Plant Signal Behav ; 19(1): 2294425, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38147417

ABSTRACT

Alternating magnetic fields (MF) with Schumann resonance frequencies accompanied the development of living organisms throughout evolution, but today it remains unclear whether they can have a special biological effect in comparison with surrounding non-resonant frequencies. This work shows some stimulating effect of extremely low-frequency MFs on morphometric parameters and the activity of physiological processes in wheat (Triticum aestivum L.). It is shown that the MF effect is more pronounced for transient processes - photosynthesis reactions and changes in electrical potential caused by turning on light. For light-induced electrical reactions, the dependence of the severity of the effect on the frequency of the applied MF was demonstrated. It is shown that the most pronounced effect occurs in the 14.3 Hz field, which corresponds to the second harmonic of the Schumann resonance. The predominant sensitivity of signal-regulatory systems gives reason to assume the influence of MFs with Schumann resonance frequencies on the interaction of plants with environmental factors under conditions of a changed electromagnetic environment. Such conditions can occur, for example, with an increase in lightning activity caused by climate change, which serves as the basis for the generation of Schumann resonances, and with the development of artificial ecosystems outside the Earth's atmosphere.


Subject(s)
Electromagnetic Fields , Triticum , Ecosystem , Magnetic Fields , Photosynthesis
2.
Environ Res ; 232: 116425, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37327843

ABSTRACT

BACKGROUND: The effects of extremely low-frequency magnetic fields, especially their long-term health effects, including childhood leukaemia, remain elusive. The International Agency for Research on Cancer has classified the exposure to magnetic fields >0.4 µT as 'possibly carcinogenic to humans (group 2 B)' for childhood leukaemia. However, the number of exposed individuals, particularly children, remains poorly documented in international literature. The objective of this study was to estimate the number of individuals living near a high or very high voltage line in France (≥63 kV), among the general population and children under the age of five years. METHODS: The estimate considered different exposure scenarios depending on the line voltage and the distance of the housing from it, and whether the line is overhead or underground. The exposure scenarios were obtained using a multilevel linear model created from a measurement database published by "Réseau de transport d'électricité", the operator of the French electricity transmission network. RESULTS: Between 0.11% (n = 67,893) and 1.01% (n = 647,569) of the French population and between 0.10% (n = 4712) and 1.03% (n = 46,950) of children under five years of age were estimated to be living in an area potentially exposed to a magnetic field, depending on the exposure scenario (>0.4 µT and >0.1 µT, respectively). CONCLUSIONS: By making it possible to estimate the total number of residents, schools, and health institutions near high-voltage power lines, the proposed methodology can help identify potential co-exposures near high-voltage power lines, which are regularly cited as a possible explanation for contradictory results from epidemiological studies.


Subject(s)
Geographic Information Systems , Leukemia , Humans , Child , Child, Preschool , Environmental Exposure , Magnetic Fields , Leukemia/epidemiology , France/epidemiology , Electromagnetic Fields/adverse effects
3.
Plants (Basel) ; 12(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36840174

ABSTRACT

Extremely low-frequency magnetic fields are thought to be capable of modulating the resistance of plants to adverse factors, particularly drought. Magnetic fields in this frequency range occur in nature in connection with so-called Schumann resonances, excited by lightning discharges in the Earth-ionosphere cavity. The aim of this work was to identify the influence of a magnetic field with a frequency of 14.3 Hz (which corresponds to the second Schumann harmonic) on the transpiration and photosynthesis of wheat plants under the influence of drought. The activity of photosynthesis processes, the crop water stress index, relative water content and leaf area were determined during drought intensification. At the end of the experiment, on the 12th day of drought, the length, and fresh and dry weight of wheat shoots were measured. The results obtained indicate a protective effect of the magnetic field on plants in unfavorable drought conditions; the magnetic field delayed the development of harmful changes in the transpiration and photosynthesis processes for several days. At the same time, in the absence of the stressor (drought), the effect of the electromagnetic field was not detected, except for a decrease in relative transpiration. In favorable conditions, there were only minimal modifications of the photosynthetic processes and transpiration by the magnetic field.

4.
Mol Biol Rep ; 50(2): 1005-1017, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36378418

ABSTRACT

BACKGROUND: The exposure of breast cancer to extremely low frequency magnetic fields (ELF-MFs) results in various biological responses. Some studies have suggested a possible cancer-enhancing effect, while others showed a possible therapeutic role. This study investigated the effects of in vitro exposure to 50 Hz ELF-MF for up to 24 h on the viability and cellular response of MDA-MB-231 and MCF-7 breast cancer cell lines and MCF-10A breast cell line. METHODS AND RESULTS: The breast cell lines were exposed to 50 Hz ELF-MF at flux densities of 0.1 mT and 1.0 mT and were examined 96 h after the beginning of ELF-MF exposure. The duration of 50 Hz ELF-MF exposure influenced the cell viability and proliferation of both the tumor and nontumorigenic breast cell lines. In particular, short-term exposure (4-8 h, 0.1 mT and 1.0 mT) led to an increase in viability in breast cancer cells, while long and high exposure (24 h, 1.0 mT) led to a decrease in viability and proliferation in all cell lines. Cancer and normal breast cells exhibited different responses to ELF-MF. Mitochondrial membrane potential and reactive oxygen species (ROS) production were altered after ELF-MF exposure, suggesting that the mitochondria are a probable target of ELF-MF in breast cells. CONCLUSIONS: The viability of breast cells in vitro is influenced by ELF-MF exposure at magnetic flux densities compatible with the limits for the general population and for workplace exposures. The effects are apparent after 96 h and are related to the ELF-MF exposure time.


Subject(s)
Breast Neoplasms , Humans , Female , Magnetic Fields , Reactive Oxygen Species/metabolism , Breast/metabolism , Cells, Cultured
5.
Anal Biochem ; 652: 114745, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35609685

ABSTRACT

Expression of proteins in bacterial host cells, particularly E.coli, has gained much attention in recent years. Low expression outcome is the main technical drawback associated with this procedure, further restricting its largescale application in industry. Therefore, application of new amendments or reformations are required before further proceedings. Extremely low frequency magnetic fields (ELF-MFs) have shown to significantly affect biological processes, including gene expression, in E.coli. In current study, we investigated whether application of ELF-MF could result in overexpression of proteins in E.coli or not. Cluster of differentiation-22 (CD22), as a model protein, was expressed in E.Coli Rosetta (DE3) under continuous exposure to ELF-MF after applying various concentrations of Isopropyl ß-d-1-thiogalactopyranoside (IPTG) (0.25-1.25 mM) as inducer. The strength and frequency of electromagnetic fields (EMFs) ranged between 15 and 100 mT and 2.5-20 Hz respectively. Interestingly, application of 55 mT EMFs with frequencies ranging from 2.5 to 2.8 Hz significantly enhanced the yield of expression at all studied IPTG concentrations. Contrarily, EMFs with intensities other than 55 mT meaningfully declined protein expression at IPTG concentrations equal to 1 and 1.25 mM. In conclusion, application of specific range of ELF-MFs may be exploited as a new modification for enhancing heterologous expression of proteins in E.coli.


Subject(s)
Electromagnetic Fields , Magnetic Fields , Isopropyl Thiogalactoside , Recombinant Proteins/genetics
6.
Article in English | MEDLINE | ID: mdl-35329350

ABSTRACT

Electromagnetic interference is a serious and increasing form of environmental pollution, creating many issues in the areas of health care and industrial manufacturing. The performance of high-precision measurement equipment used in health care and the manufacturing industry is sensitive to electromagnetic interference. However, extremely low-frequency magnetic fields (ELFMF), with a frequency range from 3 to 30 Hz, generated by high-power lines have become the main interference source in high-tech foundries. This paper presents a magnetic cancelling system that works by combining active cancelling technology and passive cancelling technology to reduce the ELFMF around high-precision measurement equipment. The simulation and experimental results show the validity and feasibility of the proposed system.


Subject(s)
Electromagnetic Fields , Magnetic Fields
7.
Electromagn Biol Med ; 40(4): 459-466, 2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34396886

ABSTRACT

The experimental data support the hypothesis that extremely low frequency magnetic field (ELF-MF) can affect cell membranes. Since our previous studies suggested that MF changes the permeability of cell membrane, in this study we focused on the cell membrane and investigated the effect of 60 Hz, 50 mT MF on the membrane potential and membrane proteins. The membrane potentials of three cultured human cancer cell lines, A549, MES-SA, and MES-SA/Dx5, were increased by exposure to ELF-MF. When exposed to MF and an anticancer drug, changes in the membrane potentials were detected in A549 and MES-SA cells, but not in the multi drug-resistant cells, MES-SA/Dx5. We examined whether MF has an influence on the membrane proteins extracted from cultured A549 cells, using DiBAC4(3) dye enhanced fluorescence binding to a hydrophobic site. The increase in fluorescence observed following MF exposure for 10 min indicated that the structure of the hydrophobic site on the membrane proteins changed and became more likely to bind the probe dye. A decrease in fluorescence was detected following exposure to MF for 240 min. These results indicated that 60 Hz, 50 mT MF causes changes in the membrane potential of cultured cancer cells and the conformation of membrane proteins extracted from cultured cancer cells, and has different effects depending on the exposure time.


Subject(s)
Membrane Proteins , Neoplasms , Cell Membrane , Cells, Cultured , Humans , Magnetic Fields , Membrane Potentials
8.
Free Radic Biol Med ; 169: 84-98, 2021 06.
Article in English | MEDLINE | ID: mdl-33857627

ABSTRACT

Whereas the anti-neoplastic activity of extremely low frequency magnetic fields (ELF-EMF) is well-documented in literature, little is known about its underlying anti-cancer mechanisms and induced types of cell death. Here, for the first time, we reported induction of necroptosis, a specific type of programed necrotic cell death, in MC4-L2 breast cancer cell lines following a 2 h/day exposure to a 100 Hz, 1 mT ELF-EMF for five days. For in vivo assessment, inbred BALB/c mice bearing established MC-4L2 tumors were exposed to 100 mT, 1 Hz ELF-EMF 2 h daily for a period of 28-day, following which tumors were dissected and fixed for evaluation of tumor biomarkers expression and types of cell death induced using TUNEL assay, Immunohistochemistry and H&E staining. Peripheral blood samples were also collected for assessing pro-inflammatory cytokine profile following exposure. An exaggerated proinflammatory response evident form enhancement of IFN-γ (4.8 ± 0.24 folds) and TNF-α (3.1 ± 0.19 folds) and number of tumors infiltrating lymphocytes (TILs), specially CD8+ Th cells (~20 folds), proposed occurrence of necroptosis in vivo. Meanwhile, exposure could effectively suppress tumor growth and expression of Ki-67, CD31, VEGFR2 and MMP-9. In vitro studies on ELF-EMF exposed MC-4L2 cells demonstrated a meaningful increase in phosphorylation of RIPK1/RIPK3/MLKL proteins and cleavage of caspase-9/caspase-3, confirming occurrence of both necroptosis and apoptosis. Complementary in vitro studies by treating ELF-EMF exposed MC-4L2 cells with verapamil (a calcium channel inhibitor), N-acetyl cysteine (a ROS scavenger) or calcium chloride confirmed the role of elevated intracellular calcium and ROS levels in ELF-EMF induced necroptosis.


Subject(s)
Necroptosis , Neoplasms , Animals , Electromagnetic Fields , Mice , Mice, Inbred BALB C , Reactive Oxygen Species
10.
Cells ; 10(1)2021 01 13.
Article in English | MEDLINE | ID: mdl-33451018

ABSTRACT

Photosynthesis is an important target of action of numerous environmental factors; in particular, stressors can strongly affect photosynthetic light reactions. Considering relations of photosynthetic light reactions to electron and proton transport, it can be supposed that extremely low frequency magnetic field (ELFMF) may influence these reactions; however, this problem has been weakly investigated. In this paper, we experimentally tested a hypothesis about the potential influence of ELFMF of 18 µT intensity with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) on photosynthetic light reactions in wheat and pea seedlings. It was shown that ELFMF decreased non-photochemical quenching in wheat and weakly influenced quantum yield of photosystem II at short-term treatment; in contrast, the changes in potential and effective quantum yields of photosystem II were observed mainly under chronic action of ELFMF. It is interesting that both short-term and chronic treatment decreased the time periods for 50% activation of quantum yield and non-photochemical quenching under illumination. Influence of ELFMF on pea was not observed at both short-term and chronic treatment. Thus, we showed that ELFMF with Schumann resonance frequencies could influence photosynthetic light processes; however, this effect depends on plant species (wheat or pea) and type of treatment (short-term or chronic).


Subject(s)
Light , Magnetic Fields , Photosynthesis/radiation effects , Pisum sativum/physiology , Pisum sativum/radiation effects , Triticum/physiology , Triticum/radiation effects , Photosystem II Protein Complex/metabolism , Quantum Theory
11.
Mol Neurobiol ; 58(4): 1634-1649, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33230715

ABSTRACT

We here characterize the response to the extremely low-frequency (ELF) magnetic field (MF, 50 Hz, 1 mT) of SH-SY5Y human neuroblastoma cells, cultured in a three-dimensional (3D) Alvetex® scaffold compared to conventional two-dimensional (2D) monolayers. We proved that the growing phenotype of proliferating SH-SY5Y cells is not affected by the culturing conditions, as morphology, cell cycle distribution, proliferation/differentiation gene expression of 3D-cultures overlap what reported in 2D plates. In response to 72-h exposure to 50-Hz MF, we demonstrated that no proliferation change and apoptosis activation occur in both 2D and 3D cultures. Consistently, no modulation of Ki67, MYCN, CCDN1, and Nestin, of invasiveness and neo-angiogenesis-controlling genes (HIF-1α, VEGF, and PDGF) and of microRNA epigenetic signature (miR-21-5p, miR-222-3p and miR-133b) is driven by ELF exposure. Conversely, intracellular glutathione content and SOD1 expression are exclusively impaired in 3D-culture cells in response to the MF, whereas no change of such redox modulators is observed in SH-SY5Y cells if grown on 2D monolayers. Moreover, ELF-MF synergizes with the differentiating agents to stimulate neuroblastoma differentiation into a dopaminergic (DA) phenotype in the 3D-scaffold culture only, as growth arrest and induction of p21, TH, DAT, and GAP43 are reported in ELF-exposed SH-SY5Y cells exclusively if grown on 3D scaffolds. As overall, our findings prove that 3D culture is a more reliable experimental model for studying SH-SY5Y response to ELF-MF if compared to 2D conventional monolayer, and put the bases for promoting 3D systems in future studies addressing the interaction between electromagnetic fields and biological systems.


Subject(s)
Cell Culture Techniques , Magnetic Fields , Neuroblastoma/pathology , Apoptosis , Biomarkers/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Dopaminergic Neurons/pathology , Glutathione/deficiency , Glutathione/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Physiologic , Neuroblastoma/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
12.
J Occup Health ; 62(1): e12173, 2020 Jan.
Article in English | MEDLINE | ID: mdl-33078533

ABSTRACT

BACKGROUND AND AIMS: Today, human beings are exposed to the ELF magnetic field of electrical equipment and power lines, which can damage Leydig cells and alter the secretion of reproductive hormones. The purpose of this study was to investigate the relationship between exposure to ELF magnetic field and the level of some reproductive hormones in male power plant workers. MATERIALS AND METHODS: The present cross-sectional study was carried out among all male employees of different units of the selected power plant around Tehran, Iran. All participants were asked to complete demographic data sheets and General Health questionnaire, on condition of consent and meeting the inclusion criteria. Time-weighted average (TWA) exposure to magnetic field of 122 men was measured by IEEE Std C95.3.1 method using TES 1393 Gauss meter. Based on the exposure level, subjects were divided into three groups. Serum Levels of Free Testosterone, Luteinizing Hormone (LH), and Follicle stimulating hormone (FSH) in participants were determined. Data analysis was performed using ANOVA, Kruskal-Wallis tests, and the relationships between variables were assessed by linear regression and correlation using SPSS v.25 software. RESULTS: There was no significant statistical correlation between the level of ELF exposure and serum levels of free testosterone, LH, and FSH, (r = 0.158). Serum levels of LH decreased significantly with age and duration of work experience (P < .05, r = -.25, P = .005, r = -.203, P = .025). CONCLUSION: There was no relationship between exposure to magnetic field in power plants and reproductive hormone levels, although it is impossible to make definitive comments without using more accurate methods to estimate male fertility.


Subject(s)
Follicle Stimulating Hormone/blood , Luteinizing Hormone/blood , Magnetic Fields , Occupational Exposure , Power Plants , Testosterone/blood , Adult , Cross-Sectional Studies , Humans , Iran , Male
13.
Life Sci Space Res (Amst) ; 26: 85-96, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32718691

ABSTRACT

Growth and chain formation in cultures of the chain-forming dinoflagellates Alexandrium pacificum and Gymnodinium catenatum were previously found to be susceptible to space weather variables. A clock drive was used to deliver a frequency of 0.5 Hz and central amplitude of 7 µT in order to perform in vitro simulation of geomagnetic pulsations (composed of extremely low-frequency magnetic fields, ELFMF) which occur during high geomagnetic activity (GMA) periods. Short-term exposure (hours) to this ELFMF increased relative cell growth around 10 nT of naturally occurring GMA. Relative growth outside these intervals gradually approached 0% or was negative for G. catenatum. Differential survival to a subsequent shock was inversely related to growth, and minimal survival coincided with the same 10 nT interval. Relative growth and survival displayed opposite hormetic curves towards GMA: inverted U-shaped for growth, and J-shaped for survival. After exposure to this ELFMF, positive phototaxis response was not lost, but the percentage of cells swimming was slightly reduced. Long-term exposure (days) increased relative growth in A. pacificum but reduced in G. catenatum when low GMA was taking place. These alterations in growth were both associated with a reduction in the cellular pool of mycosporine-like amino acids (MAAs). MAAs that are more susceptible to oxidation were more reduced than those resistant, highlighting that an ELFMF can act by increasing cellular oxidative stress status. The higher susceptibility of G. catenatum found is in compliance with the previous association of its natural populations at the western Iberia coast with periods of solar activity minima and GMA minima.


Subject(s)
Dinoflagellida/radiation effects , Magnetic Fields , Solar Activity , Space Flight , Amino Acids/metabolism , Species Specificity
14.
Turk J Biol ; 44(1): 48-60, 2020.
Article in English | MEDLINE | ID: mdl-32123495

ABSTRACT

Renal ischemia-reperfusion (I/R) injury, one of the drastic outcomes of renal failure and organ transplantation, tends to deteriorate over time; therefore, noninvasive therapeutic strategies will avail the progression-free survival of the patients. Magnetic field has been proposed as a noninvasive treatment strategy; however, with recent scientific advances, many controversies have arisen regarding its efficacy. Pterostilbene, a natural analog of resveratrol, was documented to be effective in treatment of I/R injuries. This study aims to assess the acute therapeutic effects of combined extremely low-frequency magnetic field (ELF-MF) and pterostilbene treatment on renal I/R injury. After induction of renal I/R in Wistar rats, treatments of 50 Hz, 1 mT ELF-MF applied alone or in combination with pterostilbene were applied for 5 consecutive days. Kidney homogenates were analyzed by Fourier transform infrared spectroscopy. I/R injury resulted in an altered protein and lipid structure with the dominance of longer acyl chains; a slight decrease in lipid, protein, unsaturated lipid, and unsaturated/saturated lipid content; and an increase in membrane fluidity and lipid peroxidation in rat kidneys. Although ELF-MF treatment alone was not sufficient to restore all ischemia-induced alterations, the combined treatment strategy of pterostilbene administration in the presence of ELF-MF was successful and warrants further investigation.

15.
J Neural Transm (Vienna) ; 126(10): 1281-1290, 2019 10.
Article in English | MEDLINE | ID: mdl-31317262

ABSTRACT

Magnetic fields with different frequency and intensity parameters exhibit a wide range of effects on different biological models. Extremely low frequency magnetic field (ELF MF) exposure is known to augment or even initiate neuronal differentiation in several in vitro and in vivo models. This effect holds potential for clinical translation into treatment of neurodegenerative conditions such as autism, Parkinson's disease and dementia by promoting neurogenesis, non-invasively. However, the lack of information on underlying mechanisms hinders further investigation into this phenomenon. Here, we examine involvement of glutamatergic Ca2+ channel, N-methyl-D-aspartate (NMDA) receptors in the process of human neuronal differentiation under ELF MF exposure. We show that human neural progenitor cells (hNPCs) differentiate more efficiently under ELF MF exposure in vitro, as demonstrated by the abundance of neuronal markers. Furthermore, they exhibit higher intracellular Ca2+ levels as evidenced by c-fos expression and more elongated mature neurites. We were able to neutralize these effects by blocking NMDA receptors with memantine. As a result, we hypothesize that the effects of ELF MF exposure on neuronal differentiation originate from the effects on NMDA receptors, which sequentially triggers Ca2+-dependent cascades that lead to differentiation. Our findings identify NMDA receptors as a new key player in this field that will aid further research in the pursuit of effect mechanisms of ELF MFs.


Subject(s)
Cell Differentiation/physiology , Magnetic Fields , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/physiology , Cell Differentiation/drug effects , Cells, Cultured , Excitatory Amino Acid Antagonists/pharmacology , Fetus , Humans , Memantine/pharmacology , Neurons/drug effects , Telencephalon/cytology , Telencephalon/drug effects , Telencephalon/physiology
16.
Nanomedicine ; 21: 102065, 2019 10.
Article in English | MEDLINE | ID: mdl-31349089

ABSTRACT

This work presents direct evidence of disordering of liposomal membranes by magnetic nanoparticles during their exposures to non-heating alternating Extremely Low Frequency Magnetic Field (ELF MF). Changes in the lipid membrane structure were demonstrated by the Attenuated total reflection Fourier Transform Infrared and fluorescence spectroscopy. Specifically, about 50% of hydrophobic chains became highly mobile under the action of ELF MF. Magnetic field-induced increase in the membrane fluidity was accompanied by an increase in membrane permeability and release of solutes entrapped in liposomes. The effect of ELF MF on the membrane fluidity was greater in case of 70 × 12 nm magnetite nanorods adsorbed on the liposomes surface compared to liposomes with ~7 nm spherical MNPs embedded within lipid membranes. A physical model of this process explaining experimental data is suggested. The obtained results open new horizons for the development of systems for triggered drug release without dangerous heating and overheating of tissues.


Subject(s)
Magnetic Fields , Models, Chemical , Nanotubes/chemistry , Liposomes , Membrane Fluidity , Permeability
17.
Biochim Biophys Acta Biomembr ; 1861(8): 1446-1457, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31199897

ABSTRACT

BACKGROUND: Molecular mechanisms of interaction between cells and extremely low frequency magnetic fields (ELF-MFs) still represent a matter of scientific debate. In this paper, to identify the possible primary source of oxidative stress induced by ELF-MF in SH-SY5Y human neuroblastoma cells, we estimated the induced electric field and current density at the cell level. METHODS: We followed a computational multiscale approach, estimating the local electric field and current density from the whole sample down to the single cell level. The procedure takes into account morphological modeling of SH-SY5Y cells, arranged in different topologies. Experimental validation has been carried out: neuroblastoma cells have been treated with Diphenyleneiodonium (DPI) -an inhibitor of the plasma membrane enzyme NADPH oxidase (Nox)- administered 24 h before exposure to 50 Hz (1 mT) MF. RESULTS: Macroscopic and microscopic dosimetric evaluations suggest that increased current densities are induced at the plasma membrane/extra-cellular medium interface; identifying the plasma membrane as the main site of the ELF-neuroblastoma cell interaction. The in vitro results provide an experimental proof that plasma membrane Nox exerts a key role in the redox imbalance elicited by ELF, as DPI treatment reverts the generation of reactive oxygen species induced by ELF exposure. GENERAL SIGNIFICANCE: Microscopic current densities induced at the plasma membrane are likely to play an active physical role in eliciting ELF effects related to redox imbalance. Multiscale computational dosimetry, supported by an in vitro approach for validation, is proposed as the innovative and rigorous paradigm to unveil mechanisms underlying the complex ELF-MF interactions.


Subject(s)
Cell Membrane/metabolism , Electromagnetic Fields , Neuroblastoma/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Cell Membrane/enzymology , Humans , NADPH Oxidases/metabolism , Neuroblastoma/pathology
18.
Int J Radiat Biol ; 95(3): 368-377, 2019 03.
Article in English | MEDLINE | ID: mdl-30513241

ABSTRACT

PURPOSE: We characterized the response to the extremely low frequency magnetic field (ELF-MF) in an in vitro model of familial Amyotrophic Lateral Sclerosis (fALS), carrying two mutant variants of the superoxide dismutase 1 (SOD1) gene. MATERIALS AND METHODS: SH-SY5Y human neuroblastoma cells, stably over-expressing the wild type, the G93A or the H46R mutant SOD1 cDNA, were exposed to either the ELF-MF (50 Hz, 1 mT) or the sham control field, up to 72 h. Analysis of (i) viability, proliferation and apoptosis, (ii) reactive oxygen species generation, and (iii) assessment of the iron metabolism, were carried out in all clones in response to the MF exposure. RESULTS: We report that 50-Hz MF exposure induces: (i) no change in proliferation and viability; (ii) no modulation of the intracellular superoxide and H2O2 levels; (iii) a significant deregulation in the expression of iron-related genes IRP1, MFRN1 and TfR1, this evidence being exclusive for the SOD1G93A clone and associated with a slight (p = .0512) difference in the total iron content. CONCLUSIONS: 50-Hz MF affects iron homeostasis in the in vitro SOD1G93A ALS model.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Gene Expression Regulation , Iron/metabolism , Magnetic Fields , Mutation , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/pathology , Cell Line, Tumor , Cell Survival , Humans , Intracellular Space/metabolism
19.
Int J Radiat Biol ; 94(10): 909-917, 2018 10.
Article in English | MEDLINE | ID: mdl-30028649

ABSTRACT

PURPOSE: Epidemiological data suggest that there is a link between exposure to extremely low-frequency magnetic fields (ELF-MFs), immune response, and the occurrence of neurodegenerative diseases. The exact nature of this phenomenon remains speculative and requires detailed laboratory investigation. In the present study, we evaluate changes in plasma concentration of pro-inflammatory and regulatory cytokines as well as alternations of the hematological parameters in rats exposed to an ELF-MF. MATERIALS AND METHODS: Male Wistar rats were repeatedly exposed for either 1 h/day for 7 days, or continuously for 24 h, to a sinusoidal ELF-MF (50 Hz, 7 mT). Control groups were sham exposed for either 1 h/day for 7 days, or continuously for 24 h, respectively. The levels of cytokines: interleukin (IL)-1ß, IL-2, IL-6, and IL-10 in plasma obtained from blood samples were determined using enzyme-linked immunosorbent assay (ELISA). The changes in blood parameters were determined using an automatic hematology analyzer in whole blood samples immediately after collection. RESULTS: We found that a single continuous (lasting 24 h) exposure provoked a significant increase of the plasma IL-1ß, IL-6, and IL-2 levels, and caused an elevation in blood parameters, such as white blood cells, lymphocytes, hemoglobin, and hematocrit levels. In contrast, however, repetitive exposure of rats to an ELF-MF for 1 h/day for 7 days did not lead to any changes in plasma levels of cytokines and hematological counts. CONCLUSIONS: Based on these data we conclude that exposure duration (dose-response) plays a significant role in the immune response, specifically at the cellular level. While single 24 h-lasting exposure provoked changes that indicate an immune alarm stimulation, under the conditions which are typical for therapeutic use of ELF-MFs (repeated short daily exposure) the immune potentially harmful response has not been observed.


Subject(s)
Cytokines/blood , Magnetic Fields/adverse effects , Animals , Blood Cell Count , Inflammation/blood , Male , Rats , Rats, Wistar
20.
Rev. cuba. invest. bioméd ; 37(2): 75-86, abr.-jun. 2018. ilus
Article in Spanish | LILACS, CUMED | ID: biblio-1003928

ABSTRACT

Introducción: La enfermedad cerebrovascular constituye un importante problema de salud a nivel mundial. En la actualidad se desarrollan investigaciones científicas dedicadas al estudio de los efectos del campo magnético de frecuencia extremadamente baja para su tratamiento. No es suficientemente clara la información acerca de su inocuidad en las dosis estudiadas. Objetivo: Estudiar la seguridad de la aplicación del campo magnético de frecuencia extremadamente baja a nivel del sistema nervioso central a través de un estudio toxicológico a dosis aguda, repetida y ensayo de micronúcleos en médula ósea. Métodos: Se conformaron tres grupos experimentales con ratas Sprague Dawley Cenp:SPRD jóvenes y sanas para los experimentos de toxicidad y ratones CENP: NMRI para la evaluación mutagénica. Se utilizaron controles negativos no tratados. En el ensayo de micronúcleos se incorporó un grupo control positivo al que se administró Ciclofosfamida por vía intraperitoneal. Se aplicó un campo magnético no homogéneo con niveles de inducción magnética de 6,5 y 15 mT, tomando como referencia el valor máximo sobre la superficie de la bobina. Para la aplicación del campo magnético la bobina estimuladora se colocó sobre la cabeza asegurando la exposición completa del encéfalo. Resultados: En ninguno de los ensayos se detectaron signos de toxicidad. Se comprobó así mismo que no se indujeron efectos genotóxicos ni citotóxicos sobre las células somáticas. Conclusiones: El tratamiento con campo magnético de frecuencia extremadamente baja a nivel del sistema nervioso central en las condiciones experimentales y dosis estudiadas es seguro(AU)


Introduction: Stroke is a major health problem all over the world. Nowadays are developed scientific researches devoted to the study of extremely low frequency magnetic field effects over this illness. The information about it safety is unclear yet. Objective: To study the safety of extremely low frequency magnetic field applied at central nervous system level wasby means ofa toxicological assay (Acute, repeated doses and micronucleus in bone marrow assay) Methods: Three experimental groups were made with Sprague Dawley Cenp: SPRD young and healthy rats for toxicity experiments and CENP: NMRI mice for mutagen evaluation. Untreated negative controls were used. In the micronucleus assay, an additional positive control group was included. This group received Cyclophosphamide by intraperitoneal administration. Was applied a non-homogenousmagnetic fieldof 6,5 and 15 mT, taken as reference the maximum value over the coil surface. The coil was positioned over the head, ensuring full exposure of brain to magnetic field. Results : In none of trials were detected any sign of toxicity. It was also found no genotoxic or cytotoxic effects induced on somatic cells. Conclusions : These results indicated the safety of treatmentwith extremely low frequency magnetic field at central nervous system level for experimental conditions and doses studied(AU)


Subject(s)
Animals , Cerebrovascular Disorders/therapy , Magnetic Field Therapy/methods , Toxicological Symptoms/toxicity , Rats, Sprague-Dawley , Neuroprotection , Mutagenicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...