Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Radiol Prot ; 44(3)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39142296

ABSTRACT

In response to the International Commission on Radiological Protection, which lowered the lens equivalent dose limit, Japan lowered the lens dose limit from 150 mSv y-1to 100 mSv/5 years and 50 mSv y-1, with this new rule taking effect on 1 April 2021. DOSIRIS®is a dosimeter that can accurately measure lens dose. Herein, we investigated lens dose in interventional cardiology physicians 1 year before and after the reduction of the lens dose limit using a neck dosimeter and lens dosimeter measurements. With an increase in the number of cases, both personal dose equivalent at 0.07 mm depth [Hp(0.07), neck dosimeter] and personal dose equivalent at 3 mm depth [Hp(3), lens dosimeter] increased for most of the physicians. The Hp(3) of the lens considering the shielding effect of the Pb glasses using lens dosimeter exceeded 20 mSv y-1for two of the 14 physicians. Protection from radiation dose will become even more important in the future, as these two physicians may experience radiation dose exceeding 100 mSv/5 years. The average dose per procedure increased, but not significantly. There was a strong correlation between the neck dosimeter and lens dosimeter scores, although there was no significant change before and after the lens dose limit was lowered. This correlation was particularly strong for physicians who primarily treated patients. As such, it is possible to infer accurate lens doses from neck doses in physicians who primarily perform diagnostics. However, it is desirable to use a dosimeter that can directly measure Hp(3) because of the high lens dose.


Subject(s)
Lens, Crystalline , Occupational Exposure , Radiation Dosage , Radiation Protection , Humans , Lens, Crystalline/radiation effects , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Japan , Cardiology
2.
Br J Radiol ; 97(1158): 1191-1201, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38711194

ABSTRACT

OBJECTIVES: To establish conversion coefficients (CCs), between mean absorbed dose to the brain and eye lens of the cardiologist and the air kerma-area product, PKA, for a set of projections in cardiac interventional procedures. Furthermore, by taking clinical data into account, a method to estimate the doses per procedure, or annual dose, is presented. METHODS: Thermoluminescence dosimeters were used together with anthropomorphic phantoms, simulating a cardiologist performing an interventional cardiac procedure, to estimate the CCs for the brain and eye lens dose for nine standard projections, and change in patient size and x-ray spectrum. Additionally, a single CC has been estimated, accounting for each projections fraction of use in the clinic and associated PKA using clinical data from the dose monitoring system in our hospital. RESULTS: The maximum CCs for the eye lens and segment of the brain, is 5.47 µGy/Gycm2 (left eye lens) and 1.71 µGy/Gycm2 (left brain segment). The corresponding weighted CCs: are 3.39 µGy/Gycm2 and 0.89 µGy/Gycm2, respectively. CONCLUSIONS: Conversion coefficients have been established under actual scatter conditions, showing higher doses on the left side of the operator. Using modern interventional x-ray equipment, interventional cardiac procedures will not cause high radiation dose levels to the operator when a ceiling mounted shield is used, otherwise there is a risk that the threshold dose values for cataract will be reached. ADVANCE IN KNOWLEDGE: In addition to the CCs for the different projections, methods for deriving a single CC per cardiac interventional procedure and dose per year were introduced.


Subject(s)
Brain , Cardiologists , Lens, Crystalline , Occupational Exposure , Phantoms, Imaging , Radiation Dosage , Humans , Lens, Crystalline/radiation effects , Brain/radiation effects , Brain/diagnostic imaging , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Thermoluminescent Dosimetry , Cardiology , Radiography, Interventional/methods
3.
J Radiat Res ; 65(4): 450-458, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38818635

ABSTRACT

We quantified the level of backscatter radiation generated from physicians' heads using a phantom. We also evaluated the shielding rate of the protective eyewear and optimal placement of the eye-dedicated dosimeter (skin surface or behind the Pb-eyewear). We performed diagnostic X-rays of two head phantoms: Styrofoam (negligible backscatter radiation) and anthropomorphic (included backscatter radiation). Radiophotoluminescence glass dosimeters were used to measure the eye-lens dose, with or without 0.07-mm Pb-equivalent protective eyewear. We used tube voltages of 50, 65 and 80 kV because the scattered radiation has a lower mean energy than the primary X-ray beam. The backscatter radiation accounted for 17.3-22.3% of the eye-lens dose, with the percentage increasing with increasing tube voltage. Furthermore, the shielding rate of the protective eyewear was overestimated, and the eye-lens dose was underestimated when the eye-dedicated dosimeter was placed behind the protective eyewear. We quantified the backscatter radiation generated from physicians' heads. To account for the effect of backscatter radiation, an anthropomorphic, rather than Styrofoam, phantom should be used. Close contact of the dosimeter with the skin surface is essential for accurate evaluation of backscatter radiation from physician's own heads. To assess the eye-lens dose accurately, the dosimeter should be placed near the eye. If the dosimeter is placed behind the lens of the protective eyewear, we recommend using a backscatter radiation calibration factor of 1.2-1.3.


Subject(s)
Eye Protective Devices , Lens, Crystalline , Occupational Exposure , Phantoms, Imaging , Radiation Dosage , Scattering, Radiation , Humans , Lens, Crystalline/radiation effects , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Radiometry , Radiation Protection , Radiation Dosimeters , Dose-Response Relationship, Radiation
4.
J Radiol Prot ; 44(2)2024 May 17.
Article in English | MEDLINE | ID: mdl-38701771

ABSTRACT

Given the new recommendations for occupational eye lens doses, various lead glasses have been used to reduce irradiation of interventional radiologists. However, the protection afforded by lead glasses over prescription glasses (thus over-glasses-type eyewear) has not been considered in detail. We used a phantom to compare the protective effects of such eyewear and regular eyewear of 0.07 mm lead-equivalent thickness. The shielding rates behind the eyewear and on the surface of the left eye of an anthropomorphic phantom were calculated. The left eye of the phantom was irradiated at various angles and the shielding effects were evaluated. We measured the radiation dose to the left side of the phantom using RPLDs attached to the left eye and to the surface/back of the left eyewear. Over-glasses-type eyewear afforded good protection against x-rays from the left and below; the average shielding rates on the surface of the left eye ranged from 0.70-0.72. In clinical settings, scattered radiation is incident on physicians' eyes from the left and below, and through any gap in lead glasses. Over-glasses-type eyewear afforded better protection than regular eyewear of the same lead-equivalent thickness at the irradiation angles of concern in clinical settings. Although clinical evaluation is needed, we suggest over-glasses-type Pb eyewear even for physicians who do not wear prescription glasses.


Subject(s)
Eye Protective Devices , Eyeglasses , Occupational Exposure , Radiation Dosage , Radiation Protection , Humans , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Phantoms, Imaging , Eye/radiation effects , Radiation Injuries/prevention & control
5.
Cureus ; 15(9): e44894, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37814769

ABSTRACT

Background Advances in imaging techniques have led to increased utilization of imaging devices in catheterization laboratories. Invasive surgical procedures for cardiac disorders have been largely replaced by fluoroscopic cardiac catheterization. With this increase, concerns and risks associated with exposure to ionizing radiation among interventional cardiologists are growing. This study aims to measure and compare the occupational doses to the eye lens and thyroid of pediatric interventional cardiologists during different procedures in the catheterization laboratory and its significance. Methodology In this study, cardiologists wore bandanas with attached dosimeters to measure the absorbed doses to the eyes and thyroid gland. The dosimeters were collected for reading. The procedure types were also collected. In addition, the total fluoroscopy time and tube voltage of the biplane machine were measured. SPSS version 23 (IBM Corp., Armonk, NY, USA) was used to analyze the data. The characteristics of the study sample were described using simple counts and percentages, whereas means and standard deviations were used for continuous variables. Statistical significance was set at p-values <0.05. Results A total of 93 procedures were evaluated. The mean absorbed doses for all 93 procedures in both eyes and thyroid were 0.09 mGy and 0.08 mGy, respectively. A significant difference was found between the left and right eye measurements (p = 0.034), with higher doses administered to the left eye. However, no significant difference was observed between the right and left thyroid doses (p = 0.281). Significant correlations were found between the eye and thyroid doses and the procedure type (p = 0.02 and p = 0.009, respectively). Conclusions A significant amount of radiation was measured in the measurements of both organs. In addition, radiation dose measurements varied between different types of procedures. Our current results indicate the importance and necessity of applying the radiation protection concept of dose optimization.

6.
Diagnostics (Basel) ; 13(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37761370

ABSTRACT

Although interventional radiology (IVR) is preferred over surgical procedures because it is less invasive, it results in increased radiation exposure due to long fluoroscopy times and the need for frequent imaging. Nurses engaged in cardiac IVR receive the highest lens radiation doses among medical workers, after physicians. Hence, it is important to measure the lens exposure of IVR nurses accurately. Very few studies have evaluated IVR nurse lens doses using direct dosimeters. This study was conducted using direct eye dosimeters to determine the occupational eye dose of nurses engaged in cardiac IVR, and to identify simple and accurate methods to evaluate the lens dose received by nurses. Over 6 months, in a catheterization laboratory, we measured the occupational dose to the eyes (3 mm dose equivalent) and neck (0.07 mm dose equivalent) of nurses on the right and left sides. We investigated the relationship between lens and neck doses, and found a significant correlation. Hence, it may be possible to estimate the lens dose from the neck badge dose. We also evaluated the appropriate position (left or right) of eye dosimeters for IVR nurses. Although there was little difference between the mean doses to the right and left eyes, that to the right eye was slightly higher. In addition, we investigated whether it is possible to estimate doses received by IVR nurses from patient dose parameters. There were significant correlations between the measured doses to the neck and lens, and the patient dose parameters (fluoroscopy time and air kerma), implying that these parameters could be used to estimate the lens dose. However, it may be difficult to determine the lens dose of IVR nurses accurately from neck badges or patient dose parameters because of variation in the behaviors of nurses and the procedure type. Therefore, neck doses and patient dose parameters do not correlate well with the radiation eye doses of individual IVR nurses measured by personal eye dosimeters. For IVR nurses with higher eye doses, more accurate measurement of the radiation doses is required. We recommend that a lens dosimeter be worn near the eyes to measure the lens dose to IVR nurses accurately, especially those exposed to relatively high doses.

7.
Article in English | MEDLINE | ID: mdl-37424834

ABSTRACT

Lens dose can be high during neuro-interventional procedures, increasing the risk of cataractogenesis. Although beam collimation can be effective in reducing lens dose, it also restricts the FOV. ROI imaging with a reduced-dose peripheral field permits full-field information with reduced lens dose. This work investigates the magnitude of lens-dose reduction possible with ROI imaging. EGSnrc Monte-Carlo calculations of lens dose were made for the Zubal head phantom as a function of gantry angulation and head shift from isocenter for both large and small FOV's. The lens dose for ROI attenuators of varying transmission was simulated as the weighted sum of the lens dose from the small ROI FOV and that from the attenuated larger FOV. Image intensity and quantum mottle differences between ROI and periphery can be equalized by image processing. The lens dose varies considerably with beam angle, head shift, and field size. For both eyes, the lens-dose reduction with an ROI attenuator increases with LAO angulation, being highest for lateral projections and lowest for PA. For an attenuator with small ROI field (5 × 5 cm) and 20% transmission, the lens dose for lateral projections is reduced by about 75% compared to a full dose 10 ×10 cm FOV, while the reduction ranges between 30 and 40% for PA projections. Use of ROI attenuators can substantially reduce the dose to the lens of the eye for all gantry angles and head shifts, while allowing peripheral information to be seen in a larger FOV.

8.
Phys Med ; 110: 102603, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37178623

ABSTRACT

PURPOSE: To assess occupational eye lens dose based on clinical monitoring of interventional radiologists and to assess personal protective eyewear (PPE) efficacy through measurements with anthropomorphic phantom. METHODS: Two positions of the operator with respect to X-ray beam were simulated with phantom. Dose reduction factor (DRF) of four PPE was assessed, as well as correlation between eye lens and whole-body doses. Brain dose was also assessed. Five radiologists were monitored for one-year clinical procedures. All subjects were equipped with whole-body dosimeter placed over lead apron at the chest level and eye lens dosimeter placed over the left side of the PPE. Kerma-Area Product (KAP) of procedures performed during the monitoring period was recorded. The correlation of eye lens dose with whole-body dose and KAP was assessed. RESULTS: DRF was 4.3/2.4 for wraparound glasses, 4.8/1.9 for fitover glasses, 9.1/6.8 for full-face visor in radial/femoral geometries. DRF of half-face visor depended on how it is worn (range 1.0-4.9). Statistically significant correlation between dose value over the PPE and chest dose was observed, while there was no correlation between eye lens dose and chest dose. The results on clinical staff showed statistically significant correlation between dose values over the PPE and KAP. CONCLUSIONS: All PPE showed significant DRF in all configurations, provided they were worn correctly. Single DRF value is not applicable to all clinical situations. KAP is a valuable tool for determining appropriate radiation protection measures.


Subject(s)
Lens, Crystalline , Occupational Exposure , Radiation Exposure , Radiation Protection , Humans , Radiology, Interventional/methods , Radiation Dosage , Eye Protective Devices , Radiation Protection/methods , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Radiation Exposure/prevention & control
9.
J Radiol Prot ; 43(1)2023 02 17.
Article in English | MEDLINE | ID: mdl-36731124

ABSTRACT

INTRODUCTION: complex fluoroscopy-guided interventional procedures in cardiology are known to result in higher radiation doses for patients and staff. PURPOSE: to estimate the equivalent dose received in different regions of the cardiologist's body in catheterism (CATH) and percutaneous coronary intervention (PCI) procedures, as well as to evaluate the effectiveness of monitoring the doses in the catheritization laboratory (cath lab) using a direct ion storage dosimeter. MATERIALS AND METHODS: the InstadoseTMand the thermoluminescent dosimeters (TLD-100) were fixed simultaneously in the following regions of the cardiologist's body: near the eyes (left and right), the trunk region (over the lead apron) and the left ankle. Occupational doses were recorded during 86 procedures (60% CATH). RESULTS: catheterization procedures showed third quartile dose values near to the left eye region equal to 0.10 mSv (TLD-100) and 0.12 (InstadoseTM) and for intervention 0.15 mSv (TLD-100 and InstadoseTM). The doses measured in the trunk region, over the lead apron, were about 13% higher for catheterization procedures and 20% higher for intervention procedures compared to left eye region measurements. The Wilcoxon-Mann-Whitney test was applied for unpaired data for all body regions, comparing the data obtained between the TLD-100 and InstadoseTMdosimeters. For CATH and PCI, the responses of the TLD-100 and InstadoseTMdosimeters are considered equal for all analysed regions (p> 0.05) with the exception of the right eye region. CONCLUSION: the InstadoseTMpassive dosimeter can be useful as a complementary assessment in the monitoring of a cardiologist's personal occupational doses in the cath lab.


Subject(s)
Cardiologists , Occupational Exposure , Percutaneous Coronary Intervention , Radiation Exposure , Humans , Radiation Dosimeters , Radiation Dosage , Occupational Exposure/analysis , Radiation Exposure/analysis
10.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36829753

ABSTRACT

Mobile radiography allows for the diagnostic imaging of patients who cannot move to the X-ray examination room. Therefore, mobile X-ray equipment is useful for patients who have difficulty with movement. However, staff are exposed to scattered radiation from the patient, and they can receive potentially harmful radiation doses during radiography. We estimated occupational exposure during mobile radiography using phantom measurements. Scattered radiation distribution during mobile radiography was investigated using a radiation survey meter. The efficacy of radiation-reducing methods for mobile radiography was also evaluated. The dose decreased as the distance from the X-ray center increased. When the distance was more than 150 cm, the dose decreased to less than 1 µSv. It is extremely important for radiological technologists (RTs) to maintain a sufficient distance from the patient to reduce radiation exposure. The spatial dose at eye-lens height increases when the bed height is high, and when the RT is short in stature and abdominal imaging is performed. Maintaining sufficient distance from the patient is also particularly effective in limiting radiation exposure of the eye lens. Our results suggest that the doses of radiation received by staff during mobile radiography are not significant when appropriate radiation protection is used. To reduce exposure, it is important to maintain a sufficient distance from the patient. Therefore, RTs should bear this is mind during mobile radiography.

11.
Sensors (Basel) ; 23(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36617110

ABSTRACT

In 2011, the International Commission on Radiological Protection (ICRP) recommended a significant reduction in the lens-equivalent radiation dose limit, thus from an average of 150 to 20 mSv/year over 5 years. In recent years, the occupational dose has been rising with the increased sophistication of interventional radiology (IVR); management of IVR staff radiation doses has become more important, making real-time radiation monitoring of such staff desirable. Recently, the i3 real-time occupational exposure monitoring system (based on RaySafeTM) has replaced the conventional i2 system. Here, we compared the i2 and i3 systems in terms of sensitivity (batch uniformity), tube-voltage dependency, dose linearity, dose-rate dependency, and angle dependency. The sensitivity difference (batch uniformity) was approximately 5%, and the tube-voltage dependency was <±20% between 50 and 110 kV. Dose linearity was good (R2 = 1.00); a slight dose-rate dependency (~20%) was evident at very high dose rates (250 mGy/h). The i3 dosimeter showed better performance for the lower radiation detection limit compared with the i2 system. The horizontal and vertical angle dependencies of i3 were superior to those of i2. Thus, i3 sensitivity was higher over a wider angle range compared with i2, aiding the measurement of scattered radiation. Unlike the i2 sensor, the influence of backscattered radiation (i.e., radiation from an angle of 180°) was negligible. Therefore, the i3 system may be more appropriate in areas affected by backscatter. In the future, i3 will facilitate real-time dosimetry and dose management during IVR and other applications.


Subject(s)
Radiation Protection , Radiology, Interventional , Humans , Radiation Dosage , Radiation Dosimeters , Radiometry
12.
Unfallchirurgie (Heidelb) ; 126(5): 399-404, 2023 May.
Article in German | MEDLINE | ID: mdl-35384465

ABSTRACT

BACKGROUND: On 27 June 2017 the Act on new regulation of the law for the protection against the harmful effects of ionizing radiation was passed. One of the main innovations in daily surgical practice in the now legally stipulated provisions is the lowering of the eye lens dose to 20 mSv/year (§§ 78, 212 Radiation Protection Act, StrlSchG). MATERIAL AND METHODS: To estimate the level of exposure of the eye lens to ionizing radiation that is to be expected in the course of surgical interventions, the dose that surgeons receive during surgery was determined. For this, the radiation exposure adjacent to the eye lens was measured using a forehead dosimeter while performing surgical interventions over a period of 8 weeks in 2 different operating rooms. RESULTS: As a result, a mean estimated eye lens radiation dose Hp (3) of 190 µSv could be determined during the 2­month study period. Thus, the estimated cumulative radiation dose in 1 year of approximately 1.2 mSv was significantly below the threshold of 20 mSv/year. CONCLUSION: By complying with the common radiation protection measures in the context of operative interventions in orthopedics and trauma surgery, the legal limit value of 20 mSv/year is generally not expected to be exceeded.


Subject(s)
Lens, Crystalline , Orthopedic Procedures , Orthopedics , Radiation Exposure , Pilot Projects , Radiation Exposure/adverse effects , Lens, Crystalline/radiation effects , Orthopedic Procedures/adverse effects
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003559

ABSTRACT

Objective To analyze the eye lens equivalent dose levels of doctors during interventional cardiology procedures and identify related influential factors. Methods Twenty interventional specialists were selected from a cardiovascular specialty hospital. The cumulative equivalent doses to their eye lens during operations were monitored, and equipment-related parameters (fluoroscopy time, dose area product value [DAP], and entrance skin dose[ESD]), operation types, and operators’ positions were recorded. Results The annual equivalent doses to the eye lens of seven doctors exceeded 20 mSv. There was a linear correlation between the weekly number of operations and the equivalent dose to the eye lens (R2 = 0.457, P = 0.001). The mean eye lens equivalent dose per operation was 17.1 μSv, showing linear correlations with fluoroscopy time, DAP values, and ESD values (R2 = 0.427, 0.206, and 0.237, respectively, P < 0.05). The fluoroscopy time, DAP value, ESD value, and eye lens equivalent dose during percutaneous coronary intervention (PCI) were significantly higher than those during coronary angiography (t = −3.226, −3.108, −3.061, and −2.667, respectively, P < 0.03). Conclusion The annual equivalent doses to the eye lens are relatively high in interventional radiologists, some of whom may have values higher than the latest dose limit (20 mSv) suggested by the International Commission on Radiological Protection. Attention should be paid to operators performing PCI, and the workload optimization is necessary in practical operations to avoid unnecessary fluoroscopy time and reduce the eye lens doses of the operators.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006227

ABSTRACT

Objective To establish a model for estimating the eye lens dose of the first operator in interventional therapy based on the Monte Carlo simulation, and to provide a scientific basis for the rapid and accurate evaluation of the eye lens dose for radiation workers in interventional therapy. Methods Based on the MIRD phantom and eye model for adult Chinese males, the MCNPX program was used to establish the physical model to calculate the spatial distribution of radiation field and eye lens dose for the first operator. A GR200 Type A LiF (Mg, Cu, P) thermoluminescence dosimeter was used for experimental measurement to verify the simulation results. Results Monte Carlo simulation and experimental measurements showed that the spatial distribution of radiation field was symmetrical. Compared with the measured doses, the errors of the simulated eye lens dose of the first operator were between −8.3% and 7.3%. The dose of the left eye lens was higher than that of the right eye. Conclusion The Monte Carlo model constructed in this study initially realizes the simulation of eye lens dose of the first operator in interventional therapy. In the future, the model will be further optimized based on irradiation parameters such as exposure time, tube voltage, tube current, and projection direction used in clinic practice, so as to more accurately evaluate the eye lens dose of interventional therapy staff.

15.
Interv Radiol (Higashimatsuyama) ; 7(2): 44-48, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-36196387

ABSTRACT

The medical staff involved in fluoroscopy-guided procedures are at potential risks of radiation-induced cataract. Therefore, proper monitoring of the lens doses is critical, and radiation protection should be provided to the maximum extent that is reasonably achievable. The collar dosimeter is necessary to avoid underestimation of the lens dose, and the third dosimeter behind the protective eyewear would be helpful for those who are likely to exceed the dose limit. The reduction of the patient doses will correspondingly reduce the staff doses. Proper placement of the ceiling-mounted shields and minimization of the face-to-glass gap are the keys to effective shielding. The optimization of procedures and devices that help maintain a distance from the irradiated area and to prevent the looking-up posture will substantially reduce the lens dose.

16.
Article in English | MEDLINE | ID: mdl-35982766

ABSTRACT

A deep learning (DL) model has been developed to estimate patient-lens dose in real-time for given exposure and geometric conditions during fluoroscopically-guided neuro-interventional procedures. Parameters input into the DL model for dose prediction include the patient head shift from isocenter and cephalometric landmark locations as a surrogate for head size. Machine learning (ML) models were investigated to automatically detect these parameters from the in-procedure fluoroscopic image. Fluoroscopic images of a Kyoto Kagaku anthropomorphic head phantom were taken at various known X (transverse) and Y (longitudinal) shifts, as well as different magnification modes, to create an image database. For each image, anatomical landmark coordinate locations were obtained manually using ImageJ and are used as ground-truth labels for training. This database was then used to train the two separate ML models. One ML model predicts the patient head shift in both the X and Y directions and the other model predicts the coordinates of the anatomical landmarks. From the coordinates, the distance between these anatomical landmarks is calculated, and input into the DL dose-prediction model. Model performance was evaluated using mean absolute error (MAE) and mean absolute percentage error (MAPE) for the head-shift and landmark-coordinate models, respectively. The goal is to implement these two separate models into the Dose Tracking System (DTS) developed by our group. This would allow the DTS to automatically detect the patient head size and position for eye-lens dose prediction and eliminate the need for manual input by the clinical staff.

17.
Eur J Vasc Endovasc Surg ; 64(5): 567-572, 2022 11.
Article in English | MEDLINE | ID: mdl-35760276

ABSTRACT

OBJECTIVE: Radiation cataract has been observed at lower doses than previously thought, therefore the annual limit for equivalent dose to the eye lens has been reduced from 150 to 20 mSv. This study evaluated radiation exposure to the eye lens of operators working in a hybrid operating room before and after implementation of a dose reduction program. METHODS: From April to October 2019, radiation exposure to the first operator was measured during all consecutive endovascular procedures performed in the hybrid operating room using BeOSL Hp(3) eye lens dosimeters placed both outside and behind the lead glasses (0.75 mm lead equivalent). Measured values were compared with data from a historic control group from the same hospital before implementation of the dose reduction program. RESULTS: A total of 181 consecutive patients underwent an endovascular procedure in the hybrid operating room. The median unprotected eye lens dose (outside lead glasses) of the main operator was 0.049 mSv for endovascular aortic repair (EVAR) (n = 30), 0.042 mSv for thoracic endovascular aortic repair (TEVAR) (n = 23), 0.175 mSv for complex aortic fenestrated or branched endovascular procedures (F/BEVAR; n = 15), and 0.042 mSv for peripheral interventions (n = 80). Compared with the control period, EVAR had 75% lower, TEVAR 79% lower, and F/BEVAR 55% lower radiation exposure to the unprotected eye lens of the first operator. The lead glasses led to a median reduction in the exposure to the eye lens by a factor of 3.4. CONCLUSION: The implementation of a dose reduction program led to a relevant reduction in radiation exposure to the head and eye lens of the first operator in endovascular procedures. With optimum radiation protection measures, including a ceiling mounted shield and lead glasses, more than 440 EVARs, 280 TEVARs, or 128 FEVARs could be performed per year before the dose limit for the eye lens of 20 mSv was reached.


Subject(s)
Endovascular Procedures , Lens, Crystalline , Occupational Exposure , Radiation Exposure , Humans , Operating Rooms , Radiation Dosage , Occupational Exposure/adverse effects , Occupational Exposure/prevention & control , Radiation Exposure/adverse effects , Radiation Exposure/prevention & control , Endovascular Procedures/adverse effects
18.
J Radiol Prot ; 42(3)2022 07 19.
Article in English | MEDLINE | ID: mdl-35705021

ABSTRACT

In Japan, the radiation-dose limit for the lens of the eye was revised in April 2021. Consequently, for workers, the numerical values of the equivalent dose to the lens of the eye are equal to those of the effective dose. Radiation workers, radiation safety officers and licensees must comply with regulations related to radiation protection and optimize protection. The new guidelines on dose monitoring of the lens of the eye developed by the Japan Health Physics Society recommend for the dose to be estimated near the eye for accurate estimation, when the dose to the lens approaches or exceeds the management criteria. However, there is limited information regarding the non-uniform exposure of nuclear power plant workers. In this study, the dose equivalents of high-dose-rate workplaces and the personal doses of 88 workers were estimated at four Japanese commercial nuclear power plant sites (RWR: 3 units and BWR: 3 units) and the dose to the lens of the eye and the exposure situations of the workers were analyzed.


Subject(s)
Lens, Crystalline , Occupational Exposure , Radiation Exposure , Humans , Japan , Nuclear Power Plants , Occupational Exposure/analysis , Radiation Dosage , Radiation Exposure/analysis
19.
J Radiol Prot ; 42(2)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35114656

ABSTRACT

It is relevant to estimate the uncertainties in the measurement of eye lens doses from a personal dosimeter over the protective apron without using additional dosimetry near the eyes. Additional dosimetry for interventionists represents a difficulty for routine clinical practice. This study analyses the estimated eye doses from dosimeter values taken at chest level over the apron and their uncertainties. Measurements ofHp(0.07) using optically stimulated luminescence dosimeters located on the chest over the apron and on the glasses (in the inner and outer part of the protection) were taken from ten interventionalists in a university hospital, in the period 2018-2019 during standard clinical practice. For a total sample of 133 interventional procedures included in our study, the ratio between theHp(0.07) on the glasses (left-outer side) and on the chest over the apron had an average of 0.74, with quartiles of 0.47, 0.64, 0.88. Statistically significant differences were found among operators using the U-Mann-Whitney test. The average transmission factor for the glasses was 0.30, with quartiles of 0.21, 0.25, and 0.32. Different complexity in the procedures, in the quality of the scatter radiation and in the individual operational practices, involve a relevant dispersion in the results for lens dose estimations from the over apron dosimeter. Lens doses may be between a 64% and an 88% of the over apron dosimeter values (using median or 3rd quartile). The use of 88% may be a conservative approach.


Subject(s)
Lens, Crystalline , Occupational Exposure , Radiation Protection , Humans , Occupational Exposure/analysis , Radiation Dosage , Radiation Dosimeters , Radiology, Interventional
20.
Radiol Phys Technol ; 15(1): 54-62, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35067903

ABSTRACT

Occupational eye dose monitoring during interventional radiology and interventional cardiology is important to avoid radiation-induced cataracts. The aim of this study was to assess the eye dose correlation with neck dose and patient-related quantities for interventional cardiology physicians and nurses. The originality of this study lies in obtaining correlations between the location of the dosimeter and eye dose radiation readings among different procedures and practitioners. The doses were measured for each procedure (18 procedures of coronary angiography and 16 procedures of percutaneous coronary intervention) using an active personal dosimeter. The eye dose for physicians was not correlated with the neck dose. The eye dose for nurses had a good correlation with the neck dose during both coronary angiography (R2 = 0.91) and percutaneous coronary intervention (R2 = 0.93). Kerma-area product values may be used for a rough estimation of the eye dose for physicians during routine coronary angiography procedures (R2 = 0.76). For nurses, the neck dose is a good proxy for the eye dose during coronary angiography and percutaneous coronary intervention procedures.


Subject(s)
Cardiology , Lens, Crystalline , Occupational Exposure , Radiation Protection , Humans , Occupational Exposure/analysis , Radiation Dosage , Radiation Protection/methods , Radiology, Interventional
SELECTION OF CITATIONS
SEARCH DETAIL