Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Res Vet Sci ; 176: 105349, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968647

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of the acute infectious disease hepatitis-hydropericardium syndrome (HHS). Previous studies have focused on the mechanisms of FAdV-4 caused liver injury, while studies revealing potential mechanisms of inflammatory injury in FAdV-4-infected chicken cardiac cells remain scare. Here we found that FAdV-4 successfully infected chicken embryonic cardiac fibroblasts (CECF) cells in vitro and significantly upregulated production of inflammatory cytokines including IL-1ß, IL-6, IL-8, and TNF-α, suggesting induction of a strong inflammatory response. Mechanistically, FAdV-4 infection increased expression of phosphorylated Akt in a time-dependent manner, while phosphorylation of Akt and production of pro-inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α were greatly reduced in FAdV-4-infected CECF cells after treatment with LY294002, a potent inhibitor of PI3K, indicating that the inflammatory response induced by FAdV-4 infection is mediated by the PI3K/Akt signaling pathway. Furthermore, FAdV-4 infection increased expression of phosphorylated IκBα, a recognized indicator of NF-κB activation, and treatment with the BAY11-7082, a selective IκBα phosphorylation and NF-κB inhibitor, significantly reduced IκBα phosphorylation and inflammatory cytokines (IL-1ß, IL-6, IL-8, and TNF-α) production in FAdV-4-infected CECF cells, suggesting a critical role of IκBα/NF-κB signaling in FAdV-4-induced inflammatory responses in CECF cells. Taken together, our results suggest that FAdV-4 infection induces inflammatory responses through activation of PI3K/Akt and IκBα/NF-κB signaling pathways in CECF cells. These results reveal potential mechanisms of inflammatory damage in chicken cardiac cells caused by FAdV-4 infection, which sheds new insight into clarification of the pathogenic mechanism of FAdV-4 infection and development of new strategies for HHS prevention and control.


Subject(s)
Adenoviridae Infections , Fibroblasts , NF-kappa B , Phosphatidylinositol 3-Kinases , Poultry Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Fibroblasts/virology , Chick Embryo , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/immunology , Poultry Diseases/virology , Inflammation , Aviadenovirus/physiology , Cytokines/metabolism , Chickens , Serogroup , NF-KappaB Inhibitor alpha/metabolism
2.
Poult Sci ; 103(9): 104006, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39002371

ABSTRACT

Chickens infected with FAdV-4 and FAdV-8b both exhibit hepatic lesions characterized by hemorrhagic necrosis and intranuclear inclusion body formation. However, only FAdV-4 induces pericardial effusion and acute mortality in chickens. To investigate the similarities and differences in the pathogenicity of HPS and IBH, this study intends to compare the infectivity and pathogenicity of FAdV-4 and FAdV-8b, 2 serotypes of fowl adenovirus isolated in our laboratory. The 2 viruses were respectively inoculated subcutaneously into SPF chicks at the neck. The clinical manifestations and pathological changes in these infected groups of chickens differed to some extent. Chickens infected with FAdV-4 exhibit evident depression and acute mortality, with a mortality rate of 60%; while those infected with FAdV-8b only display mild depression. Postmortem examination reveals serosanguinous effusion in the pericardial sac, spot-like hemorrhage, and focal necrosis in the liver of chickens infected with FAdV-4. Additionally, various degrees of edema are observed in organs such as the lungs, spleen, kidneys, and pancreas. In contrast, chickens infected with FAdV-8b exhibit spot-like hemorrhage and focal necrosis in the liver but do not display pericardial effusion or widespread organ edema. Histopathological examination demonstrates that both FAdV-4 and FAdV-8b can induce inflammatory reactions of varying degrees in the kidneys, pancreas, and duodenum of chickens, while reducing the necrosis of bursa of Fabricius, thymus, and spleen lymphocytes. Our data preliminarily reveal that both FAdV-4 and FAdV-8b can induce strong pathogenicity in chickens.

3.
Poult Sci ; 103(8): 103888, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38851180

ABSTRACT

Outbreaks of hepatitis-hydropericardium syndrome (HHS) caused by fowl adenovirus serotype 4 (FAdV-4) have resulted in huge economic losses to the poultry industry in China since 2015. However, commercially available vaccines against the FAdV-4 infection remain scarce. In our study, subunit vaccine candidates derived from the bacterially expressed recombinant Fiber1 knob domain and Fiber2 knob domain fusion protein (termed as Fiber1/2 knob subunit vaccine) and Fiber2 protein (termed as Fiber2 subunit vaccine) of the FAdV-4 SDSX strain were developed. Immunogenicity evaluation showed that the Fiber1/2 knob subunit vaccine induced the production of antibodies at 7 d postvaccination (dpv), earlier than the Fiber2 subunit vaccine. Moreover, the neutralizing antibody level of the Fiber1/2 subunit vaccine group was higher than the Fiber2 subunit vaccine group, showing significant differences at 14, 21, and 28 dpv. Immune protection test results revealed that both Fiber1/2 knob subunit and Fiber2 subunit vaccines could protect chickens from death against FAdV-4 challenge, although the weight of chickens in the Fiber1/2 knob subunit vaccine group decreased less. Furthermore, analysis of plasma Glutamic oxaloacetic transaminase (AST) and blood glutamic pyruvic transaminase (ALT) levels suggested that the Fiber1/2 subunit vaccine can significantly inhibit liver damage caused by FAdV-4 infection and is more effective in blocking the pathogenicity of FAdV-4 in target organs. In addition, the Fiber1/2 knob subunit vaccine further reduced the viral load in different tissues and virus shedding in chickens than the Fiber2 subunit vaccine. Overall, the Fiber1/2 knob subunit vaccine was more effective than the Fiber2 subunit vaccine. These findings lay the foundation for the development of more effective FAdV-4 subunit vaccines.

4.
Front Cell Infect Microbiol ; 14: 1370414, 2024.
Article in English | MEDLINE | ID: mdl-38915924

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) is highly pathogenic to broilers aged 3 to 5 weeks and has caused considerable economic loss in the poultry industry worldwide. FAdV-4 is the causative agent of hydropericardium-hepatitis syndrome (HHS) or hydropericardium syndrome (HPS). The virus targets mainly the liver, and HPS symptoms are observed in infected chickens. This disease was first reported in Pakistan but has now spread worldwide, and over time, various deletions in the FAdV genome and mutations in its major structural proteins have been detected. This review provides detailed information about FAdV-4 genome organization, physiological features, epidemiology, coinfection with other viruses, and host immune suppression. Moreover, we investigated the role and functions of important structural proteins in FAdV-4 pathogenesis. Finally, the potential regulatory effects of FAdV-4 infection on ncRNAs are also discussed.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Chickens , Genome, Viral , Poultry Diseases , Serogroup , Animals , Chickens/virology , Poultry Diseases/virology , Aviadenovirus/genetics , Aviadenovirus/classification , Aviadenovirus/pathogenicity , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Coinfection/virology , Coinfection/veterinary
5.
Vet Microbiol ; 293: 110068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579482

ABSTRACT

Ferroptosis is a form of controlled cell death that was first described relatively recently and that is dependent on the formation and accumulation of lipid free radicals through an iron-mediated mechanism. A growing body of evidence supports the close relationship between pathogenic infections and ferroptotic cell death, particularly for viral infections. Ferroptosis is also closely tied to the pathogenic development of hepatic steatosis and other forms of liver disease. Fowl adenovirus serotype 4 (FAdV-4) is a hepatotropic aviadenovirus causing hydropericardium syndrome (HPS) that is capable of impacting fat metabolism. However, it remains uncertain as to what role, if any, ferroptotic death plays in the context of FAdV-4 infection. Here, FAdV-4 was found to promote ferroptosis via the p53-SLC7A11-GPX4 axis, while ferrostain-1 was capable of inhibiting this FAdV-4-mediated ferroptotic death through marked reductions in lipid peroxidation. The incidence of FAdV-4-induced fatty liver was also found to be associated with the activation of ferroptotic activity. Together, these results offer novel insights regarding potential approaches to treating HPS.


Subject(s)
Ferroptosis , Lipid Metabolism , Animals , Lipid Peroxidation , Chickens , Aviadenovirus/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Cell Line , Fatty Liver/veterinary , Fatty Liver/metabolism , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Poultry Diseases/virology
6.
Poult Sci ; 103(6): 103741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670055

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) infections result in substantial economic losses in the poultry industry. Recent findings have revealed that FAdV-4 significantly suppresses the host immune response upon infection; however, the specific viral and host factors contributing to this immunomodulatory activity remain poorly characterized. Moreover, diverse cell types exhibit differential immune responses to FAdV-4 infection. To elucidate cell-specific host responses, we performed transcriptomic analysis of FAdV-4 infected leghorn male hepatocellular (LMH) and chicken embryo fibroblast (CEF) cells. Although FAdV-4 replicated more efficiently in LMH cells, it provoked limited interferon-stimulated gene induction. In contrast, FAdV-4 infection triggered robust antiviral responses in CEF cells, including upregulation of cytosolic DNA sensing and interferon-stimulated genes. Knockdown of key cytosolic DNA sensing molecules enhanced FAdV-4 replication in LMH cells while reducing interferon-stimulated gene expression. Our findings reveal cell-specific virus-host interactions that provide insight into FAdV-4 pathogenesis while identifying factors that mediate antiviral immunity against FAdV-4.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Chickens , Fibroblasts , Immunity, Innate , Poultry Diseases , Animals , Male , Fibroblasts/virology , Fibroblasts/immunology , Chick Embryo , Adenoviridae Infections/veterinary , Adenoviridae Infections/immunology , Adenoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/immunology , Chickens/immunology , Aviadenovirus/physiology , Aviadenovirus/immunology , Serogroup , Hepatocytes/virology , Hepatocytes/immunology
7.
Heliyon ; 10(5): e26578, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434371

ABSTRACT

In recent years, fowl adenovirus (FAdV) transmission has significantly increased worldwide, leading to substantial economic losses in the poultry industry. The virus causes hepatitis-hydropericardium syndrome (HHS) and inclusion body hepatitis (IBH). The prevalent FAdV strains in China are FAdV-4, FAdV-8a, FAdV-8b, and FAdV-11. Vaccines for FAdV-4 and FAdV-8b, which prevent HHS and IBH, are available commercially, but no vaccine exists for FAdV-8a. To address this issue, we developed a vaccine using an oil emulsion to inactivate the FAdV-8a serotype. Additionally, we built a fluorescence quantitative PCR for the detection of the virus. The lowest concentration detected was 4.11 × 101 copies/µL. The study's results illustrated that the FAdV-8a oil emulsion vaccine effectively produced significant antibodies and offered ample protection for poultry. This vaccine can potentially limit the transmission of IBH resulting from FAdV-8a in China.

8.
Vet Microbiol ; 292: 110053, 2024 May.
Article in English | MEDLINE | ID: mdl-38502979

ABSTRACT

Infectious bursal disease virus (IBDV) caused an acute and highly contagious infectious disease characterized by severe immunosuppression, causing considerable economic losses to the poultry industry globally. Although this disease was well-controlled under the widely use of commercial vaccines in the past decades, the novel variant IBDV strains emerged recently because of the highly immunized-selection pressure in the field, posting new threats to poultry industry. Here, we reported novel variant IBDV is responsible for a disease outbreak, and assessed the epidemic and pathogenicity of IBDV in this study. Moreover, we constructed a challenge model using Fowl adenovirus serotype 4 (FAdV-4) to study on the immunosuppressive effect. Our findings underscore the importance of IBDV surveillance, and provide evidence for understanding the pathogenicity of IBDV.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Virulence , Birnaviridae Infections/prevention & control , Birnaviridae Infections/veterinary , Vaccination/veterinary , Poultry , Adenoviridae
9.
Microbiol Resour Announc ; 13(4): e0005724, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38517185

ABSTRACT

The whole genomic sequence of fowl adenovirus C (FAdV-4) strain FAdV-4/Pasouk, isolated from chickens with hepatitis-hydropericardium syndrome (HHS) from an outbreak in Iran, has been deposited in GenBank under accession number ON652872. Notably, this FAdV-4 isolate exhibited significant genetic similarities to contemporary isolates originating from China, indicating a shared ancestry.

10.
Biologicals ; 85: 101752, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38401400

ABSTRACT

Hydropericardium syndrome (HPS), caused by the Fowl adenovirus 4 (FAdV-4) has led to significant financial losses for the poultry industry globally, including Pakistan over the past few years. Conventional serological methods are time consuming, laborious and less sensitive therefore, a rapid and sensitive ELISA kit is required for the reliable detection of FAdV-4 infection. In the current research, fiber proteins (1 &2) of FAdV-4 were successfully expressed in Escherichia coli and purified using metal affinity chromatography. Using these proteins as antigens, an indirect ELISA for detecting FAdV-4 infection was developed. The developed ELISA showed superior performances upon comparison with Serum neutralization test (SNT). This ELISA also showed reliable detection of FAdV specific antibodies in experimentally infected and vaccinated chickens. This assay produced good correlation on the samples collected from the field with SNT and found essential for large scale serology of the FAdV. No cross reactivity was observed in the ELISA following the testing of the serum samples of different other avian pathogens which showed that this ELISA is specific in detecting the FAdV infection. In conclusion, the developed Fiber protein ELISA is highly sensitive and specific in the detecting the FAdV infection and can be utilized for large scale sero-epidemiology of the disease.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Animals , Serogroup , Chickens , Antibodies, Viral , Adenoviridae Infections/diagnosis , Adenoviridae Infections/veterinary , Aviadenovirus/genetics , Enzyme-Linked Immunosorbent Assay/methods
11.
Poult Sci ; 103(4): 103479, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367468

ABSTRACT

Fowl adenovirus serotype 4 (FAdV) is highly pathogenic and lethal to chickens, especially broilers, which has emerged as one of the most important economic losses for the poultry industry in the past few years. Although inactivated vaccines have been widely used to control FAdV diseases, with the passage of time and the advancement of technology, live attenuated vaccines and subunit vaccines have also been developed, which are more attractive and effective vaccine candidates. This is an overview of avian adenoviruses, especially FAdV, which is related to the structure, pathogenicity of adenoviruses in birds, development and strategies used to make and use vaccines using different methods. As well as during this study it was determined that various vaccines against the new FAdV-4 genotype have been developed and many advances have been made in control disease However, many studies conducted in this field need extensive investigation.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Adenoviridae Infections/prevention & control , Adenoviridae Infections/veterinary , Serogroup , Virulence , Adenoviridae/genetics , Vaccines, Attenuated , Vaccine Development
12.
Microb Pathog ; 186: 106508, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141742

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4), the causative agent of hepatitis-hydropericardium syndrome (HHS), is a double-stranded DNA virus. Although many structural proteins have been deeply studied, the coding potential of some other open reading frames (ORFs) and the biological functions of their products during virus infection have not been fully elucidated. Here, a unique nonstructural protein ORF1B of FAdV-4 was identified and its expression kinetics along infection was analyzed. Except that of FAdV-10, a member of the same genus as FAdV-4, FAdV-4 ORF1B shared as low homologous identity as 29.2% in amino acid sequence with the other ten counterparts. Structurally, ORF1B was mapped on the N-terminal region of the genome between 1485 nt to 1808 nt and predicted to only contain two α-helix. Confocal immunofluorescence assay with homemade rabbit polyclonal antibody demonstrated that ORF1B could be simultaneously observed with structural protein Fiber 1 in FAdV-4-infected cells. Western blot further showed that ORF1B could only be detected in the infected cells but not mature virions, suggesting ORF1B was a nonstructural protein. Subsequently, the expression level of ORF1B detected by qRT-PCR and IFA was gradually decreased along with FAdV-4 infection, suggesting ORF1B was an early gene transcript. These results will lay a solid foundation to further study the biological effect of ORF1B on the replication and pathogenicity of FAdV-4.


Subject(s)
Adenoviridae Infections , Poultry Diseases , Animals , Rabbits , Adenoviridae Infections/veterinary , Serogroup , Chickens , Adenoviridae/genetics , Amino Acid Sequence
13.
Heliyon ; 9(12): e23033, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076100

ABSTRACT

Cold adapted live attenuated influenza vaccines can effectively prevent human disease and death caused by influenza virus. Since chicken embryos are used as the culture substrate for the large-scale production of influenza vaccines, cold adapted live attenuated influenza vaccines may be contaminated by exogenous avian viruses. Rapid and sensitive methods such as TaqMan-based quantitative PCR are needed for the detection of exogenous avian viruses during cold adapted live attenuated influenza vaccines production. In this study, a TaqMan-based quantitative PCR method was established for the detection of three common exogenous avian viruses, including fowl adenovirus type I, type Ⅲ and avian leukosis virus. Avian virus-encoding plasmids purified in high-performance liquid chromatography were essential for sensitivity analysis. The sensitivity reached 1 copy per reaction for each of the avian virus plasmids. Standard curves showed a strong linear relationship. The TaqMan-based quantitative PCR method had high specificity and no cross-reactivity with other irrelevant viruses. Furthermore, the established TaqMan-based quantitative PCR can effectively detect 0.1 TCID50 of each avian virus without or with interference from the influenza virus nucleic acid. Ultimately, this method was used to test three master seed lots of monovalent cold adapted live attenuated influenza vaccine, and the results showed that no fowl adenovirus type I, type Ⅲ or avian leukosis virus contamination, which were consistent with serological methods. The TaqMan-based quantitative PCR method for the determination of extraneous avian viruses in cold adapted live attenuated influenza vaccines met the requirement for both conventional and emergency inspection on cold adapted live attenuated influenza vaccines.

14.
Animals (Basel) ; 13(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38136888

ABSTRACT

Fowl adenoviruses (FAdVs, species FAdV-A/-E) are responsible for several clinical syndromes reported with increasing frequency in poultry farms in the last decades. In the present study, a phylodynamic analysis was performed on a group of FAdV-D Hexon sequences with adequate available metadata. The obtained results demonstrated the long-term circulation of this species, at least several decades before the first identification of the disease. After a period of progressive increase, the viral population showed a high-level circulation from approximately the 1960s to the beginning of the new millennium, mirroring the expansion of intensive poultry production and animal trade. At the same time, strain migration occurred mainly from Europe to other continents, although other among-continent connections were estimated. Thereafter, the viral population declined progressively, likely due to the improved control measures, potentially including the development and application of FAdV vaccines. An increase in the viral evolutionary rate featured this phase. A role of vaccine-induced immunity in shaping viral evolution could thus be hypothesized. Accordingly, several sites of the Hexon, especially those targeted by the host response were proven under a significant pervasive or episodic diversifying selection. The present study results demonstrate the role of intensive poultry production and market globalization in the rise of FAdV. The applied control strategies, on the other hand, were effective in limiting viral circulation and shaping its evolution.

15.
Microbiol Spectr ; 11(6): e0246223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37966208

ABSTRACT

IMPORTANCE: Epidemiological data reveal that FAdV-4 and FAdV-8a are the dominant serotypes of FAdVs in the poultry industry in China. Although three commercial inactivated vaccines against FAdV-4 have been licensed in China, the bivalent vaccine against both FAdV-4 and FAdV-8a is not available. Here, we used CRISPR-Cas9 and Cre-LoxP system to generate a recombinant virus FAdV4-F/8a-rF2 expressing the Fiber of FAdV-8a. Notably, FAdV4-F/8a-rF2 was highly attenuated and could provide efficient protection against both FAdV-4 and FAdV-8a in the chicken infection model, highlighting the applaudable application of FAdV4-F/8a-rF2 as a novel live-attenuated bivalent vaccine against the diseases caused by the infection of FAdV-4 and FAdV-8a.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Animals , Serogroup , Adenoviridae Infections/prevention & control , Adenoviridae Infections/veterinary , Aviadenovirus/genetics , Chickens , Vaccines, Combined
16.
Microorganisms ; 11(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38004643

ABSTRACT

Fowl adenovirus-induced hepatitis-pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular epidemiology of fowl adenovirus serotype 4 (FAdV-4) has been well studied in commercial broiler and layer chickens, the prevalence and genetic characteristics of FAdV-4 in indigenous chickens remain largely unknown. In this study, samples were collected from six indigenous chicken breeds in Yunnan province, China. FAdV-positive samples were identified in five of the six indigenous chicken populations via PCR and 10 isolates were obtained. All FAdVs belonged to serotype FAdV-4 and species FAdV-C. The hexon, fiber, and penton gene sequence comparison analysis demonstrated that the prevalence of FAdV-4 isolates in these chickens might have originated from other provinces that exported chicks and poultry products to Yunnan province. Moreover, several distinct amino acid mutations were firstly identified in the major structural proteins. Our findings highlighted the need to decrease inter-regional movements of live poultry to protect indigenous chicken genetic resources and that the immune traits of these indigenous chickens might result in new mutations of FAdV-4 strains.

17.
Viruses ; 15(10)2023 10 10.
Article in English | MEDLINE | ID: mdl-37896849

ABSTRACT

Single or mixed infections of multiple pathogens such as avian hepatitis E virus (aHEV) and avian leukosis virus subgroup J (ALV-J) have been detected in numerous laying hens with severe liver injury in China. Thus, aHEV and immunosuppressive viruses are speculated to cause co-infections. In this study, co-infection with aHEV and fowl adenovirus (FAdV) was confirmed by nested RT-PCR and recombinase-aided amplification combined with gene sequencing in two flocks with severe liver injury. Subsequently, the two reference strains, aHEV and FAdV-4, were inoculated into LMH cells to identify their co-infection potential. Confocal microscopy revealed aHEV and FAdV-4 co-infected LMH cells. In addition, the replication dynamics of aHEV and FAdV-4 along with the expression levels of immuno-cytokines were measured. The results indicated colocalization of aHEV and FAdV-4 and inhibition of viral replication in LMH cells. The transcription levels of MDA5, Mx, OASL, and IFN-α were significantly upregulated in LMH cells, whereas those of immune-related factors induced by FAdV-4 were downregulated upon FAdV-4 and aHEV co-infection. These results confirmed the co-infection of aHEV and FAdV-4 in vitro and prompted the antagonistic pathogenic effects of FAdV-4 and aHEV, thereby providing novel insights into the counterbalancing effects of these viruses.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Coinfection , Hepevirus , Poultry Diseases , Animals , Female , Chickens , Adenoviridae Infections/veterinary , Cytokines , Adenoviridae/genetics , Cell Proliferation
18.
Viruses ; 15(8)2023 07 29.
Article in English | MEDLINE | ID: mdl-37631996

ABSTRACT

Fowl adenoviruses (FAdVs) are distributed worldwide in poultry and incriminated as the etiological agents for several health problems in fowls, and are capable of crossing species barriers between domestic and wild fowls. An FAdV strain was, for the first time, isolated from black-necked crane in this study, and was designated as serotype 4 Fowl aviadenovirus C (abbreviated as BNC2021) according to the phylogenetic analysis of its DNA polymerase and hexon gene. The viral genomic sequence analysis demonstrated that the isolate possessed the ORF deletions that are present in FAdV4 strains circulating in poultry fowls in China and the amino acid mutations associated with viral pathogenicity in the hexon and fiber 2 proteins. A viral challenge experiment with mallard ducks demonstrated systemic viral infection and horizontal transmission. BNC2021 induced the typical clinical signs of hepatitis-hydropericardium syndrome (HHS) with swelling and inflammation in multiple organs and showed significant viral replication in all eight organs tested in the virus-inoculated ducks and their contactees at 6 dpi. The findings highlight the importance of surveillance of FAdVs in wild birds.


Subject(s)
Aviadenovirus , Sepsis , Animals , Phylogeny , Serogroup , Genomics , Birds , Ducks , Hexamethonium
19.
Viruses ; 15(8)2023 07 29.
Article in English | MEDLINE | ID: mdl-37632000

ABSTRACT

Adenovirus vectors possess a good safety profile, an extensive genome, a range of host cells, high viral yield, and the ability to elicit broad humoral and cellular immune responses. Adenovirus vectors are widely used in infectious disease research for future vaccine development and gene therapy. In this study, we obtained a fowl adenovirus serotype 4 (FAdV-4) isolate from sick chickens with hepatitis-hydropericardium syndrome (HHS) and conducted animal regression text to clarify biological pathology. We amplified the transfer vector and extracted viral genomic DNA from infected LMH cells, then recombined the mixtures via the Gibson assembly method in vitro and electroporated them into EZ10 competent cells to construct the FAdV-4 infectious clone. The infectious clones were successfully rescued in LMH cells within 15 days of transfection. The typical cytopathic effect (CPE) and propagation titer of FAdV-4 infectious clones were also similar to those for wild-type FAdV-4. To further construct the single-cycle adenovirus (SC-Ad) vector, we constructed SC-Ad vectors by deleting the gene for IIIa capsid cement protein. The FAdV4 infectious clone vector was introduced into the ccdB cm expression cassette to replace the IIIa gene using a λ-red homologous recombination technique, and then the ccdB cm expression cassette was excised by PmeI digestion and self-ligation to obtain the resulting plasmids as SC-Ad vectors.


Subject(s)
Communicable Diseases , Hepatitis A , Animals , Chickens , Serogroup , Adenoviridae/genetics , Capsid Proteins , DNA, Viral
20.
Avian Pathol ; 52(4): 277-282, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37416969

ABSTRACT

Inclusion body hepatitis (IBH) is a metabolic disease affecting chickens, associated with different serotypes of fowl adenovirus (FAdV). Experimentally tested vaccines against IBH include several capsid-based subunit vaccines, but not the penton base protein. In the present study, specific pathogen-free chickens were vaccinated with recombinant penton base expressed from each of two different FAdV serotypes (FAdV-7 and FAdV-8b), followed by challenge with a virulent IBH-causing strain. No protection was observed with either vaccine, possibly due to the low immunogenicity of each protein and their inability to induce neutralizing antibodies in the host.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Hepatitis , Poultry Diseases , Animals , Chickens , Adenoviridae Infections/prevention & control , Adenoviridae Infections/veterinary , Vaccines, Synthetic , Inclusion Bodies , Vaccination/veterinary , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL
...