Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 946
Filter
1.
J Environ Sci (China) ; 150: 78-90, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306442

ABSTRACT

The migration and transformation of hexavalent chromium (Cr(VI)) in the environment are regulated by pyrite (FeS2). However, variations in pyrite crystal facets influence the adsorption behavior and electron transfer between pyrite and Cr(VI), thereby impacting the Cr(VI) reduction performance. Herein, two naturally common facets of pyrite were synthesized hydrothermally to investigate the facet-dependent mechanisms of Cr(VI) reduction. The experimental results revealed that the {111} facet exhibited approximately 1.30-1.50 times higher efficiency in Cr(VI) reduction compared to the {100} facet. Surface analyses and electrochemical results indicated that {111} facet displayed a higher iron-sulfur oxidation level, which was affected by its superior electrochemical properties during the reaction with Cr(VI). Density functional theory (DFT) calculations demonstrated that the narrower band gap and lower work function on {111} facet were more favorable for the electron transfer between Fe(II) and Cr(VI). Furthermore, different adsorption configurations were observed on {100} and {111} surfaces due to the unique arrangements of Fe and S atoms. Specifically, O atoms in Cr2O72- directly bound with the S sites on {100} but the Fe sites on {111}. According to the density of states (DOS), the Fe site had better reactivity than the S site in the reaction, which appeared to be related to the fracture of S-S bonds. Additionally, the adsorption configuration of Cr2O72- on {111} surface showed a stronger adsorption energy and a more stable coordination mode, favoring subsequent Cr(VI) reduction process. These findings provide an in-depth analysis of facet-dependent mechanisms underlying Cr(VI) reduction behavior, offering new insights into studying environmental interactions between heavy metals and natural minerals.


Subject(s)
Chromium , Iron , Oxidation-Reduction , Sulfides , Chromium/chemistry , Iron/chemistry , Sulfides/chemistry , Models, Chemical , Adsorption
2.
J Nucl Med ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39362758

ABSTRACT

The clinical impact of 16α-18F-fluoro-17ß-estradiol (18F-FES) PET/CT on patient management has not been well investigated. The aim of this study was to assess the clinical impact of 18F-FES PET/CT on the management of patients with recurrent or metastatic breast cancer. Methods: Study subjects were identified retrospectively from a database of a prospective trial for postmarketing surveillance of 18F-FES between 2021 and 2023. Patients who were suspected or known to have recurrent or metastatic estrogen receptor-positive breast cancer based on a routine standard workup were included. Planned management before and actual management after 18F-FES PET/CT were assessed by 2 experienced medical oncologists via medical chart review. A 5-point questionnaire was provided to evaluate the value of 18F-FES PET/CT for management planning. The rate of intention-to-treat and interdisciplinary changes, and the impact of 18F-FES PET/CT according to PET/CT result or clinical indication, were examined. Results: Of the 344 included patients, 120 (35%) experienced a change in management after 18F-FES PET/CT. In 139 (40%) patients,18F-FES PET/CT supported the existing management decision without a change in management. Intention-to-treat and interdisciplinary changes accounted for 64% (77/120) and 68% (82/120) of all changes, respectively. A higher rate of change was observed when lesions were 18F-FES-negative (44% [36/81]) than 18F-FES-positive (30% [51/172]) or mixed 18F-FES-positive/negative (36% [33/91]). Regarding clinical indications, the highest rate of change was shown when evaluating the origins of metastasis of double primary cancers (64% [9/14]). Conclusion: 18F-FES PET/CT modified the management of recurrent or metastatic breast cancer, serving as an impactful imaging modality in clinical practice.

3.
Molecules ; 29(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275116

ABSTRACT

Photocatalytic H2 evolution technology is regarded as a promising and green route for the urgent requirement of efficient H2 production. At present, low efficiency is a major bottleneck that limits the practical application of photocatalytic H2 evolution. The construction of high-activity photocatalysts is highly crucial for achieving advanced hydrogen generation. Herein, a new S-scheme FeS2@ZnIn2S4 (FeS2@ZIS) heterostructure as the photocatalyst was developed for enhanced photocatalytic H2 evolution. Density function theory (DFT) calculation results strongly demonstrated that FeS2@ZIS generates a giant interface electric field (IEF), thus promoting the separation efficiency of photogenerated charge carriers for efficient visible-light-driven hydrogen evolution. At optimal conditions, the H2 production rate of the 8%FeS2@ZIS is 5.3 and 3.6 times higher than that of the pure FeS2 and ZIS, respectively. The experimental results further indicate that the close contact between FeS2 and ZIS promotes the formation of the S-scheme heterojunction, where the interfacial charge transfer achieves spatial separation of charge carriers. This further broadens the light absorption range of the FeS2@ZIS and improves the utilization rate of photogenerated charge carriers. This work thus offers new insights that the FeS2-based co-catalyst can enrich the research on S-scheme heterojunction photocatalysts and improve the transfer and separation efficiency of photogenerated carriers for photocatalytic hydrogen production.

4.
Curr Issues Mol Biol ; 46(9): 9659-9673, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39329926

ABSTRACT

Ferredoxins are proteins found in all biological kingdoms and are involved in essential biological processes including photosynthesis, lipid metabolism, and biogeochemical cycles. Ferredoxins are classified into different groups based on the iron-sulfur (Fe-S) clusters that they contain. A new subtype classification and nomenclature system, based on the spacing between amino acids in the Fe-S binding motif, has been proposed in order to better understand ferredoxins' biological diversity and evolutionary linkage across different organisms. This new classification system has revealed an unparalleled diversity between ferredoxins and has helped identify evolutionarily linked ferredoxins between species. The current review provides the latest insights into ferredoxin functions and evolution, and the new subtype classification, outlining their potential biotechnological applications and the future challenges in streamlining the process.

5.
Small ; : e2404917, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324285

ABSTRACT

Lithium-sulfur (Li-S) battery is a potential next-generation energy storage technology over lithium-ion batteries for high capacity, cost-effective, and environmentally friendly solutions. However, several issues including polysulfides shuttle, low conductivity and limited rate-capability have hampered its practical application. Herein, a new class of cathode active material with perfect core-shell structure is reported, in which sulfur is fully encapsulated by conductivity-enhancing FeS2 (named as S@FeS2), for high-rate application. Surface-stabilized S@FeS2 cathode exhibits a stable cycling performance under 2 - 20 times higher rates (1-2 C, charged in 30-60 min) than standard rates (e.g., 0.1-0.5 C, charged in 2-10 h), without polysulfides shuttle event. Surface analysis results reveal the unprecedented formation of a stable solid electrolyte interphase (SEI) layer on S@FeS2 cathode, which is distinguished from other sulfur-based cathodes that are not able to form the SEI layer. The data suggest that the prevention of polysulfides shuttling is owing to the surface protection effect of FeS2 shell and the SEI layer formation overlying core-shell S@FeS2. This unique and potential material concept proposed in the present study will give insight into designing a prospective fast charging Li-S battery.

6.
J Colloid Interface Sci ; 678(Pt C): 242-250, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39298975

ABSTRACT

Cost-effective iron sulfides (FeS2) hold great potential as high-performance catalysts for NO2- electroreduction to NH3 (NO2ER), which is hindered by the weak NO2 activation. Herein, the design of nonmetal-doped FeS2 electrocatalysts was initially conducted by density functional theory (DFT) computations. We found that doping with different nonmetal atoms effectively not only regulates the electronic structures of the d-electrons of Fe atoms but also creates the unique p-d hybridized dual active sites, thereby boosting the efficient NO2 activation. Owing to the optimal NO2 adsorption strength, N-doped FeS2 demonstrates a low limiting potential for the NO2--to-NH3 conversion, thus significantly improving NO2ER activity. Direct experimental evidence was provided afterward: an NH3 yield rate of 424.5 µmol/hcm-2 with a 92.4 % Faradaic efficiency was achieved. Our findings not only suggest a promising NO2ER catalyst through theoretical computations to guide experiments but also provide a comprehensive understanding of the structure-properties relationship.

7.
J Contam Hydrol ; 267: 104419, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39270599

ABSTRACT

The catalytic performance of nano-FeS2 in the sonoelectrochemical activation of peroxymonosulfate (PMS) and ozone to remove aspirin (ASP) was studied for the first time. The crystal structure and Fe bonds in the catalyst were confirmed through XRD and FTIR analysis. Within 30 min, ASP (TOC) was removed by 99.2 % (81.6 %) and 98.6 % (77.4 %) in nano-FeS2/PMS and nano-FeS2/O3 sonoelectrochemical systems, respectively. Water anions, especially (almost 50 %), had an inhibitory effect on ASP removal. The probes confirmed that SO4•-and HO• were the key to ASP degradation in nano-FeS2/PMS and nano-FeS2/O3 systems, respectively. The effective activation of oxidants due to the ideal distribution of Fe2+ by catalyst was the main mechanism of ASP removal, in which electric current (EC) and ultrasound (US) played a crucial role through the recycling of Fe ions, dissolution and cleaning of the catalyst. LC-MS analysis identified thirteen byproducts in the ASP degradation pathways. The energy consumption of the proposed sonoelectrochemical systems was lower than previous similar systems. This study presented economic and sustainable hybrid systems for pharmaceutical wastewater remediation.

8.
Mitochondrion ; 79: 101955, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251117

ABSTRACT

Mitochondria perform vital biosynthetic processes, including fatty acid synthesis and iron-sulfur (FeS) cluster biogenesis. In Saccharomyces cerevisiae mitochondria, the acyl carrier protein Acp1 participates in type II fatty acid synthesis, requiring a 4-phosphopantetheine (PP) prosthetic group. Acp1 also interacts with the mitochondrial FeS cluster assembly complex that contains the cysteine desulfurase Nfs1. Here we investigated the role of Acp1 in FeS cluster biogenesis in mitochondria and cytoplasm. In the Acp1-depleted (Acp1↓) cells, biogenesis of mitochondrial FeS proteins was impaired, likely due to greatly reduced Nfs1 protein and/or its persulfide-forming activity. Formation of cytoplasmic FeS proteins was also deficient, suggesting a disruption in generating the (Fe-S)int intermediate, that is exported from mitochondria and is subsequently utilized for cytoplasmic FeS cluster assembly. Iron homeostasis was perturbed, with enhanced iron uptake into the cells and accumulation of iron in mitochondria. The Δppt2 strain, lacking the mitochondrial ability to add PP to Acp1, phenocopied the Acp1↓ cells. These data suggest that the holo form of Acp1 with the PP-conjugated acyl chain is required for stability of the Nfs1 protein and/or stimulation of its persulfide-forming activity. Thus, mitochondria lacking Acp1 (or Ppt2) cannot support FeS cluster biogenesis in mitochondria or cytoplasm, leading to disrupted iron homeostasis.

9.
J Neuroeng Rehabil ; 21(1): 153, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232831

ABSTRACT

BACKGROUND: To overcome the application limitations of functional electrical stimulation (FES), such as fatigue or nonlinear muscle response, the combination of neuroprosthetic systems with robotic devices has been evaluated, resulting in hybrid systems that have promising potential. However, current technology shows a lack of flexibility to adapt to the needs of any application, context or individual. The main objective of this study is the development of a new modular neuroprosthetic system suitable for hybrid FES-robot applications to meet these needs. METHODS: In this study, we conducted an analysis of the requirements for developing hybrid FES-robot systems and reviewed existing literature on similar systems. Building upon these insights, we developed a novel modular neuroprosthetic system tailored for hybrid applications. The system was specifically adapted for gait assistance, and a technological personalization process based on clinical criteria was devised. This process was used to generate different system configurations adjusted to four individuals with spinal cord injury or stroke. The effect of each system configuration on gait kinematic metrics was analyzed by using repeated measures ANOVA or Friedman's test. RESULTS: A modular NP system has been developed that is distinguished by its flexibility, scalability and personalization capabilities. With excellent connection characteristics, it can be effectively integrated with robotic devices. Its 3D design facilitates fitting both as a stand-alone system and in combination with other robotic devices. In addition, it meets rigorous requirements for safe use by incorporating appropriate safety protocols, and features appropriate battery autonomy, weight and dimensions. Different technological configurations adapted to the needs of each patient were obtained, which demonstrated an impact on the kinematic gait pattern comparable to that of other devices reported in the literature. CONCLUSIONS: The system met the identified technical requirements, showcasing advancements compared to systems reported in the literature. In addition, it demonstrated its versatility and capacity to be combined with robotic devices forming hybrids, adapting well to the gait application. Moreover, the personalization procedure proved to be useful in obtaining various system configurations tailored to the diverse needs of individuals.


Subject(s)
Robotics , Spinal Cord Injuries , Humans , Robotics/instrumentation , Robotics/methods , Spinal Cord Injuries/rehabilitation , Male , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Biomechanical Phenomena , Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods , Gait/physiology , Middle Aged , Female , Adult , Neural Prostheses , Prosthesis Design/methods
10.
J Environ Manage ; 368: 122165, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128351

ABSTRACT

Efficient recovery of valuable metals from copper smelting slag (CSS) can not only alleviate the pressure from resource scarcity, but also has important practical significance for the realization of green and sustainable production in the copper smelting industry. In this paper, a composite medium of FeS-O2 is used as a synergistic modifier to transform the solid-state valuable metals in CSS into leachable state of sulphates, and achieves efficient and comprehensive recovery of zinc and copper through neutral leaching. XRD, FTIR, XPS, etc and comparative analysis methods are used to deeply analyze the characteristics of occurrence phase and transformation rules of valuable metal in CSS, roasted slag and leached slag. The results show under the optimal roasting conditions of TRoasting = 650 °C, M(copper slag): M(FeS) = 1:1, V(O2): V(Ar) = 1:6 and tHolding = 90 min, the recovery rate for zinc is approximately 95.1 %, and that for copper is 99.3 %, almost all of which is recovered. These findings provide a new method and process foundation and theoretical support for the efficient resource utilization of CSS.


Subject(s)
Copper , Zinc , Copper/chemistry , Zinc/chemistry
11.
Chemosphere ; 364: 143021, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111676

ABSTRACT

Molybdenum disulfide (MoS2) is heralded as an exemplary two-dimensional (2D) functional material, largely attributed to its distinctive layered structure. Upon forming heterojunctions with reducing species, MoS2 displays remarkable photocatalytic properties. In this research, we fabricated a novel heterojunction photocatalyst, FeS/MoS2-0.05, through the integration of FeS with hollow MoS2. This composite aims at the efficient photocatalytic reduction of hexavalent chromium (Cr(VI)). A comprehensive array of characterization techniques unveiled that MoS2 flakes, dispersed on FeS, provide numerous active sites for photocatalysis at the heterojunction interface. The inclusion of FeS seemingly promotes the formation of sulfur vacancies on MoS2. Consequently, this heterojunction catalyst exhibits photocatalytic activity surpassing pristine MoS2 by a factor of 3.77. The augmented activity of the FeS/MoS2-0.05 catalyst is attributed chiefly to an internal electric field at the interface. This field enhances the facilitation of charge transfer and separation significantly. Density functional theory (DFT) calculations, coupled with experimental analyses, corroborate this observation. Additionally, DFT calculations indicate that sulfur vacancies act as pivotal sites for Cr(VI) adsorption. Significantly, the adsorption energy of Cr(VI) species shows enhanced favorability under acidic conditions. Our results suggest that the FeS/MoS2-0.05 heterojunction photocatalyst presents substantial potential for the remediation of Cr(VI)-contaminated wastewater.


Subject(s)
Chromium , Disulfides , Molybdenum , Sulfur , Molybdenum/chemistry , Chromium/chemistry , Disulfides/chemistry , Catalysis , Sulfur/chemistry , Adsorption , Photochemical Processes , Water Pollutants, Chemical/chemistry
12.
J Hazard Mater ; 479: 135692, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39213775

ABSTRACT

Low H2O2 production, narrow adaptive pH range and slow Fe(II) regeneration on the cathode still limit efficiency of electro-Fenton (EF) and its application. Herein, we designed a bifunctional catalyst with FeS and Fe3O4 nanoparticles dispersed on porous carbon (CFeS@C) using template of sodium alginate (SA)/FeSO4 hydrogel mixed with carbon black (CB), which presented high H2O2 generation efficiency and outstanding tetracycline degradation efficiency under wide pH ranges (3-8) with a low energy consumption of 19.6 kWh/kg total organic carbon (TOC). The introduction of CB created abundant oxygen vacancies in CFeS@C, promoting the oxygen adsorption and the electrochemical generation of H2O2, which further boosted the formation of •OH due to the interaction with Fe2+ on the cathode surface. Simultaneously, the reaction between the outer layer of FeS and Fe3+ not only accelerated iron cycling but also reduced the solution pH. It was verified that •OH and 1O2 played a dominant role in organics degradation. The system maintained stability after 10 cycles and effectiveness in the treatment of pharmaceutical wastewater. This study would offer a new strategy to develop an efficient and durable bifunctional catalyst for heterogeneous EF system working in wide pH conditions for wastewater treatment.

13.
Microbiol Spectr ; 12(10): e0388823, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39162503

ABSTRACT

Staphylococcus aureus is a major contributor to bacterial-associated mortality, owing to its exceptional adaptability across diverse environments. Iron is vital to most organisms but can be toxic in excess. To manage its intracellular iron, S. aureus, like many pathogens, employs intricate systems. We have recently identified IsrR as a key regulatory RNA induced during iron starvation. Its role is to reduce the synthesis of non-essential iron-containing proteins under iron-depleted conditions. In this study, we unveil IsrR's regulatory action on MiaB, an enzyme responsible for methylthio group addition to specific sites on transfer RNAs (tRNAs). We use predictive tools and reporter fusion assays to demonstrate IsrR's binding to the Shine-Dalgarno sequence of miaB RNA, thereby impeding its translation. The effectiveness of IsrR hinges on the integrity of a specific C-rich region. As MiaB is non-essential and has iron-sulfur clusters, IsrR induction spares iron by downregulating miaB. This may improve S. aureus fitness and aid in navigating the host's nutritional immune defenses.IMPORTANCEIn many biotopes, including those found within an infected host, bacteria confront the challenge of iron deficiency. They employ various strategies to adapt to this scarcity of nutrients, one of which involves regulating iron-containing proteins through the action of small regulatory RNAs. Our study shows how IsrR, a small RNA from S. aureus, prevents the production of MiaB, a tRNA-modifying enzyme containing iron-sulfur clusters. With this illustration, we propose a new substrate for an iron-sparing small RNA, which, when downregulated, should reduce the need for iron and save it to essential functions.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , RNA, Bacterial , Staphylococcus aureus , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Staphylococcus aureus/enzymology , Iron/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Down-Regulation
14.
J Biol Chem ; 300(9): 107641, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39122000

ABSTRACT

Fe-S clusters are critical cofactors for redox chemistry in all organisms. The cysteine desulfurase, SufS, provides sulfur in the SUF Fe-S cluster bioassembly pathway. SufS is a dimeric, pyridoxal 5'-phosphate-dependent enzyme that uses cysteine as a substrate to generate alanine and a covalent persulfide on an active site cysteine residue. SufS enzymes are activated by an accessory transpersulfurase protein, either SufE or SufU depending on the organism, which accepts the persulfide product and delivers it to downstream partners for Fe-S assembly. Here, using Escherichia coli proteins, we present the first X-ray crystal structure of a SufS/SufE complex. There is a 1:1 stoichiometry with each monomeric unit of the EcSufS dimer bound to one EcSufE subunit, though one EcSufE is rotated ∼7° closer to the EcSufS active site. EcSufE makes clear interactions with the α16 helix of EcSufS and site-directed mutants of several α16 residues were deficient in EcSufE binding. Analysis of the EcSufE structure showed a loss of electron density at the EcSufS/EcSufE interface for a flexible loop containing the highly conserved residue R119. An R119A EcSufE variant binds EcSufS but is not active in cysteine desulfurase assays and fails to support Fe-S cluster bioassembly in vivo. 35S-transfer assays suggest that R119A EcSufE can receive a persulfide, suggesting the residue may function in a release mechanism. The structure of the EcSufS/EcSufE complex allows for comparison with other cysteine desulfurases to understand mechanisms of protected persulfide transfer across protein interfaces.


Subject(s)
Carbon-Sulfur Lyases , Escherichia coli Proteins , Escherichia coli , Iron-Sulfur Proteins , Sulfides , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Sulfides/chemistry , Sulfides/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Crystallography, X-Ray , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Catalytic Domain , Models, Molecular
15.
Redox Biol ; 75: 103285, 2024 09.
Article in English | MEDLINE | ID: mdl-39128229

ABSTRACT

The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (•NO) and superoxide (O2•-) produced by phagocytes contributes to its success as a human pathogen. Recombination of •NO and O2•- generates peroxynitrite (ONOO-), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward •NO and O2•- is well established, how Mtb responds to ONOO- remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both •NO and O2•-, which should combine to produce ONOO-. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO- levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO-. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe-4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe-4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe-S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO- in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO- and targeting Fe-S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).


Subject(s)
Energy Metabolism , Homeostasis , Iron-Sulfur Proteins , Mycobacterium tuberculosis , Oxidation-Reduction , Peroxynitrous Acid , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Peroxynitrous Acid/metabolism , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Humans , Nitric Oxide/metabolism , Oxidative Stress , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/drug effects , Superoxides/metabolism , Macrophages/metabolism , Macrophages/microbiology , Tuberculosis/microbiology , Tuberculosis/metabolism
16.
Cancers (Basel) ; 16(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39123481

ABSTRACT

Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.

17.
Small ; : e2403576, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183525

ABSTRACT

Lithium-sulfur batteries have emerged as a promising energy storage device due to ultra-high theoretical capacity, but the slow kinetics of sulfur and polysulfide shuttle hinder the batteries' further development. Here, the 10% cobalt-doped pyrite iron disulfide electrocatalyst deposited on acetylene black as a separator coating in lithium-sulfur batteries is reported. The adsorption rate to the intermediate Li2S6 is significantly improved while surface oxidation of FeS2 is inhibited: iron oxide and sulfate, thus avoiding FeS2 electrocatalyst deactivation. The electrocatalytic activity has been evaluated in terms of electronic resistivity, lithium-ion diffusion, liquid-liquid, and liquid-solid conversion kinetics. The coin batteries exhibit ultra-long cycle life at 1 C with an initial capacity of 854.7 mAh g-1 and maintained at 440.8 mAh g-1 after 920 cycles. Furthermore, the separator is applied to a laminated pouch battery with a sulfur mass of 326 mg (3.7 mg cm-2) and retained the capacity of 590 mAh g-1 at 0.1 C after 50 cycles. This work demonstrates that FeS2 electrocatalytic activity can be improved when Co-doped FeS2 suppresses surface oxidation and provides a reference for low-cost separator coating design in pouch batteries.

18.
ACS Appl Mater Interfaces ; 16(32): 42189-42197, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093830

ABSTRACT

Pure sulfur (S8 and Li2S) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation-anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm-2 attaining areal capacities of ∼4 mAh cm-2 are demonstrated with the possibility to further increase the active mass loading above 10 mg cm-2 achieving cathode areal capacities above 6 mAh cm-2, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand FeS:Li2S cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.

19.
Sci Rep ; 14(1): 18700, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134592

ABSTRACT

Functional electrical stimulation (FES) can support functional restoration of a paretic limb post-stroke. Hebbian plasticity depends on temporally coinciding pre- and post-synaptic activity. A tight temporal relationship between motor cortical (MC) activity associated with attempted movement and FES-generated visuo-proprioceptive feedback is hypothesized to enhance motor recovery. Using a brain-computer interface (BCI) to classify MC spectral power in electroencephalographic (EEG) signals to trigger FES-delivery with detection of movement attempts improved motor outcomes in chronic stroke patients. We hypothesized that heightened neural plasticity earlier post-stroke would further enhance corticomuscular functional connectivity and motor recovery. We compared subcortical non-dominant hemisphere stroke patients in BCI-FES and Random-FES (FES temporally independent of MC movement attempt detection) groups. The primary outcome measure was the Fugl-Meyer Assessment, Upper Extremity (FMA-UE). We recorded high-density EEG and transcranial magnetic stimulation-induced motor evoked potentials before and after treatment. The BCI group showed greater: FMA-UE improvement; motor evoked potential amplitude; beta oscillatory power and long-range temporal correlation reduction over contralateral MC; and corticomuscular coherence with contralateral MC. These changes are consistent with enhanced post-stroke motor improvement when movement is synchronized with MC activity reflecting attempted movement.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Evoked Potentials, Motor , Motor Cortex , Neuronal Plasticity , Recovery of Function , Stroke Rehabilitation , Stroke , Transcranial Magnetic Stimulation , Humans , Male , Female , Stroke Rehabilitation/methods , Middle Aged , Stroke/physiopathology , Stroke/complications , Aged , Motor Cortex/physiopathology , Transcranial Magnetic Stimulation/methods
20.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119811, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128597

ABSTRACT

Iron­sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.

SELECTION OF CITATIONS
SEARCH DETAIL