Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Mater Today Bio ; 18: 100522, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36593913

ABSTRACT

Extracellular vesicles (EVs) are a collective term for nanoscale or microscale vesicles secreted by cells that play important biological roles. Mesenchymal stem cells are a class of cells with the potential for self-healing and multidirectional differentiation. In recent years, numerous studies have shown that EVs, especially those secreted by mesenchymal stem cells, can promote the repair and regeneration of various tissues and, thus, have significant potential in regenerative medicine. However, due to the rapid clearance capacity of the circulatory system, EVs are barely able to act persistently at specific sites for repair of target tissues. Hydrogels have good biocompatibility and loose and porous structural properties that allow them to serve as EV carriers, thereby prolonging the retention in certain specific areas and slowing the release of EVs. When EVs are needed to function at specific sites, the EV-loaded hydrogels can stand as an excellent approach. In this review, we first introduce the sources, roles, and extraction and characterization methods of EVs and describe their current application status. We then review the different types of hydrogels and discuss factors influencing their abilities to carry and release EVs. We summarize several strategies for loading EVs into hydrogels and characterizing EV-loaded hydrogels. Furthermore, we discuss application strategies for EV-loaded hydrogels and review their specific applications in tissue regeneration and repair. This article concludes with a summary of the current state of research on EV-loaded hydrogels and an outlook on future research directions, which we hope will provide promising ideas for researchers.

2.
J Clin Exp Hepatol ; 13(1): 103-115, 2023.
Article in English | MEDLINE | ID: mdl-36647419

ABSTRACT

Alcohol-associated hepatitis (AH) is a clinical syndrome of jaundice, abdominal pain, and anorexia due to prolonged heavy alcohol intake. AH is associated with changes in gene expression, cytokines, immune response, and the gut microbiome. There are limited biomarkers to diagnose and prognosticate in AH, but several non-invasive biomarkers are emerging. In this review, clinical risk-stratifying algorithms, promising AH biomarkers like cytokeratin-18 fragments, genetic polymorphisms, and microRNAs will be reviewed.

4.
Regen Ther ; 21: 527-539, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36382136

ABSTRACT

Hair loss, or alopecia, is associated with several psychosocial and medical comorbidities, and it remains an economic burden to individuals and the society. Alopecia is attributable to varied mechanisms and features a multifactorial predisposition, and the available conventional medical interventions have several limitations. Thus, several therapeutic strategies for alopecia in regenerative medicine are currently being explored, with increasing evidence suggesting that mesenchymal stem cell (MSC) implantation, MSC-derived secretome treatment, and blood-derived platelet-rich plasma therapies are potential treatment options. In this review, we searched the Cochrane Library, MEDLINE (PubMed), EMBASE, and Scopus using various combinations of terms, such as "stem cell," "alopecia," "hair loss," "Androgenetic alopecia," "male-pattern hair loss," "female-pattern hair loss," "regenerative hair growth," "cell therapy," "mesenchymal stem cells," "MSC-derived extracellular vesicles," "MSC-derived exosomes," and "platelet-rich plasma" and summarized the most promising regenerative treatments for alopecia. Moreover, further opportunities of improving efficacy and innovative strategies for promoting clinical application were discussed.

5.
Matrix Biol Plus ; 16: 100121, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36160687

ABSTRACT

The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.

6.
JHEP Rep ; 4(8): 100524, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35845296

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is reaching epidemic proportions, with a global prevalence of 25% in the adult population. Non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, has become the leading indication for liver transplantation in both Europe and the USA. Liver fibrosis is the consequence of sustained, iterative liver injury, and the main determinant of outcomes in NASH. The liver possesses remarkable inherent plasticity, and liver fibrosis can regress when the injurious agent is removed, thus providing opportunities to alter long-term outcomes through therapeutic interventions. Although hepatocyte injury is a key driver of NASH, multiple other cell lineages within the hepatic fibrotic niche play major roles in the perpetuation of inflammation, mesenchymal cell activation, extracellular matrix accumulation as well as fibrosis resolution. The constituents of this cellular interactome, and how the various subpopulations within the fibrotic niche interact to drive fibrogenesis is an area of active research. Important cellular components of the fibrotic niche include endothelial cells, macrophages, passaging immune cell populations and myofibroblasts. In this review, we will describe how rapidly evolving technologies such as single-cell genomics, spatial transcriptomics and single-cell ligand-receptor analyses are transforming our understanding of the cellular interactome in NAFLD/NASH, and how this new, high-resolution information is being leveraged to develop rational new therapies for patients with NASH.

7.
Acta Pharm Sin B ; 12(5): 2129-2149, 2022 May.
Article in English | MEDLINE | ID: mdl-35646540

ABSTRACT

Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.

8.
Regen Ther ; 20: 165-186, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35620640

ABSTRACT

Introduction: Efficient induction of the otic placode, the developmental origin of the inner ear from human pluripotent stem cells (hPSCs), provides a robust platform for otic development and sensorineural hearing loss modelling. Nevertheless, there remains a limited capacity of otic lineage specification from hPSCs by stepwise differentiation methods, since the critical factors for successful otic cell differentiation have not been thoroughly investigated. In this study, we developed a novel differentiation system involving the use of a three-dimensional (3D) floating culture with signalling factors for generating otic cell lineages via stepwise differentiation of hPSCs. Methods: We differentiated hPSCs into preplacodal cells under a two-dimensional (2D) monolayer culture. Then, we transferred the induced preplacodal cells into a 3D floating culture under the control of the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), retinoic acid (RA) and WNT signalling pathways. We evaluated the characteristics of the induced cells using immunocytochemistry, quantitative PCR (qPCR), population averaging, and single-cell RNA-seq (RNA-seq) analysis. We further investigated the methods for differentiating otic progenitors towards hair cells by overexpression of defined transcription factors. Results: We demonstrated that hPSC-derived preplacodal cells acquired the potential to differentiate into posterior placodal cells in 3D floating culture with FGF2 and RA. Subsequent activation of WNT signalling induced otic placodal cell formation. By single-cell RNA-seq (scRNA-seq) analysis, we identified multiple clusters of otic placode- and otocyst marker-positive cells in the induced spheres. Moreover, the induced otic cells showed the potential to generate hair cell-like cells by overexpression of the transcription factors ATOH1, POU4F3 and GFI1. Conclusions: We demonstrated the critical role of FGF2, RA and WNT signalling in a 3D environment for the in vitro differentiation of otic lineage cells from hPSCs. The induced otic cells had the capacity to differentiate into inner ear hair cells with stereociliary bundles and tip link-like structures. The protocol will be useful for in vitro disease modelling of sensorineural hearing loss and human inner ear development and thus contribute to drug screening and stem cell-based regenerative medicine.

9.
JHEP Rep ; 4(5): 100463, 2022 May.
Article in English | MEDLINE | ID: mdl-35462858

ABSTRACT

Background & Aims: Organic solute transporter (OST) subunits OSTα and OSTß facilitate bile acid efflux from the enterocyte into the portal circulation. Patients with deficiency of OSTα or OSTß display considerable variation in the level of bile acid malabsorption, chronic diarrhea, and signs of cholestasis. Herein, we generated and characterized a mouse model of OSTß deficiency. Methods: Ostß -/- mice were generated using CRISR/Cas9 and compared to wild-type and Ostα -/- mice. OSTß was re-expressed in livers of Ostß -/- mice using adeno-associated virus serotype 8 vectors. Cholestasis was induced in both models by bile duct ligation (BDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding. Results: Similar to Ostα -/- mice, Ostß -/- mice exhibited elongated small intestines with blunted villi and increased crypt depth. Increased expression levels of ileal Fgf15, and decreased Asbt expression in Ostß -/- mice indicate the accumulation of bile acids in the enterocyte. In contrast to Ostα -/- mice, induction of cholestasis in Ostß -/- mice by BDL or DDC diet led to lower survival rates and severe body weight loss, but an improved liver phenotype. Restoration of hepatic Ostß expression via adeno-associated virus-mediated overexpression did not rescue the phenotype of Ostß -/- mice. Conclusions: OSTß is pivotal for bile acid transport in the ileum and its deficiency leads to an intestinal phenotype similar to Ostα -/- mice, but it exerts distinct effects on survival and the liver phenotype, independent of its expression in the liver. Our findings provide insights into the variable clinical presentation of patients with OSTα and OSTß deficiencies. Lay summary: Organic solute transporter (OST) subunits OSTα and OSTß together facilitate the efflux of conjugated bile acids into the portal circulation. Ostα knockout mice have longer and thicker small intestines and are largely protected against experimental cholestatic liver injury. Herein, we generated and characterized Ostß knockout mice for the first time. Ostα and Ostß knockout mice shared a similar phenotype under normal conditions. However, in cholestasis, Ostß knockout mice had a worsened overall phenotype which indicates a separate and specific role of OSTß, possibly as an interacting partner of other intestinal proteins.

10.
J Bone Oncol ; 33: 100413, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35169537

ABSTRACT

We present a case of tumor-induced osteomalacia (TIO) in a young woman of 22 years. The fibroblast growth factor 23 transmitting tumor in her left foot remained undetected for several years. She suffered several fractures including insufficiency fractures of both femoral necks requiring bilateral proximal femoral nailing. After phosphaturia was diagnosed any known genetic etiology was excluded. Even advanced imaging modalities were unable to detect the clinically silent tumor until an 68Ga-DOTA-TOC-PET/CT-scan revealed a mass with paraneoplastic activity in the left foot. Complete resection of the tumor proved to cure her condition after 9 years of uncertainty and suffering. Serum phosphate levels returned to normal within days. After presentation of the case report, the current literature on published cases of TIO between 1956 and 2021 is summarized to emphasize the importance of an accurate and early diagnosis. Our case report aims to illustrate that a long latency period of diagnosis may be avoided utilizing the latest imaging techniques to spare affected patients from long treatment of symptoms instead of finding the underlying cause.

11.
JACC Basic Transl Sci ; 6(11): 900-917, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34869956

ABSTRACT

The process of restenosis is based on the interplay of various mechanical and biological processes triggered by angioplasty-induced vascular trauma. Early arterial recoil, negative vascular remodeling, and neointimal formation therefore limit the long-term patency of interventional recanalization procedures. The most serious of these processes is neointimal hyperplasia, which can be traced back to 4 main mechanisms: endothelial damage and activation; monocyte accumulation in the subintimal space; fibroblast migration; and the transformation of vascular smooth muscle cells. A wide variety of animal models exists to investigate the underlying pathophysiology. Although mouse models, with their ease of genetic manipulation, enable cell- and molecular-focused fundamental research, and rats provide the opportunity to use stent and balloon models with high throughput, both rodents lack a lipid metabolism comparable to humans. Rabbits instead build a bridge to close the gap between basic and clinical research due to their human-like lipid metabolism, as well as their size being accessible for clinical angioplasty procedures. Every different combination of animal, dietary, and injury model has various advantages and disadvantages, and the decision for a proper model requires awareness of species-specific biological properties reaching from vessel morphology to distinct cellular and molecular features.

12.
Bone Rep ; 15: 101143, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34746337

ABSTRACT

BACKGROUND: Efficient differentiation of stem cells into three-dimensional (3D) osteogenic construct is still an unmet challenge. These constructs can be crucial for patients with bone defects due to congenital or traumatic reasons. The modulation of cell fate and function as a consequence of interaction with the physical and chemical properties of materials is well known. METHODS: The current study has examined the osteogenic differentiation potential of human skeletal populations following culture on glass surfaces, as a monolayer, or in glass tubes as a pellet culture. The 3D prosperities were assessed morphometrically and the differentiation was evaluated through molecular characterization as well as matrix formation. RESULTS: Early temporal expression of alkaline phosphatase expression of skeletal populations was observed following culture on glass surfaces. Skeletal populations seeded on glass tubes, adhered as a monolayer to the tube base and subsequently formed 3D pellets at the air -media interface. The pellets cultured on glass displayed 4.9 ± 1.3 times the weight and 2.9 ± 0.1 the diameter of their counterpart cultured in plastic tubes and displayed enhanced production of osteogenic matrix proteins, such a collagen I and osteonectin. The size and weight of the pellets correlated with surface area in contrast to cell numbers seeded. Global DNA methylation level was decreased in pellets cultured on glass. In contrast, gene expression analysis confirmed upregulation extracellular matrix proteins and osteogenesis-related growth factors. CONCLUSION: This simple approach to the culture of skeletal cells on glass tubes provides a scaffold-free, 3D construct platform for generating pellets enabling analysis and evaluation of tissue development and integration of multiple constructs with implications for tissue repair and regenerative application on scale-up.

13.
Mol Genet Metab Rep ; 29: 100811, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34712574

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS IIIA) is characterised by a progressive neurological decline leading to early death. It is caused by bi-allelic loss-of-function mutations in SGSH encoding sulphamidase, a lysosomal enzyme required for heparan sulphate glycosaminoglycan (HS GAG) degradation, that results in the progressive build-up of HS GAGs in multiple tissues most notably the central nervous system (CNS). Skin fibroblasts from two MPS IIIA patients who presented with an intermediate and a severe clinical phenotype, respectively, were reprogrammed into induced pluripotent stem cells (iPSCs). The intermediate MPS IIIA iPSCs were then differentiated into neural progenitor cells (NPCs) and subsequently neurons. The patient derived fibroblasts, iPSCs, NPCs and neurons all displayed hallmark biochemical characteristics of MPS IIIA including reduced sulphamidase activity and increased accumulation of an MPS IIIA HS GAG biomarker. Proliferation of MPS IIIA iPSC-derived NPCs was reduced compared to control, but could be partially rescued by reintroducing functional sulphamidase enzyme, or by doubling the concentration of the mitogen fibroblast growth factor 2 (FGF2). Whilst both control heparin, and MPS IIIA HS GAGs had a similar binding affinity for FGF2, only the latter inhibited FGF signalling, suggesting accumulated MPS IIIA HS GAGs disrupt the FGF2:FGF2 receptor:HS signalling complex. Neuronal differentiation of MPS IIIA iPSC-derived NPCs was associated with a reduction in the expression of neuronal cell marker genes ßIII-TUBULIN, NF-H and NSE, revealing reduced neurogenesis compared to control. A similar result was achieved by adding MPS IIIA HS GAGs to the culture medium during neuronal differentiation of control iPSC-derived NPCs. This study demonstrates the generation of MPS IIIA iPSCs, and NPCs, the latter of which display reduced proliferation and neurogenic capacity. Reduced NPC proliferation can be explained by a model in which soluble MPS IIIA HS GAGs compete with cell surface HS for FGF2 binding. The mechanism driving reduced neurogenesis remains to be determined but appears downstream of MPS IIIA HS GAG accumulation.

14.
Brain Behav Immun Health ; 15: 100264, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34589770

ABSTRACT

Fatigue is a persistent and debilitating symptom following radiation therapy for prostate cancer. However, it is not well-understood how radiation targeted to a small region of the body can lead to broad changes in behavior. In this study, we used targeted pelvic irradiation of healthy male mice to test whether inflammatory signaling mediates changes in voluntary physical activity levels. First, we tested the relationship between radiation dose, blood cell counts, and fatigue-like behavior measured as voluntary wheel-running activity. Next, we used oral minocycline treatments to reduce inflammation and found that minocycline reduces, but does not eliminate, the fatigue-like behavioral changes induced by radiation. We also used a strain of mice lacking the MyD88 adaptor protein and found that these mice also showed less fatigue-like behavior than the wild-type controls. Finally, using serum and brain tissue samples, we determined changes in inflammatory signaling induced by irradiation in wild-type, minocycline treated, and MyD88 knockout mice. We found that irradiation increased serum levels of IL-6, a change that was partially reversed in mice treated with minocycline or lacking MyD88. Overall, our results suggest that inflammation plays a causal role in radiation-induced fatigue and that IL-6 may be an important mediator.

15.
Acta Pharm Sin B ; 11(7): 1697-1707, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34386316

ABSTRACT

Small intestine in vitro models play a crucial role in drug transport research. Although conventional 2D cell culture models, such as Caco-2 monolayer, possess many advantages, they should be interpreted with caution because they have relatively poor physiologically reproducible phenotypes and functions. With the development of 3D culture technology, pluripotent stem cells (PSCs) and adult somatic stem cells (ASCs) show remarkable self-organization characteristics, which leads to the development of intestinal organoids. Based on previous studies, this paper reviews the application of intestinal 3D organoids in drug transport mediated by P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2). The advantages and limitations of this model are also discussed. Although there are still many challenges, intestinal 3D organoid model has the potential to be an excellent tool for drug transport research.

16.
Acta Pharm Sin B ; 11(6): 1541-1554, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34221867

ABSTRACT

Obesity and its associated complications are highly related to a current public health crisis around the world. A growing body of evidence has indicated that G-protein coupled bile acid (BA) receptor TGR5 (also known as Gpbar-1) is a potential drug target to treat obesity and associated metabolic disorders. We have identified notoginsenoside Ft1 (Ft1) from Panax notoginseng as an agonist of TGR5 in vitro. However, the pharmacological effects of Ft1 on diet-induced obese (DIO) mice and the underlying mechanisms are still elusive. Here we show that Ft1 (100 mg/100 diet) increased adipose lipolysis, promoted fat browning in inguinal adipose tissue and induced glucagon-like peptide-1 (GLP-1) secretion in the ileum of wild type but not Tgr5 -/- obese mice. In addition, Ft1 elevated serum free and taurine-conjugated bile acids (BAs) by antagonizing Fxr transcriptional activities in the ileum to activate Tgr5 in the adipose tissues. The metabolic benefits of Ft1 were abolished in Cyp27a1 -/- mice which have much lower BA levels. These results identify Ft1 as a single compound with opposite activities on two key BA receptors to alleviate high fat diet-induced obesity and insulin resistance in mice.

17.
Front Cell Dev Biol ; 9: 672935, 2021.
Article in English | MEDLINE | ID: mdl-34095143

ABSTRACT

The current focus on cardiovascular research reflects society's concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.

18.
Front Endocrinol (Lausanne) ; 12: 665631, 2021.
Article in English | MEDLINE | ID: mdl-33935975

ABSTRACT

Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumors originating from neuroendocrine cells dispersed in different organs. Receptor tyrosine kinases are a subclass of tyrosine kinases with a relevant role in several cellular processes including proliferation, differentiation, motility and metabolism. Dysregulation of these receptors is involved in neoplastic development and progression for several tumors, including NENs. In this review, we provide an overview concerning the role of the fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) system in the development and progression of NENs, the occurrence of fibrotic complications and the onset of drug-resistance. Although no specific FGFR kinase inhibitors have been evaluated in NENs, several clinical trials on multitarget tyrosine kinase inhibitors, acting also on FGF system, showed promising anti-tumor activity with an acceptable and manageable safety profile in patients with advanced NENs. Future studies will need to confirm these issues, particularly with the development of new tyrosine kinase inhibitors highly selective for FGFR.


Subject(s)
Fibroblast Growth Factors/metabolism , Neuroendocrine Tumors/pathology , Receptors, Fibroblast Growth Factor/metabolism , Animals , Humans , Neuroendocrine Tumors/metabolism
19.
Regen Ther ; 18: 30-37, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33816723

ABSTRACT

Treatment of burn injuries with Mesenchymal stem cells (MSCs) is a great promise due to their unique properties. As two natural and functional wound dressing, Chitosan and Aloe-Vera gel assist wound regeneration by providing a proper environment. In the current study, we aimed to compare the effect of encapsulated BMSCs in Chitosan-based gel and Aloe-Vera gel on the healing of grade-II burn injuries compared to other groups in the rat. After creation of a 2 × 2 cm grade-II burn on dorsal skin of rats, treatments were performed for each group. The wound closure rate and healing properties were evaluated by histopathological analysis on 7, 14, 21 and, 28 days post-treatment. The expression rate of VEGF, Collagen-I and Collagen-III genes was also assessed on days 3, 7, 14, 21 and 28 performing qRT-PCR. The full wound healing with inconsiderable scar formation was achieved for Aloe-vera/BMSCs and Chitosan/BMSCs group on 28th day post-treatment. Pathological results also demonstrated the highest angiogenesis and granulation tissue formation for Aloe-vera/BMSCs and Chitosan/BMSCs groups respectively. The expression level of VEGF, Collagen-I, and Collagen-III genes was significantly higher in these groups on days 14 and 21, compared to other groups. Results demonstrated the synergistic effect of BMSCs when combined with Chitosan or Aloe-vera gel enhanced the healing process of wound healing more than chitosan gel treatment. Therefore, this gel can be considered as effective approaches for treatment of burn injuries.

20.
Metabol Open ; 10: 100090, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33889834

ABSTRACT

BACKGROUND AND AIM: The incidence of hepatocellular carcinoma (HCC) decreases significantly in chronic hepatitis C (CHC) patients with sustained virologic response (SVR) after pegylated-interferon plus ribavirin (PR) or direct-acting antiviral (DAAs) therapy. We follow-up a single cohort of CHC patients to identify risk factors associated with HCC development post-SVR. METHOD: CHC patients with SVR in Beijing/Hong Kong were followed up at 12-24 weekly intervals with surveillance for HCC by ultrasonography and alpha-fetoprotein (AFP). Multivariate Cox proportional hazards regression analysis was used to explore factors associated with HCC occurrence. RESULTS: Between October 2015 and May 2017, SVR was observed in 519 and 817 CHC patients after DAAs and PR therapy respectively. After a median post -SVR follow-up of 48 months, HCC developed in 54 (4.4%) SVR subjects. By adjusted Cox analysis, older age (≥55 years) [HR 2.4, 95% CI (1.3-4.3)], non-alcoholic fatty liver diseases [HR 2.4, 95%CI (1.3-4.2), higher AFP level (≥20 ng/ml) [HR 3.4, 95%CI (2.0-5.8)], higher liver stiffness measurement (≥14.6 kPa) [HR 4.2, 95%CI (2.3-7.6)], diabetes mellitus [HR 4.2, 95%CI (2.4-7.4)] at pre-treatment were associated with HCC occurrence. HCC patients in the DAAs induced SVR group had a higher prevalence of NAFLD as compared with those in the PR induced SVR group, 62% (18/29) vs 28% (7/25), p = 0.026. A nomogram formulated with the above six independent variables had a Concordance-Index of 0.835 (95% CI 0.783-0.866). CONCLUSION: Underlying NAFLD is associated with increased incidence of HCC in chronic HCV patients post-SVR, particularly in those treated with DAA.

SELECTION OF CITATIONS
SEARCH DETAIL