Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 616
Filter
1.
Free Radic Biol Med ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971541

ABSTRACT

Uveal melanoma (UM) is a rare yet lethal primary intraocular malignancy affecting adults. Analysis of data from The Cancer Genome Atlas (TCGA) database revealed that FGFR1 expression was increased in UM tumor tissues and was linked to aggressive behavior and a poor prognosis. This study assessed the anti-tumor effects of Erdafitinib, a selective pan-FGFR inhibitor, in both in vitro and in vivo UM models. Erdafitinib exhibited a robust anti-cancer activity in UM through inducing ferroptosis in the FGFR1-dependent manner. Transcriptomic data revealed that Erdafitinib mediated its anti-cancer effects via modulating the ferritinophagy/lysosome biogenesis. Subsequent research revealed that Erdafitinib exerted its effects by reducing the expression of FGFR1 and inhibiting the activity of mTORC1 in UM cells. Concurrently, it enhanced the dephosphorylation, nuclear translocation, and transcriptional activity of TFEB. The aggregation of TFEB in nucleus triggered FTH1-dependent ferritinophagy, leading to lysosomal activation and iron overload. Conversely, the overexpression of FGFR1 served to mitigate the effects of Erdafitinib on ferritinophagy, lysosome biogenesis, and the activation of the mTORC1/TFEB signaling pathway. In vivo experiments have convincingly shown that Erdafitinib markedly curtails tumor growth in an UM xenograft mouse model, an effect that is closely correlated with a decrease in FGFR1 expression levels. The present study is the first to demonstrate that Erdafitinib powerfully induces ferroptosis in UM by orchestrating the ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling. Consequently, Erdafitinib emerges as a strong candidate for clinical trial investigation, and FGFR1 emerges as a novel and promising therapeutic target in the treatment of UM.

2.
J Endocr Soc ; 8(8): bvae118, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38957656

ABSTRACT

Context: Activation of fibroblast growth factor receptor 1 (FGFR1) signaling improves the metabolic health of animals and humans, while inactivation leads to diabetes in mice. Direct human genetic evidence for the role of FGFR1 signaling in human metabolic health has not been fully established. Objective: We hypothesized that individuals with naturally occurring FGFR1 variants ("experiments of nature") will display glucose dysregulation. Methods: Participants with rare FGFR1 variants and noncarrier controls. Using a recall-by-genotype approach, we examined the ß-cell function and insulin sensitivity of 9 individuals with rare FGFR1 deleterious variants compared to 27 noncarrier controls, during a frequently sampled intravenous glucose tolerance test at the Reproductive Endocrine Unit and the Harvard Center for Reproductive Medicine, Massachusetts General Hospital. FGFR1-mutation carriers displayed higher ß-cell function in the face of lower insulin sensitivity compared to controls. Conclusion: These findings suggest that impaired FGFR1 signaling may contribute to an early insulin resistance phase of diabetes pathogenesis and support the candidacy of the FGFR1 signaling pathway as a therapeutic target for improving the human metabolic health.

3.
Pediatr Dermatol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967954

ABSTRACT

Cutaneous pyogenic granulomas (PGs) are common, benign vascular tumors of uncertain pathogenesis; however, a growing body of literature suggests that the formation of PGs may be secondary to genetic alterations in both the Ras/Raf/MAPK and PI3K/Akt/mTOR pathways. We present three cases of spontaneous multifocal PGs that first presented in infancy, were not associated with other vascular anomalies or discernable etiology, harbored somatic genetic variants in the Ras/Raf/MAPK pathway (NRAS n = 2, FGFR1 n = 1), were refractory to treatment with beta-blockers and mTOR inhibitors, and responded best to pulsed dye laser. We propose the term "spontaneous multifocal PGs" to describe this entity.

4.
Phytomedicine ; 132: 155780, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38885580

ABSTRACT

BACKGROUND: The suppression of the fibroblast growth factor 21/fibroblast growth factor receptor 1 (FGF21/FGFR1) signaling pathway is considered as a vital factor in the type 2 diabetes mellitus (T2DM) progression. Our previous study showed that gentiopicroside (GPS), the main active compound present in Gentiana macrophylla Pall., has the capacity to control disorders related to glucose and lipid metabolism in individuals with T2DM. Nevertheless, the specific mechanism remains unclear. PURPOSE: In light of the fact that the PharmMapper database suggests FGFR1 as the target of GPS, our investigation aims to determine if GPS can enhance glucose and lipid metabolism issues in T2DM by modulating the FGF21/FGFR1 signaling pathway. METHODS: In this study, we used palmitic acid (PA)-induced HepG2 cells and db/db mice to investigate the function and mechanism of GPS in the FGF21/FGFR1 signaling pathway. To examine the interaction between GPS and FGFR1, researchers performed Cellular Thermal Shift Assay (CETSA) and Surface Plasmon Resonance (SPR) analysis. RESULTS: The results suggest that GPS activates the traditional metabolic pathways, including PI3K/AKT and AMPK, which are the subsequent stages of the FGF21/FGFR1 pathway. This activation leads to the enhancement of glucose and lipid metabolism issues in PA-treated HepG2 cells and db/db mice. Furthermore, the depletion of FGFR1 has been noticed to oppose the stimulation of PI3K/AKT and AMPK pathways by GPS in HepG2 cells subjected to PA. Notability, our research affirms that GPS binds directly to FGFR1, hindering the ubiquitinated degradation of FGFR1 by neural precursor cells expressing developmentally decreased protein 4 (NEDD4) and ultimately promoting FGF21 signal transduction. CONCLUSION: This study demonstrates that GPS targeting FGFR1 activates the PI3K/AKT and AMPK pathways, which is an important mechanism for its treatment of T2DM.

5.
Bioorg Chem ; 150: 107553, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38901279

ABSTRACT

The overexpression of FGFR1 is thought to significantly contribute to the progression of triple-negative breast cancer (TNBC), impacting aspects such as tumorigenesis, growth, metastasis, and drug resistance. Consequently, the pursuit of effective inhibitors for FGFR1 is a key area of research interest. In response to this need, our study developed a hybrid virtual screening method. Utilizing KarmaDock, an innovative algorithm that blends deep learning with molecular docking, alongside Schrödinger's Residue Scanning. This strategy led us to identify compound 6, which demonstrated promising FGFR1 inhibitory activity, evidenced by an IC50 value of approximately 0.24 nM in the HTRF bioassay. Further evaluation revealed that this compound also inhibits the FGFR1 V561M variant with an IC50 value around 1.24 nM. Our subsequent investigations demonstrate that Compound 6 robustly suppresses the migration and invasion capacities of TNBC cell lines, through the downregulation of p-FGFR1 and modulation of EMT markers, highlighting its promise as a potent anti-metastatic therapeutic agent. Additionally, our use of molecular dynamics simulations provided a deeper understanding of the compound's specific binding interactions with FGFR1.

6.
Curr Med Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38847254

ABSTRACT

BACKGROUP: Bis-chalcone compounds with symmetrical structures, either isolated from natural products or chemically synthesized, have multiple pharmacological activities. Asymmetric Bis-chalcone compounds have not been reported before, which might be attributed to the synthetic challenges involved, and it remains unknown whether these compounds possess any potential pharmacological activities. AIMS: The aim of this study is to investigate the synthesis route of asymmetric bis-chalcone compounds and identify potential candidates with efficient anti-tumor activity. METHOD: The two-step structural optimization of the bis-chalcone compounds was carried out sequentially, guided by the screening of the compounds for their growth inhibitory activity against gastric cancer cells by MTT assay. The QSAR model of compounds was established through random forest (RF) algorithm. The activities of the optimal compound J3 on growth inhibition, apoptosis, and apoptosis-inducing protein expression in gastric cancer cells were investigated sequentially by colony formation assay, flow cytometry, and western blotting. Further, the inhibitory effects of J3 on the FGFR1 signaling pathway were explored by Wester Blotting, siRNA, and MTT assays. Finally, the in vivo anti-tumor activity and mechanism of J3 were studied through nude mouse xenograft assay, western blotting. RESULT: 27 asymmetric bis-chalcone compounds, including two types (N and J) were sequentially designed and synthesized. Some N-class compounds have good inhibitory activity on the growth of gastric cancer cells. The vast majority of J-class compounds optimized on the basis of N3 exhibit excellent inhibitory activity on gastric cancer cell growth. We established a QSAR model (R2 = 0.851627) by applying random forest algorithms. The optimal compound J3, which has better activity, concentration-dependently inhibited the formation of gastric cancer cell colonies and led to cell apoptosis by inducing the expression of the pro-apoptotic protein cleaved PARP. J3 may exert anti-gastric cancer effects by inhibiting the activation of FGFR1/ERK pathway. Moreover, at a dose of 10 mg/kg/day, J3 inhibited tumor growth in nude mice by nearly 70% in vivo with no significant toxic effect on body weight and organs. CONCLUSION: In summary, this study outlines a viable method for the synthesis of novel asymmetric bischalcone compounds. Furthermore, the compound J3 demonstrates substantial promise as a potential candidate for an anti-tumor drug.

7.
Cardiovasc Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842387

ABSTRACT

BACKGROUND: Atherosclerosis is a leading cause of cardiovascular morbidity and mortality. Atherosclerotic lesions show increased levels of proteins associated with the fibroblast growth factor receptor (FGFR) pathway. However, the functional significance and mechanisms governed by FGFR signaling in atherosclerosis are not known. In the present study, we investigated FGFR1 signaling in atherosclerosis development and progression. METHODS AND RESULTS: Examination of human atherosclerotic lesions and aortas of Apoe-/- mice fed a high-fat diet (HFD) showed increased levels of FGFR1 in macrophages. We deleted myeloid-expressed Fgfr1 in Apoe-/- mice and showed that Fgfr1 deficiency reduces atherosclerotic lesions and lipid accumulations in both male and female mice upon HFD feeding. These protective effects of myeloid Fgfr1 deficiency were also observed when mice with intact FGFR1 were treated with FGFR inhibitor AZD4547. To understand the mechanistic basis of this protection, we harvested macrophages from mice and show that FGFR1 is required for macrophage inflammatory responses and uptake of oxidized LDL. RNA sequencing showed that FGFR1 activity is mediated through phospholipase-C-gamma (PLCγ) and the activation of nuclear factor-κB (NF-κB) but is independent of FGFR substrate 2. CONCLUSION: Our study provides evidence of a new FGFR1-PLCγ- NF-κB axis in macrophages in inflammatory atherosclerosis, supporting FGFR1 as a potentially therapeutic target for atherosclerosis-related diseases.

8.
Front Cell Dev Biol ; 12: 1358583, 2024.
Article in English | MEDLINE | ID: mdl-38827528

ABSTRACT

Breast cancer metastases exhibit many different genetic alterations, including copy number amplifications (CNA). CNA are genetic alterations that are increasingly becoming relevant to breast oncology clinical practice. Here we identify CNA in metastatic breast tumor samples using publicly available datasets and characterize their expression and function using a metastatic mouse model of breast cancer. Our findings demonstrate that our organoid generation can be implemented to study clinically relevant features that reflect the genetic heterogeneity of individual tumors.

9.
Dev Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38942017

ABSTRACT

Recent advances in human genetics have shed light on the genetic factors contributing to inflammatory diseases, particularly Crohn's disease (CD), a prominent form of inflammatory bowel disease. Certain risk genes associated with CD directly influence cytokine biology and cell-specific communication networks. Current CD therapies primarily rely on anti-inflammatory drugs, which are inconsistently effective and lack strategies for promoting epithelial restoration and mucosal balance. To understand CD's underlying mechanisms, we investigated the link between CD and the FGFR1OP gene, which encodes a centrosome protein. FGFR1OP deletion in mouse intestinal epithelial cells disrupted crypt architecture, resulting in crypt loss, inflammation, and fatality. FGFR1OP insufficiency hindered epithelial resilience during colitis. FGFR1OP was crucial for preserving non-muscle myosin II activity, ensuring the integrity of the actomyosin cytoskeleton and crypt cell adhesion. This role of FGFR1OP suggests that its deficiency in genetically predisposed individuals may reduce epithelial renewal capacity, heightening susceptibility to inflammation and disease.

10.
Neurooncol Adv ; 6(1): vdae074, 2024.
Article in English | MEDLINE | ID: mdl-38903142

ABSTRACT

Background: Fibroblast growth factor receptor 1 (FGFR1) mutations have been associated with poorer prognoses in pediatric central nervous system tumor patients. A recent study highlighted a link between FGFR1 mutations and spontaneous intracranial hemorrhage (ICH), demonstrating that all patients with an FGFR1 alteration experienced hemorrhage at some point during their course of treatment. Methods: The current study examined 50 out of 67 pediatric patients with low-grade gliomas (LGGs) who had genomic testing between 2011 and 2022 at our institution to determine whether a correlation exists between FGFR1 mutations and spontaneous ICH. Results: We found that of the 50 patients with genomic data, 7 (14%) experienced ICH, and an additional spontaneous hemorrhage was recorded; however, no genomic testing was performed for this case. Five of the seven patients (71.4%) had an FGFR1 modification. In our patient population, 6 expressed a detectable FGFR1 mutation (66.7% [4/6] had N546K alteration, 16.7% [1/6] FGFR1 exons duplication, and 16.7% [1/6] had a variant of unknown significance [VUS]). The patient with the FGFR1 VUS had no reported spontaneous hemorrhage. Statistical analysis found a significant association between FGFR1 and spontaneous intracranial hemorrhage (P-value = < .0001). In the patient population, all cases of PTPN11 alterations (n = 3) co-occurred with FGFR1 mutations. Conclusions: Our case series highlights this link between the FGFR1 mutation and spontaneous intracranial hemorrhage in pediatric LGGs.

11.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750548

ABSTRACT

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Subject(s)
Endocytosis , Galectin 1 , Galectins , Receptor, Fibroblast Growth Factor, Type 1 , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Humans , Galectin 1/metabolism , Galectin 1/genetics , Galectins/metabolism , Signal Transduction , Animals
12.
Front Vet Sci ; 11: 1375329, 2024.
Article in English | MEDLINE | ID: mdl-38799725

ABSTRACT

Introduction: The reduction of nitrogen (N) and phosphorus (P) in ruminant feed is desirable due to costs and negative environmental impact. Ruminants are able to utilize N and P through endogenous recycling, particularly in times of scarcity. When N and/or P were reduced, changes in mineral homeostasis associated with modulation of renal calcitriol metabolism occurred. The aim of this study was to investigate the potential effects of dietary N- and/or P-reduction on the regulatory mechanisms of mineral transport in the kidney and its hormonal regulation in young goats. Results: During N-reduction, calcium (Ca) and magnesium (Mg) concentrations in blood decreased, accompanied by a lower protein expression of cytochrome P450 family 27 subfamily B member 1 (CYP27B1) (p = 0.016). The P-reduced fed goats had low blood phosphate concentrations with simultaneously high Ca and Mg levels. The insulin-like growth factor 1 concentrations decreased significantly with P-reduction. Furthermore, gene expression of CYP27B1 (p < 0.001) and both gene (p = 0.025) and protein (p = 0.016) expression of the fibroblast growth factor receptor 1c isoform in the kidney were also significantly reduced during a P-reduced diet. ERK1/2 activation exhibited a trend toward reduction in P-reduced animals. Interestingly, calcitriol concentrations remained unaffected by either restriction individually, but interacted significantly with N and P (p = 0.014). Additionally, fibroblast growth factor 23 mRNA expression in bone decreased significantly with P-restriction (p < 0.001). Discussion: These results shed light on the complex metabolic and regulatory responses of mineral transport of young goats to dietary N and P restriction.

13.
Exp Hematol Oncol ; 13(1): 49, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730491

ABSTRACT

BACKGROUND: Leukemias driven by activated, chimeric FGFR1 kinases typically progress to AML which have poor prognosis. Mouse models of this syndrome allow detailed analysis of cellular and molecular changes occurring during leukemogenesis. We have used these models to determine the effects of leukemia development on the immune cell composition in the leukemia microenvironment during leukemia development and progression. METHODS: Single cell RNA sequencing (scRNA-Seq) was used to characterize leukemia associated neutrophils and define gene expression changes in these cells during leukemia progression. RESULTS: scRNA-Seq revealed six distinct subgroups of neutrophils based on their specific differential gene expression. In response to leukemia development, there is a dramatic increase in only two of the neutrophil subgroups. These two subgroups show specific gene expression signatures consistent with neutrophil precursors which give rise to immature polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Analysis of gene expression in these precursor cells identified pathways that were specifically upregulated, the most pronounced of which involved matrix metalloproteinases Mmp8 and Mmp9, during leukemia progression. Pharmacological inhibition of MMPs using Ilomastat preferentially restricted in vitro migration of neutrophils from leukemic mice and led to a significantly improved survival in vivo, accompanied by impaired PMN-MDSC recruitment. As a result, levels of T-cells were proportionally increased. In clinically annotated TCGA databases, MMP8 was shown to act as an independent indicator for poor prognosis and correlated with higher neutrophil infiltration and poor pan-cancer prognosis. CONCLUSION: We have defined specific leukemia responsive neutrophil subgroups based on their unique gene expression profile, which appear to be the precursors of neutrophils specifically associated with leukemia progression. An important event during development of these neutrophils is upregulation MMP genes which facilitated mobilization of these precursors from the BM in response to cancer progression, suggesting a possible therapeutic approach to suppress the development of immune tolerance.

14.
Transl Res ; 271: 93-104, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38797433

ABSTRACT

Hepatopulmonary syndrome (HPS) is a serious pulmonary complication in the advanced stage of liver disease. The occurrence of pulmonary edema in HPS patients is life-threatening. Increased pulmonary vascular permeability is an important mechanism leading to pulmonary edema, and endothelial glycocalyx (EG) is a barrier that maintains stable vascular permeability. However, in HPS, whether the pulmonary vascular EG changes and its regulatory mechanism are still unclear. Spleen derived monocytes are involved in the pathogenesis of HPS. However, whether they regulate the pulmonary vascular permeability in HPS patients or rats and what is the mechanism is still unclear. Healthy volunteers and HPS patients with splenectomy or not were enrolled in this study. We found that the respiration of HPS patients was significantly improved in response to splenectomy, while the EG degradation and pulmonary edema were aggravated. In addition, HPS patients expressed higher levels of oncostatin M (OSM) and fibroblast growth factor (FGF). Subsequently, the co-culture system of monocytes and human umbilical vein endothelial cells (HUVECs) was constructed. It was found that monocytes secreted OSM and activated the FGF/FGFR1 signaling pathway in HUVECs. Then, an HPS rat model was constructed by common bile duct ligation (CBDL) for in vivo verification. HPS rats were intravenously injected with OSM recombinant protein and/or TNF-α into the rats via tail vein 30 min before CBDL. The results showed that the respiration of HPS rats was improved after splenectomy, while the degradation of EG in pulmonary vessels and vascular permeability were increased, and pulmonary edema was aggravated. Moreover, the expression of OSM and FGF was upregulated in HPS rats, while both were downregulated after splenectomy. Intravenous injection of exogenous OSM eliminated the effect of splenectomy on FGF and improved EG degradation. It can be seen that during HPS, spleen-derived monocytes secrete OSM to promote pulmonary vascular EG remodeling by activating the FGF/FGFR1 pathway, thereby maintaining stable vascular permeability, and diminishing pulmonary edema. This study provides a promising therapeutic target for the treatment of HPS.


Subject(s)
Capillary Permeability , Hepatopulmonary Syndrome , Monocytes , Oncostatin M , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Spleen , Animals , Humans , Hepatopulmonary Syndrome/metabolism , Male , Monocytes/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Spleen/metabolism , Oncostatin M/metabolism , Fibroblast Growth Factors/metabolism , Rats , Human Umbilical Vein Endothelial Cells/metabolism , Splenectomy , Rats, Sprague-Dawley , Lung/metabolism , Lung/blood supply , Female , Middle Aged , Adult , Glycocalyx/metabolism
15.
J Matern Fetal Neonatal Med ; 37(1): 2344718, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38679587

ABSTRACT

OBJECTIVE: Holoprosencephaly (HPE) is the most common aberration of forebrain development, and it leads to a wide spectrum of developmental and craniofacial anomalies. HPE etiology is highly heterogeneous and includes both chromosomal abnormalities and single-gene defects. METHODS: Here, we report an FGFR1 heterozygous variant detected by prenatal exome sequencing and inherited from the asymptomatic mother, in association with recurrent neurological abnormalities in the HPE spectrum in two consecutive pregnancies. RESULTS: Individuals with germline pathogenic variants in FGFR1 (MIM: 136350) show extensive phenotypic variability, which ranges from asymptomatic carriers to hypogonadotropic hypogonadism, arhinencephaly, Kallmann's syndrome with associated features such as cleft lip and palate, skeletal anomalies, isolated HPE, and Hartsfield syndrome. CONCLUSION: The presented case supports the role of exome sequencing in prenatal diagnosis when fetal midline structural anomalies are suggestive of a genetic etiology, as early as the first trimester of gestation. The profound heterogeneity of FGFR1 allelic disorders needs to be considered when planning prenatal screening even in asymptomatic carriers.


Subject(s)
Holoprosencephaly , Receptor, Fibroblast Growth Factor, Type 1 , Humans , Female , Receptor, Fibroblast Growth Factor, Type 1/genetics , Pregnancy , Holoprosencephaly/genetics , Holoprosencephaly/diagnosis , Adult , Prenatal Diagnosis/methods , Exome Sequencing , Ultrasonography, Prenatal , Prosencephalon/abnormalities , Prosencephalon/embryology , Heterozygote
16.
Cell Commun Signal ; 22(1): 225, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605348

ABSTRACT

The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Sialomucins/metabolism , Endocytosis , Clathrin/metabolism
18.
J Cell Mol Med ; 28(8): e18245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613356

ABSTRACT

Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (H3/IDH-wt-pHGG) is a newly defined entity amongst brain tumours, primarily reported in children. It is a rare, ill-defined type of tumour and the only method to diagnose it is DNA methylation profiling. The case we report here carries new knowledge about this tumour which may, in fact, occur in elderly patients, be devoid of evocative genomic abnormalities reported in children and harbour a misleading mutation.


Subject(s)
Brain Neoplasms , Glioma , White Matter , Aged , Female , Humans , Child , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Genomics , Occipital Lobe/diagnostic imaging
19.
Acta Pharm Sin B ; 14(4): 1693-1710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572108

ABSTRACT

Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomyopathy (DCM), we profiled an RTKs phosphorylation array in diabetic mouse hearts and identified increased phosphorylated fibroblast growth factor receptor 1 (p-FGFR1) levels in cardiomyocytes, indicating that FGFR1 may contribute to the pathogenesis of DCM. Using primary cardiomyocytes and H9C2 cell lines, we discovered that high-concentration glucose (HG) transactivates FGFR1 kinase domain through toll-like receptor 4 (TLR4) and c-Src, independent of FGF ligands. Knocking down the levels of either TLR4 or c-Src prevents HG-activated FGFR1 in cardiomyocytes. RNA-sequencing analysis indicates that the elevated FGFR1 activity induces pro-inflammatory responses via MAPKs-NFκB signaling pathway in HG-challenged cardiomyocytes, which further results in fibrosis and hypertrophy. We then generated cardiomyocyte-specific FGFR1 knockout mice and showed that a lack of FGFR1 in cardiomyocytes prevents diabetes-induced cardiac inflammation and preserves cardiac function in mice. Pharmacological inhibition of FGFR1 by a selective inhibitor, AZD4547, also prevents cardiac inflammation, fibrosis, and dysfunction in both type 1 and type 2 diabetic mice. These studies have identified FGFR1 as a new player in driving DCM and support further testing of FGFR1 inhibitors for possible cardioprotective benefits.

20.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644407

ABSTRACT

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Subject(s)
Adipose Tissue, White , Benzhydryl Compounds , Glucosides , Protein Serine-Threonine Kinases , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Animals , Male , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , AMP-Activated Protein Kinases/metabolism , Benzhydryl Compounds/pharmacology , Diet, High-Fat , Glucosides/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Obesity/drug therapy , Protein Serine-Threonine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...