Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Plant Physiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652805

ABSTRACT

The bundle sheath cell (BSC) layer tightly enveloping the xylem throughout the leaf is recognized as a major signal-perceiving "valve" in series with stomata, regulating leaf hydraulic conductance (Kleaf) and thereby radial water flow via the transpiring leaf. The BSC blue light (BL) signaling pathway increases Kleaf and the underlying BSC water permeability. Here, we explored the hypothesis that BSCs also harbor a Kleaf-downregulating signaling pathway related to the stress phytohormone abscisic acid (ABA). We employed fluorescence imaging of xylem sap in detached leaves and BSC protoplasts from different genotypes of Arabidopsis (Arabidopsis thaliana) plants, using pH and membrane potential probes to monitor physiological responses to ABA and BL in combination with pharmacological agents. We found that BL-enhanced Kleaf required elevated BSC cytosolic Ca2+. ABA inhibited BL-activated xylem-sap-acidifying BSC H + -ATPase AHA2 (Arabidopsis H + -ATPase 2), resulting in depolarized BSCs and alkalinized xylem sap. ABA also stimulated BSC vacuolar H + -ATPase (VHA), which alkalinized the BSC cytosol. Each pump stimulation, AHA2 by BL and VHA by ABA (under BL), also required Ca2+. ABA stimulated VHA in the dark depending on Ca2+, but only in an alkaline external medium. Taken together with earlier findings on the pH sensitivity of BSC osmotic water permeability (i.e., aquaporin activity), our results suggest a Ca2+-dependent and pH-mediated causative link between the BL- and ABA-regulated activities of two BSC H + -ATPases and Kleaf.

2.
IUBMB Life ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031996

ABSTRACT

Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both in vitro systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.

3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108590

ABSTRACT

The "leaky gut" syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the "leaky gut" syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed a complex in vitro inflammation-triggered triple-culture model using 21-day-differentiated human intestinal Caco-2 epithelial cells and HT29-MTX-E12 mucus-producing goblet cells (90:10 ratio) in close contact with differentiated human macrophage-like THP-1 cells or primary monocyte-derived macrophages from human peripheral blood. Upon an inflammatory stimulus, the characteristics of a "leaky gut" became evident: a significant loss of intestinal cell integrity in terms of decreased transepithelial/transendothelial electrical resistance (TEER), as well as a loss of tight junction proteins. The cell permeability for FITC-dextran 4 kDa was then increased, and key pro-inflammatory cytokines, including TNF-alpha and IL-6, were substantially released. Whereas in the M1 macrophage-like THP-1 co-culture model, we could not detect the release of IL-23, which plays a crucial regulatory role in IBD, this cytokine was clearly detected when using primary human M1 macrophages instead. In conclusion, we provide an advanced human in vitro model that could be useful for screening and evaluating therapeutic drugs for IBD treatment, including potential IL-23 inhibitors.


Subject(s)
Inflammatory Bowel Diseases , Macrophages , Humans , Caco-2 Cells , THP-1 Cells , Macrophages/metabolism , Inflammation/metabolism , Cytokines/metabolism , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Interleukin-23/metabolism
4.
J Biophotonics ; 16(7): e202300042, 2023 07.
Article in English | MEDLINE | ID: mdl-37017248

ABSTRACT

Vascular network labeling in transparent tissues provides more complete information on blood vessels. To achieve a fast and efficient method for vascular network labeling in transparent tissues, we compared various vascular labeling methods under different tissue clearing protocols. FITC-Dextran labeling and CUBIC cleaning treatment were found to be the best options for vascular network labeling in cleared mouse tissues. Satisfactory labeling of vascular networks in various organs can be achieved by selecting FITC-Dextran with different molecular weights and different administration methods.


Subject(s)
Dextrans , Imaging, Three-Dimensional , Mice , Animals , Imaging, Three-Dimensional/methods , Fluorescein-5-isothiocyanate
5.
Methods Mol Biol ; 2616: 191-203, 2023.
Article in English | MEDLINE | ID: mdl-36715936

ABSTRACT

The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining central nervous system (CNS) homeostasis. An intact BBB protects the brain from undesired compounds and proteins from the blood; however, BBB impairment is involved in various pathological conditions including stroke. In vivo evaluation of BBB integrity in the post-stroke brain is important for investigating stroke-induced CNS pathogenesis and developing CNS-targeted therapeutic agents. In this chapter, we describe both quantitative and morphometric methods and tools to evaluate BBB integrity in vivo. These methods do not require expensive magnetic resonance imaging (MRI) and computed tomography (CT) imaging capabilities and can be conducted in research laboratories with access to a confocal microscope and fluorescence microplate reader.


Subject(s)
Blood-Brain Barrier , Stroke , Humans , Blood-Brain Barrier/metabolism , Brain/metabolism , Stroke/metabolism , Central Nervous System/metabolism , Biological Transport
6.
Brain Sci ; 12(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36291227

ABSTRACT

To study the biodistribution of new chemical and biological entities, an in vitro model of the blood-brain barrier (BBB) may become an essential tool during early phases of drug discovery. Here, we present a proof-of-concept of an in-house designed three-dimensional BBB biochip designed by us. This three-dimensional dynamic BBB model consists of endothelial cells and astrocytes, co-cultured on opposing sides of a polymer-coated membrane under flow mimicking blood flow. Our results demonstrate a highly effective BBB as evidenced by (i) a 30-fold increase in transendothelial electrical resistance (TEER), (ii) a significantly higher expression of tight junction proteins, and (iii) the low FITC-dextran permeability of our technical solution as compared to a static in vitro BBB model. Importantly, our three-dimensional BBB model effectively expresses P-glycoprotein (Pg-p), a hallmark characteristic for brain-derived endothelial cells. In conclusion, we provide here a complete holistic approach and insight to the whole BBB system, potentially delivering translational significance in the clinical and pharmaceutical arenas.

7.
Mol Pharm ; 19(7): 2564-2572, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35642793

ABSTRACT

In this work, we studied the intestinal absorption of a peptide with a molecular weight of 4353 Da (MEDI7219) and a protein having a molecular weight of 11 740 Da (PEP12210) in the rat intestinal instillation model and compared their absorption to fluorescein isothiocyanate (FITC)-labeled dextrans of similar molecular weights (4 and 10 kDa). To increase the absorption of the compounds, the permeation enhancer sodium caprate (C10) was included in the liquid formulations at concentrations of 50 and 300 mM. All studied compounds displayed an increased absorption rate and extent when delivered together with 50 mM C10 as compared to control formulations not containing C10. The time period during which the macromolecules maintained an increased permeability through the intestinal epithelium was approximately 20 min for all studied compounds at 50 mM C10. For the formulations containing 300 mM C10, it was noted that the dextrans displayed an increased absorption rate (compared to 50 mM C10), and their absorption continued for at least 60 min. The absorption rate of MEDI7219, on the other hand, was similar at both studied C10 concentrations, but the duration of absorption was extended at the higher enhancer concentration, leading to an increase in the overall extent of absorption. The absorption of PEP12210 was similar in terms of the rate and duration at both studied C10 concentrations. This is likely caused by the instability of this molecule in the intestinal lumen. The degradation decreases the luminal concentrations over time, which in turn limits absorption at time points beyond 20 min. The results from this study show that permeation enhancement effects cannot be extrapolated between different types of macromolecules. Furthermore, to maximize the absorption of a macromolecule delivered together with C10, prolonging the duration of absorption appears to be important. In addition, the macromolecule needs to be stable enough in the intestinal lumen to take advantage of the prolonged absorption time window enabled by the permeation enhancer.


Subject(s)
Dextrans , Intestinal Absorption , Animals , Fluorescein-5-isothiocyanate , Intestinal Mucosa/metabolism , Permeability , Rats
8.
Biochem Biophys Res Commun ; 597: 91-97, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35134610

ABSTRACT

The blood-brain barrier (BBB) remains a major obstacle for the delivery of drugs in the treatment of many neurological diseases. In this study, we aimed to investigate the effects of radiofrequency electromagnetic fields (RF-EMFs) on the permeability of an in vitro BBB model under RF exposure alone, or in the presence of nanoparticles (NPs). For this purpose, an in vitro BBB model was established by seeding human umbilical vein endothelial cells (HUVECs) and human glioblastoma cell line (T98G) on the apical and basolateral sides of the transwell membrane, respectively. The integrity of the BBB model was confirmed by measuring transendothelial electrical resistance (TEER), and a fluorescein isothiocyanate (FITC)-dextran permeability assay was performed when the resistance reached 120 Ω cm2. After the RF-field exposure (13.56 MHz, 80 W, 10 min), we found that FITC-dextran transported across the in vitro BBB was increased 10-fold compared to FITC-dextran transported without an RF-field. This notable phenomenon, which can be called the burst permeability RF effect (BP-RF), has been proposed for the first time in the literature. Subsequently, the effect of the RF-field on BBB permeability was also investigated in the presence of superparamagnetic iron oxide nanoparticles (SPIONs) and magnetic poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-b-PEG) nanoparticles (m-PNPs). It was found that the amount of both transported NPs on the basolateral sides increased after exposure to the RF-field. As a result, the RF-field can be applied simultaneously during treatment with clinical agents or nanocarriers, improving the permeability of the BBB, which may contribute to therapeutic efficacy of many drugs that are used in neurological diseases.

9.
Arch Toxicol ; 96(4): 1055-1063, 2022 04.
Article in English | MEDLINE | ID: mdl-35165752

ABSTRACT

(-)-Englerin A (EA), a potential novel anti-cancer drug, is a potent selective activator of classical transient receptor potential 4 and 5 (TRPC4, TRPC5) channels. As TRPC4 channels are expressed and functional in the lung endothelium, possible side effects such as lung edema formation may arise during its administration. Well-established in vivo rodent models for toxicological testing, however, rapidly degrade this compound to its inactive derivative, englerin B. Therefore, we chose an ex vivo isolated perfused and ventilated murine lung (IPVML) model to detect edema formation due to toxicants, which also reduces the number of incriminating animal experiments required. To evaluate the sensitivity of the IPVML model, short-time (10 min) drops of the pH from 7.4 down to 4.0 were applied, which resulted in linear changes of tidal volumes, wet-to-dry weight ratios and incorporation of FITC-coupled dextran particles from the perfusate. As expected, biological activity of EA was preserved after perfusion in the IPVML model. Concentrations of 50-100 nM EA continuously perfused through the IPVML model did not change tidal volumes and lung weights significantly. Wet-to-dry weight ratios were increased after perfusion of 100 nM EA but permeation of FITC-coupled dextran particles from the perfusate to the lung tissues was not significantly different. Therefore, EA shows little or no significant acute pulmonary toxicity after application of doses expected to activate target ion channels and the IPVML is a sensitive powerful ex vivo model for evaluating acute lung toxicity in accordance with the 3R rules for animal experimentation.


Subject(s)
Antineoplastic Agents , TRPC Cation Channels , Animals , Antineoplastic Agents/toxicity , Dextrans/metabolism , Edema , Fluorescein-5-isothiocyanate , Lung/metabolism , Mice , Perfusion , Sesquiterpenes, Guaiane , TRPC Cation Channels/metabolism
10.
J Pharmacol Toxicol Methods ; 113: 107131, 2022.
Article in English | MEDLINE | ID: mdl-34699972

ABSTRACT

Nasal drug administration has been identified as a potential alternative to oral drug administration, especially for systemic delivery of large molecular weight compounds. Major advantages of nasal drug delivery include high vascularity and permeability of the epithelial membranes as well as circumvention of first-pass metabolism. RPMI 2650 cell layers (in vitro cell model) and excised sheep nasal mucosal tissues (ex vivo sheep model) were evaluated with regard to epithelial thickness, selected tight junction protein expression (i.e. claudin-1, F-actin chains, zonula occludin-1), extent of p-glycoprotein (P-gp) related efflux of a model compound (Rhodamine-123, R123) and paracellular permeation of a large molecular weight model compound (FITC-dextran 4400, FD4). The cell model grown under liquid cover conditions (LCC) was thinner (24 ± 4 µm) than the epithelial layer of the sheep model (53 ± 4 µm), whereas the thickness of cell model grown under air liquid interface (ALI) conditions (53 ± 8 µm) compared well with that of the sheep model. Although the location and distribution of tight junction proteins and F-actin differed to some extent between the cell model grown under ALI conditions and the sheep model, the extent of paracellular permeation of FD4 was similar (Papp = 0.48 × 10-6 cm.s-1 and 0.46 × 10-6 cm.s-1, respectively). Furthermore, the bi-directional permeation of R123 yielded the same efflux ratio (ER = 2.33) in both models. The permeation results from this exploratory study indicated similarity in terms of compound permeation between the RPMI 2650 nasal epithelial cell line and the excised sheep nasal epithelial tissue model.


Subject(s)
Nasal Mucosa , Pharmaceutical Preparations , Animals , Cell Line , Epithelial Cells , Epithelium , Immunohistochemistry , Permeability , Sheep
11.
Mol Pharm ; 19(1): 200-212, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34928160

ABSTRACT

In this work, we set out to better understand how the permeation enhancer sodium caprate (C10) influences the intestinal absorption of macromolecules. FITC-dextran 4000 (FD4) was selected as a model compound and formulated with 50-300 mM C10. Absorption was studied after bolus instillation of liquid formulation to the duodenum of anesthetized rats and intravenously as a reference, whereafter plasma samples were taken and analyzed for FD4 content. It was found that the AUC and Cmax of FD4 increased with increasing C10 concentration. Higher C10 concentrations were associated with an increased and extended absorption but also increased epithelial damage. Depending on the C10 concentration, the intestinal epithelium showed significant recovery already at 60-120 min after administration. At the highest studied C10 concentrations (100 and 300 mM), the absorption of FD4 was not affected by the colloidal structures of C10, with similar absorption obtained when C10 was administered as micelles (pH 8.5) and as vesicles (pH 6.5). In contrast, the FD4 absorption was lower when C10 was administered at 50 mM formulated as micelles as compared to vesicles. Intestinal dilution of C10 and FD4 revealed a trend of decreasing FD4 absorption with increasing intestinal dilution. However, the effect was smaller than that of altering the total administered C10 dose. Absorption was similar when the formulations were prepared in simulated intestinal fluids containing mixed micelles of bile salts and phospholipids and in simple buffer solution. The findings in this study suggest that in order to optimally enhance the absorption of macromolecules, high (≥100 mM) initial intestinal C10 concentrations are likely needed and that both the concentration and total dose of C10 are important parameters.


Subject(s)
Colloids/chemistry , Decanoic Acids/pharmacology , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Animals , Cryoelectron Microscopy , Decanoic Acids/analysis , Decanoic Acids/chemistry , Dextrans/pharmacology , Drug Synergism , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/pharmacology , Intestinal Mucosa/chemistry , Male , Rats , Rats, Wistar
12.
Acta Pharm Sin B ; 11(9): 2859-2879, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34589401

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.

13.
BMC Ophthalmol ; 21(1): 208, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33975571

ABSTRACT

BACKGROUND: A reliable and effective method is required to deliver agent that can aid the in vivo imaging of retinal vessels. The aim of the present study was to evaluate retro-orbital (RO) injection of fluorescein-labeled isothiocyanate dextran (FITC-dextran) as a method of demonstrating retinal neovascularization (NV) and avascular areas in oxygen-induced retinopathy (OIR) mice. METHODS: Different concentrations of FITC-dextran were used to compare the efficacy of this agent in perfusing the retinal vessels. Hematoxylin-eosin (HE) staining was used to evaluate the safety of RO injection. The vitreous blood vessels and extent of NV were assessed in P17 OIR mice using FITC-dextran and compared with the corresponding measurements obtained following isolectin B4 staining or the combination of both methods. RESULTS: The fluorescence of small vessels and neovascular tufts could be observed clearly following RO injection of 0.05 ml of 25 mg/ml or 50 mg/ml FITC-dextran. No visible damage to tissues adjacent to the injection site was discovered. Vitreous blood flow was gradually reduced from P0 to P5 and eventually disappeared in P17 OIR mice, as demonstrated by FITC-dextran perfusion. The retinal NV areas assessed by isolectin B4 were larger than those assessed by FITC-dextran, but the retinal avascular areas were smaller. The combination of both methods could conduce to distinguish non-functional blood vessels. CONCLUSIONS: RO injection of FITC-dextran combined with isolectin B4 is an effective, optimal method for assessing the NV area and avascular area.


Subject(s)
Retinal Neovascularization , Animals , Animals, Newborn , Dextrans , Disease Models, Animal , Fluorescein-5-isothiocyanate/analogs & derivatives , Lectins , Mice , Mice, Inbred C57BL , Oxygen , Retina , Retinal Neovascularization/diagnosis , Retinal Vessels
14.
Methods Mol Biol ; 2367: 13-26, 2021.
Article in English | MEDLINE | ID: mdl-33730353

ABSTRACT

Paracellular permeability of the intestinal epithelium is a feature of the intestinal barrier, which plays an important role in the physiology of gut and the whole organism. Intestinal paracellular permeability is controlled by complex processes and is involved in the passage of ions and fluids (called pore pathway) and macromolecules (called leak pathway) through tight junctions, which seal the intercellular space. Impairment of intestinal paracellular permeability is associated with several diseases. The identification of a defect in intestinal paracellular permeability may help to understand the implication of gut barrier as a cause or a consequence in human pathology. Here we describe two complementary methods to evaluate alteration of paracellular permeability in cell culture, using the human intestinal cell line Caco-2 and its clone Caco-2/TC7.


Subject(s)
Enterocytes , Caco-2 Cells , Cell Membrane Permeability , Cellulose, Oxidized , Humans , Intestinal Mucosa/metabolism , Permeability , Tight Junctions/metabolism
15.
Biomolecules ; 11(2)2021 02 23.
Article in English | MEDLINE | ID: mdl-33672379

ABSTRACT

Fibrin hydrogel is a central biological material in tissue engineering and drug delivery applications. As such, fibrin is typically combined with cells and biomolecules targeted to the regenerated tissue. Previous studies have analyzed the release of different molecules from fibrin hydrogels; however, the effect of embedded cells on the release profile has yet to be quantitatively explored. This study focused on the release of Fluorescein isothiocyanate (FITC)-dextran (FD) 250 kDa from fibrin hydrogels, populated with different concentrations of fibroblast or endothelial cells, during a 48-h observation period. The addition of cells to fibrin gels decreased the overall release by a small percentage (by 7-15% for fibroblasts and 6-8% for endothelial cells) relative to acellular gels. The release profile was shown to be modulated by various cellular activities, including gel degradation and physical obstruction to diffusion. Cell-generated forces and matrix deformation (i.e., densification and fiber alignment) were not found to significantly influence the release profiles. This knowledge is expected to improve fibrin integration in tissue engineering and drug delivery applications by enabling predictions and ways to modulate the release profiles of various biomolecules.


Subject(s)
Dextrans/chemistry , Drug Delivery Systems , Fibrin/chemistry , Fluorescein-5-isothiocyanate/chemistry , Animals , Cell Survival/drug effects , Endothelial Cells/drug effects , Extracellular Matrix/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Heterocyclic Compounds, 4 or More Rings/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Hydrogels/chemistry , Mice , Models, Theoretical , NIH 3T3 Cells , Regeneration , Regenerative Medicine/methods , Tissue Engineering/methods
16.
Methods Mol Biol ; 2367: 1-11, 2021.
Article in English | MEDLINE | ID: mdl-33733391

ABSTRACT

An increased intestinal permeability has been described in many diseases including inflammatory bowel disease and metabolic disorders, and a better understanding of the contribution of intestinal barrier impairment to pathogenesis is needed. In recent years, attention has been paid to the leak pathway, which is the route of paracellular transport allowing the diffusion of macromolecules through the tight junctions of the intestinal epithelial lining. While the passage of macromolecules by this pathway is very restricted under physiological conditions, its amplification is thought to promote an excessive immune activation in the intestinal mucosa. The Ussing chambers have been widely used to measure both active and passive transepithelial fluxes in intact tissues. In this chapter we present how this simple device can be used to measure paracellular permeability to macromolecules in the mouse intestine. We propose a detailed protocol and describe how to best exploit all the possibilities of this technique, correctly interpret the results, and avoid the main pitfalls.


Subject(s)
Intestines , Animals , Colitis , Intestinal Mucosa , Macromolecular Substances , Mice , Permeability , Tight Junctions
17.
Poult Sci ; 100(2): 957-963, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518149

ABSTRACT

Broiler chickens reared under heat stress (HS) conditions have decreased growth performance and show metabolic and immunologic alterations. This study aimed to evaluate the effect of supplementation with a standardized blend of plant-derived isoquinoline alkaloids (IQ) on the growth performance, protein catabolism, intestinal barrier function, and inflammatory status of HS-treated chickens. Three hundred sixty 0-day-old Ross 308 male broiler chickens were randomly distributed into 2 treatment groups: control diet (no additives) or diet supplemented with 100 ppm IQ. At day 14, the chicks in each diet group were further divided into 2 groups, each of which was reared under thermoneutral (TN) (22.4°C) or constant HS (33.0°C) conditions until day 42. Each group consisted of 6 replicates with 15 birds per replicate, and chickens were provided ad libitum access to water and feed. During days 15-21, the body weight gain (BWG) and feed intake (FI) were significantly lower in the HS treatment group than in the TN group, and feed conversion ratio was higher (P < 0.05); these factors were not alleviated by IQ supplementation. During days 22-42, the final BW, BWG, and FI of the HS birds were better among those administered IQ than those that were not (P < 0.05). HS treatment increased plasma lipid peroxide, corticosterone, and uric acid concentrations as well as serum fluorescein isothiocyanate-dextran, a marker of intestinal barrier function, and decreased plasma total protein content (P < 0.05). These changes were not observed in the IQ group, suggesting that IQ supplementation improved oxidative damage, protein catabolism, and intestinal barrier function of chickens under HS. Isoquinoline alkaloid supplementation inhibited the expression of intestinal inflammatory factors, IL-6, tumor necrosis factor-like factor 1A, and inducible nitric oxide synthase under HS treatment (P < 0.05). These results suggest that IQ supplementation can improve the growth performance of broiler chickens under HS conditions, which may be associated with amelioration of oxidative damage, protein catabolism, intestinal barrier function, and inflammation.


Subject(s)
Alkaloids/pharmacology , Chickens/physiology , Heat-Shock Response/physiology , Intestines/drug effects , Isoquinolines/administration & dosage , Alkaloids/administration & dosage , Animal Feed/analysis , Animals , Chickens/growth & development , Diet/veterinary , Dietary Supplements , Hot Temperature , Intestines/physiology , Isoquinolines/chemistry , Male
18.
Life Sci ; 275: 119254, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33636174

ABSTRACT

AIMS: Defective tight junctions (TJs) can induce intestinal epithelial dysfunction, which participates in various diseases such as irritable bowel syndrome. However, the mechanisms of TJ defects remain unclear. Our study revealed the role of Piezo1 in regulating intestinal epithelial function and TJs. MATERIALS AND METHODS: The human colonic adenocarcinoma cell line Caco-2 were cultured on Transwell plate to form an epithelial barrier in vitro, and Piezo1 expression was manipulated using a lentivirus vector. Epithelial function was evaluated by measuring transepithelial electronic resistance (TEER) and 4-kDa FITC-dextran (FD4) transmission. TJ proteins (claudin-1, occludin, ZO-1) were evaluated by RT-PCR, western blot, and immunostaining analysis. Potential signal pathways, including the ROCK and Erk pathways, were detected. Moreover, to explore the regulatory effect of Piezo1 activity on epithelial function, inhibitors (ruthenium red, GsMTx4) and an agonist (Yoda1) were introduced both ex vivo and in vitro. KEY FINDINGS: Alteration of Piezo1 expression altered epithelial function and the expression of the tight junction protein claudin-1. Piezo1 expression regulated phosphorylated ROCK1/2 expression, whereas interference on ROCK1/2 prevented the regulation of claudin-1 by Piezo1. In both Caco-2 monolayer and mouse colon epithelium, Piezo1 activity directly modulated epithelial function and permeability. SIGNIFICANCE: Piezo1 negatively regulates epithelial barrier function by affecting the expression of claudin-1. Such regulation may be achieved partially via the ROCK1/2 pathway. Moreover, activating Piezo1 can induce epithelial dysfunction.


Subject(s)
Claudin-1/physiology , Intestinal Mucosa/physiology , Ion Channels/physiology , Signal Transduction , rho-Associated Kinases/metabolism , Animals , Blotting, Western , Caco-2 Cells , Claudin-1/metabolism , Humans , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Occludin/metabolism , Occludin/physiology , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/physiology
19.
Int J Pharm ; 592: 120047, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33171262

ABSTRACT

Extensive efforts have been directed toward developing novel easily digested formulations with desirable controlled-release properties. The present study sought to develop pH-responsive oral gel formulations using combinations of gelatin and enteric polymers for controlled drug release under stimulated gastric conditions using acetaminophen and fluorescein isothiocyanate (FITC)-labeled dextran as model compounds. Hydroxypropyl methylcellulose phthalate (HPMCP) was identified as the optimal excipient for the pH-responsive drug release system because the release rates of acetaminophen in gelatin/HPMCP gels at pH 1.2 were exceedingly lower than those in other polymer-containing gels. Texture profile analysis of gelatin/HPMCP gels revealed the optimal content of excipients concerning ingestibility. FITC-labeled dextran of varying molecular weights was used to investigate the mechanism of compound release from the gelatin/HPMCP system under acidic conditions. The release properties practically depended on the molecular weight of FITC-dextran, and the compound release rate was proportional to the square root of time. The matrix structures of gelatin/HPMCP gels at low pH offer advantageous pH-responsive drug release profiles.


Subject(s)
Gelatin , Methylcellulose , Drug Liberation , Gels , Hydrogen-Ion Concentration , Methylcellulose/analogs & derivatives
20.
Methods Mol Biol ; 2367: 165-175, 2021.
Article in English | MEDLINE | ID: mdl-32803536

ABSTRACT

Whereas physiological vascular permeability (VP) mediates selective transport of plasma, electrolytes, proteins, and cells across an intact endothelial barrier, pathological VP results in the loss of endothelial barrier integrity. Whereas physiological VP is a feature of regular host defense and tissue repair, compromised barrier function may lead to aberrant vascular leakage, concurrent tissue edema, and inflammation eventually causing life-threatening conditions such as acute lung injury or acute respiratory distress syndrome, cancer, kidney injury, etc. Measurement of VP helps to identify, design, and optimize anti-leak therapies. Further, it can define the effect of a stimulus or a gene modulation in endothelial-barrier regulation. The degree of VP can be of importance to determine the stage of cancer and disease prognosis. This chapter discusses Miles assay, which is a well-established, relatively simple, and a reliable in vivo technique to assess VP as a surrogate measurement. Although a reliable technique, Miles assay is time-consuming, and the technique does not consider the compounding factors that may increase VP independently of endothelial-barrier regulation, such as blood pressure or blood flow. As an alternative, we describe fluorescein isothiocyanate-dextran lung permeability assay, a method that can also be adapted to measure VP and edema in other organs such as the brain and kidney.


Subject(s)
Capillary Permeability , Acute Lung Injury , Brain , Humans , Inflammation , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...