Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Environ Pollut ; 341: 122991, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37995957

ABSTRACT

The usage of typical pharmaceuticals and personal care products (PPCPs) such as cardiovascular and lipid-modulating drugs in clinical care accounts for the largest share of pharmaceutical consumption in most countries. Atorvastatin (ATV), one of the most commonly used lipid-lowering drugs, is frequently detected with lower concentrations in aquatic environments owing to its wide application, low removal, and degradation rates. However, the adverse effects of ATV on non-target aquatic organisms, especially the molecular mechanisms behind the toxic effects, still remain unclear. Therefore, this study investigated the potentially toxic effects of ATV exposure (including environmental concentrations) on yellowstripe goby (Mugilogobius chulae) and addressed the multi-dimensional responses. The results showed that ATV caused typical hepatotoxicity to M. chulae. ATV interfered with lipid metabolism by blocking fatty acid ß-oxidation and led to the over-consumption of lipids. Thus, the exposed organism was obliged to alter the energy supply patterns and substrates utilization pathways to keep the normal energy supply. In addition, the higher concentration of ATV exposure caused oxidative stress to the organism. Subsequently, M. chulae triggered the autophagy and apoptosis processes with the help of key stress-related transcriptional regulators FOXOs and Sestrins to degrade the damaged organelles and proteins to maintain intracellular homeostasis.


Subject(s)
Lipid Metabolism , Perciformes , Animals , Atorvastatin/toxicity , Atorvastatin/metabolism , Perciformes/metabolism , Aquatic Organisms/metabolism , Proteins/metabolism , Energy Metabolism
2.
J Cardiovasc Dev Dis ; 10(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37754811

ABSTRACT

Sirtuins belong to the class III histone deacetylases and possess nicotinamide adenine dinucleotide-dependent deacetylase activity. They are involved in the regulation of multiple signaling pathways implicated in cardiovascular diseases. Autophagy is a crucial adaptive cellular response to stress stimuli. Mounting evidence suggests a strong correlation between Sirtuins and autophagy, potentially involving cross-regulation and crosstalk. Sirtuin-mediated autophagy plays a crucial regulatory role in some cardiovascular diseases, including atherosclerosis, ischemia/reperfusion injury, hypertension, heart failure, diabetic cardiomyopathy, and drug-induced myocardial damage. In this context, we summarize the research advancements pertaining to various Sirtuins involved in autophagy and the molecular mechanisms regulating autophagy. We also elucidate the biological function of Sirtuins across diverse cardiovascular diseases and further discuss the development of novel drugs that regulate Sirtuin-mediated autophagy.

3.
Cell Mol Neurobiol ; 43(6): 2953-2962, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36988771

ABSTRACT

Alzheimer's disease (AD) is a progressive neuroinflammatory and neurodegenerative disorder that affects different regions of the brain. Its pathophysiology includes the accumulation of ß-amyloid protein, formation of neurofibrillary tangles, and inflammatory processes. Genetic factors are involved in the onset of AD, but they are not fully elucidated. Identification of gene expression in encephalic tissues of patients with AD may help elucidate its development. Our objectives were to characterize and compare the gene expression of CDK10, CDK11, FOXO1, and FOXO3 in encephalic tissue samples from AD patients and elderly controls, from the auditory cortex and cerebellum. RT-qPCR was used on samples from 82 individuals (45 with AD and 37 controls). We observed a statistically significant increase in CDK10 (p = 0.029*) and CDK11 (p = 0.048*) gene expression in the AD group compared to the control, which was most evident in the cerebellum. Furthermore, the Spearman test demonstrated the presence of a positive correlation of gene expression both in the auditory cortex in the AD group (r = 0.046/p = 0.004) and control group (r = 0.454/p = 0.005); and in the cerebellum in the AD group (r = 0.654 /p < 0.001). There was no statistically significant difference and correlation in the gene expression of FOXO1 and FOXO3 in the AD group and the control. In conclusion, CDK10 and CDK11 have high expression in AD patients compared to control, and they present a positive correlation of gene expression in the analyzed groups and tissues, which suggests that they play an important role in the pathogenesis of AD.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/metabolism , Brain/metabolism , Gene Expression , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/genetics , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism
4.
Endocr J ; 70(3): 249-257, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36754416

ABSTRACT

Cerebrovascular diseases, such as stroke and cardiovascular disease, are one of the leading causes of death in Japan. Type 2 diabetes is the most common form of diabetes and an important risk factor for these diseases. Among various pathological conditions associated with type 2 diabetes, insulin resistance has already been reported to be an important risk factor for diabetic complications. The major sites of insulin action in glucose metabolism in the body include the liver, skeletal muscle, and adipose tissue. However, insulin signaling molecules are also constitutively expressed in vascular endothelial cells, vascular smooth muscle, and monocytes/macrophages. Forkhead box class O family member proteins (FoxOs) of transcription factors play important roles in regulating glucose and lipid metabolism, oxidative stress response and redox signaling, and cell cycle progression and apoptosis. FoxOs in vascular endothelial cells strongly promote arteriosclerosis by suppressing nitric oxide production, enhancing inflammatory response, and promoting cellular senescence. In addition, primary aldosteronism and Cushing's syndrome are known to have adverse effects on the cardiovascular system, apart from hypertension, diabetes, and dyslipidemia. In the treatment of endocrine disorders, hormonal normalization by surgical treatment and receptor antagonists play an important role in preventing cardiovascular complications.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/complications , Endothelial Cells/metabolism , Insulin/metabolism , Cardiovascular Diseases/complications , Forkhead Transcription Factors/metabolism
5.
Article in English | MEDLINE | ID: mdl-36455829

ABSTRACT

Fluoride (F) is an environmental pollutant that continues to threaten human health. Long-term or excessive fluoride exposure can cause a series of acute or chronic systemic and organ-specific diseases. The liver is considered to be one of the important target organs of fluoride poisoning, however, the specific cause of liver damage caused by fluoride is still unclear. In the present study, we identified ferroptosis as a key mechanism of fluoride-induced liver injury. Under fluorosis conditions, lipid peroxidation levels in the liver are significantly increased and iron overload is induced. Combined transcriptomic and metabolomic analysis revealed that activation of the SIRT1/FOXOs pathway is one of the main causes of fluorosis-induced liver damage. Further analysis by in vitro experiments showed that the SIRT1/FOXOs pathway can cause the activation of the Nrf2/HO-1 pathway under the condition of fluorosis, and can activate the P53-dependent ferroptosis pathway, leading to the occurrence of lipid peroxidation and iron accumulation, ultimately leading to ferroptosis. Our study provides insight into the mechanism of fluoride-induced liver injury, and our results also provide strategies for treatment to alleviate liver injury caused by fluorosis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Fluorides , Fluorides/toxicity , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals
6.
Bone Rep ; 19: 101664, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38163012

ABSTRACT

Hydrogen peroxide (H2O2), superoxide anion radical (O2-•), and other forms of reactive oxygen species (ROS) are produced by the vast majority of mammalian cells and can contribute both to cellular homeostasis and dysfunction. The NADPH oxidases (NOX) enzymes and the mitochondria electron transport chain (ETC) produce most of the cellular ROS. Multiple antioxidant systems prevent the accumulation of excessive amounts of ROS which cause damage to all cellular macromolecules. Many studies have examined the contribution of ROS to different bone cell types and to skeletal physiology and pathophysiology. Here, we discuss the role of H2O2 and O2-• and their major enzymatic sources in osteoclasts and osteoblasts, the fundamentally different ways via which these cell types utilize mitochondrial derived H2O2 for differentiation and function, and the molecular mechanisms that impact and are altered by ROS in these cells. Particular emphasis is placed on evidence obtained from mouse models describing the contribution of different sources of ROS or antioxidant enzymes to bone resorption and formation. Findings from studies using pharmacological or genetically modified mouse models indicate that an increase in H2O2 and perhaps other ROS contribute to the loss of bone mass with aging and estrogen deficiency, the two most important causes of osteoporosis and increased fracture risk in humans.

7.
Front Pharmacol ; 13: 1018480, 2022.
Article in English | MEDLINE | ID: mdl-36386197

ABSTRACT

Elderly male patients are susceptible to develop osteoporosis and sarcopenia, especially those with fragility fractures, hypogonadism, and prostate cancer with androgen deprivation therapy. However, at present, very few treatments are available for men with sarcopenia. Previous preclinical studies in ovariectomized rats have shown the promising effects of eldecalcitol in ameliorating the bone strength and muscle atrophy. We thus investigated the effects of eldecalcitol on androgen-deficient male mice. Six-week-old male mice underwent orchiectomy (ORX) or sham surgery. Mice were randomly divided into 4 groups (n = 12/per group), including 1) sham mice, 2) ORX group, 3) ORX eldecalcitol 30 ng/kg, and 4) ORX eldecalcitol 50 ng/kg. Eldecalcitol increased bone mass and strength of femur in ORX mice. Eldecalcitol 30 ng/kg dose completely rescued ORX-induced muscle weakness. The RT-qPCR showed that eldecalcitol enhanced the mRNA levels of type I and IIa fibers. The expression levels of MuRF1 and Atrogin-1 of gastrocnemius in the eldecalcitol groups were much lower than that of the ORX group. It is assumed that eldecalcitol potentially acts via PI3K/AKT/FOXOs signaling pathway. These findings provide evidence for evaluating eldecalcitol as an investigational treatment for male patients with sarcopenia and osteoporosis.

8.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233176

ABSTRACT

Forkhead box O transcription factors (FoxOs) play an important role in maintaining normal cell physiology by regulating survival, apoptosis, autophagy, oxidative stress, the development and maturation of T and B lymphocytes, and the secretion of inflammatory cytokines. Cell types whose functions are regulated by FoxOs include keratinocytes, mucosal dermis, neutrophils, macrophages, dendritic cells, tumor-infiltrating activated regulatory T (Tregs) cells, B cells, and natural killer (NK) cells. FoxOs plays a crucial role in physiological and pathological immune responses. FoxOs control the development and function of Foxp3+ Tregs. Treg cells and Th17 cells are subsets of CD4+ T cells, which play an essential role in immune homeostasis and infection. Dysregulation of the Th17/Treg cell balance has been implicated in the development and progression of several disorders, such as autoimmune diseases, inflammatory diseases, and cancer. In addition, FoxOs are stimulated by the mitogen-activated protein (MAP) kinase pathway and inhibited by the PI3 kinase/AKT pathway. Downstream target genes of FoxOs include pro-inflammatory signaling molecules (toll-like receptor (TLR) 2, TLR4, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α), chemokine receptors (CCR7 and CXCR2), B-cell regulators (APRIL and BLYS), T-regulatory modulators (Foxp3 and CTLA-4), and DNA repair enzymes (GADD45α). Here, we review the recent progress in our understanding of FoxOs as the key molecules involved in immune cell differentiation and its role in the initiation of autoimmune diseases caused by dysregulation of immune cell balance. Additionally, in various diseases, FoxOs act as a cancer repressor, and reviving the activity of FoxOs forces Tregs to egress from various tissues. However, FoxOs regulate the cytotoxicity of both CD8+ T and NK cells against tumor cells, aiding in the restoration of redox and inflammatory homeostasis, repair of the damaged tissue, and activation of immune cells. A better understanding of FoxOs regulation may help develop novel potential therapeutics for treating immune/oxidative stress-related diseases.


Subject(s)
Autoimmune Diseases , Neoplasms , Autoimmune Diseases/metabolism , CTLA-4 Antigen/metabolism , Cytokines/metabolism , Forkhead Transcription Factors/metabolism , Humans , Interleukins/metabolism , Mitogens/metabolism , Neoplasms/metabolism , Oxidation-Reduction , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CCR7/metabolism , T-Lymphocytes, Regulatory , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factors/metabolism
9.
Diabetol Int ; 13(4): 591-598, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36117926

ABSTRACT

Among the various pathological conditions associated with type 2 diabetes, insulin resistance has long been reported to be a potent risk factor for diabetic complications. The liver, skeletal muscle, and adipose tissue are the major organs of action of insulin in systemic glucose metabolism, but insulin receptors and their downstream insulin signaling molecules are also constitutively expressed in vascular endothelial cells, vascular smooth muscle, and monocytes/macrophages. Forkhead box class O family member proteins (FoxOs) of transcription factors are essential regulators of cellular homeostasis, including glucose and lipid metabolism, oxidative stress response and redox signaling, cell cycle progression and apoptosis. In vascular endothelial cells, FoxOs strongly promote atherosclerosis via suppressing nitric oxide production and enhancing inflammatory responses. In liver sinusoidal endothelial cells, FoxOs induces hepatic insulin resistance by inducing nitration of insulin receptor in hepatocytes. Insulin resistance in adipose tissue limits capacity of lipid accumulation in adipose tissue, which promotes ectopic lipid accumulation and organ dysfunction in liver, vascular, and kidney. Modulation of insulin sensitivity in adipose tissue to induce healthy adipose expansion is expected to be a promising strategy for diabetic complications.

10.
J Mol Med (Berl) ; 100(7): 997-1015, 2022 07.
Article in English | MEDLINE | ID: mdl-35680690

ABSTRACT

Gastric cancer (GC) is the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death with an oncological origin. Despite its decline in incidence and mortality in recent years, GC remains a global public problem that seriously threatens patients' health and lives. The forkhead box O proteins (FOXOs) are a family of evolutionarily conserved transcription factors (TFs) with crucial roles in cell fate decisions. In mammals, the FOXO family consists of four members FOXO1, 3a, 4, and 6. FOXOs play crucial roles in a variety of biological processes, such as development, metabolism, and stem cell maintenance, by regulating the expression of their target genes in space and time. An accumulating amount of evidence has shown that the dysregulation of FOXOs is involved in GC progression by affecting multiple cellular processes, including proliferation, apoptosis, invasion, metastasis, cell cycle progression, carcinogenesis, and resistance to chemotherapeutic drugs. In this review, we systematically summarize the recent findings on the regulatory mechanisms of FOXO family expression and activity and elucidate its roles in GC progression. Moreover, we also highlight the clinical implications of FOXOs in GC treatment.


Subject(s)
Stomach Neoplasms , Animals , Apoptosis , Carcinogenesis , Cell Differentiation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Mammals/metabolism , Stomach Neoplasms/genetics
11.
Aging Dis ; 12(7): 1713-1728, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34631216

ABSTRACT

FoxOs and their post-translational modification by phosphorylation, acetylation, and methylation can affect epigenetic modifications and promote the expression of downstream target genes. Therefore, they ultimately affect cellular and biological functions during aging or occurrence of age-related diseases including cancer, diabetes, and kidney diseases. As known for its key role in aging, FoxOs play various biological roles in the aging process by regulating reactive oxygen species, lipid accumulation, and inflammation. FoxOs regulated by PI3K/Akt pathway modulate the expression of various target genes encoding MnSOD, catalases, PPARγ, and IL-1ß during aging, which are associated with age-related diseases. This review highlights the age-dependent differential regulatory mechanism of Akt/FoxOs axis in metabolic and non-metabolic organs. We demonstrated that age-dependent suppression of Akt increases the activity of FoxOs (Akt/FoxOs axis upregulation) in metabolic organs such as liver and muscle. This Akt/FoxOs axis could be modulated and reversed by antiaging paradigm calorie restriction (CR). In contrast, hyperinsulinemia-mediated PI3K/Akt activation inhibited FoxOs activity (Akt/FoxOs axis downregulation) leading to decrease of antioxidant genes expression in non-metabolic organs such as kidneys and lungs during aging. These phenomena are reversed by CR. The results of studies on the process of aging and CR indicate that the Akt/FoxOs axis plays a critical role in regulating metabolic homeostasis, redox stress, and inflammation in various organs during aging process. The benefical actions of CR on the Akt/FoxOs axis in metabolic and non-metabolic organs provide further insights into the molecular mechanisms of organ-differential roles of Akt/FoxOs axis during aging.

12.
Redox Biol ; 46: 102101, 2021 10.
Article in English | MEDLINE | ID: mdl-34418600

ABSTRACT

Forkhead box, class O (FoxO) family members are multifunctional transcription factors that are involved in several metabolic processes, including energy metabolism, apoptosis, DNA repair, and oxidative stress. However, their roles in skin health have not been well-documented. Recent studies have indicated that FoxOs are important factors to control skin homeostasis and health. The activation or deactivation of some FoxO family members is closely related to melanogenesis, wound healing, acne, and melanoma. In this review, we have discussed the recent findings that demonstrate the relationship between FoxOs and skin health as well as the underlying mechanisms associated with their functions.


Subject(s)
Forkhead Transcription Factors , Skin Aging , Apoptosis , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Oxidative Stress , Skin/metabolism
13.
Reprod Toxicol ; 104: 85-95, 2021 09.
Article in English | MEDLINE | ID: mdl-34224824

ABSTRACT

Isotretinoin (13-cis-retinoic acid), a derivative of vitamin A, is used in the treatment of severe acne resulting in sebum suppression induced by sebocyte apoptosis. Isotretinoin treatment is associated with several adverse effects including teratogenicity, hepatotoxicity, and dyslipidemia. Isotretinoin's effects on endocrine systems and its potential role as an endocrine disruptor are not yet adequately investigated. This review presents clinical, endocrine, and molecular evidence showing that isotretinoin treatment adversely affects the pituitary-ovarian axis and enhances the risk of granulosa cell apoptosis reducing follicular reserve. Isotretinoin is associated with pro-apoptotic signaling in sebaceous glands through upregulated expression of p53, forkhead box O transcription factors (FOXO1, FOXO3), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Two literature searches including clinical and experimental studies respectively support the hypothesis that isotretinoin's toxicological mode of action on the pituitary-ovarian axis might be caused by over-expressed p53/FOXO1 signaling resulting in gonadotropin suppression and granulosa cell apoptosis. The reduction of follicular reserve by isotretinoin treatment should be especially considered when this drug will be administered for the treatment of acne in post-adolescent women, in whom fertility may be adversely affected. In contrast, isotretinoin treatment may exert beneficial effects in states of hyperandrogenism, especially in patients with polycystic ovary syndrome.


Subject(s)
Isotretinoin/toxicity , Teratogens/toxicity , Acne Vulgaris/chemically induced , Acne Vulgaris/drug therapy , Acne Vulgaris/metabolism , Adolescent , Apoptosis/drug effects , Female , Humans , Ovary/drug effects , Pituitary Gland/metabolism , Polycystic Ovary Syndrome/chemically induced , Signal Transduction/drug effects , Teratogenesis
14.
Aging Cell ; 20(8): e13431, 2021 08.
Article in English | MEDLINE | ID: mdl-34250734

ABSTRACT

The mechanistic target of rapamycin (mTOR) has gathered significant attention as a ubiquitously expressed multimeric kinase with key implications for cell growth, proliferation, and survival. This kinase forms the central core of two distinct complexes, mTORC1 and mTORC2, which share the ability of integrating environmental, nutritional, and hormonal cues but which regulate separate molecular pathways that result in different cellular responses. Particularly, mTORC1 has been described as a major negative regulator of endosomal biogenesis and autophagy, a catabolic process that degrades intracellular components and organelles within the lysosomes and is thought to play a key role in human health and disease. In contrast, the role of mTORC2 in the regulation of autophagy has been considerably less studied despite mounting evidence this complex may regulate autophagy in a different and perhaps complementary manner to that of mTORC1. Genetic ablation of unique subunits is currently being utilized to study the differential effects of the two mTOR complexes. RICTOR is the best-described subunit specific to mTORC2 and as such has become a useful tool for investigating the specific actions of this complex. The development of complex-specific inhibitors for mTORC2 is also an area of intense interest. Studies to date have demonstrated that mTORC1/2 complexes each signal to a variety of exclusive downstream molecules with distinct biological roles. Pinpointing the particular effects of these downstream effectors is crucial toward the development of novel therapies aimed at accurately modulating autophagy in the context of human aging and disease.


Subject(s)
Autophagy/immunology , Mechanistic Target of Rapamycin Complex 2/metabolism , Humans
15.
Neurochem Res ; 46(11): 2761-2775, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34075521

ABSTRACT

Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.


Subject(s)
Depression/metabolism , Forkhead Transcription Factors/metabolism , Signal Transduction/physiology , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Forkhead Box Protein O1/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Norepinephrine/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Serotonin/metabolism , Signal Transduction/drug effects
16.
Cell Mol Life Sci ; 78(8): 3817-3851, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33580835

ABSTRACT

Cells use mitophagy to remove dysfunctional or excess mitochondria, frequently in response to imposed stresses, such as hypoxia and nutrient deprivation. Mitochondrial cargo receptors (MCR) induced by these stresses target mitochondria to autophagosomes through interaction with members of the LC3/GABARAP family. There are a growing number of these MCRs, including BNIP3, BNIP3L, FUNDC1, Bcl2-L-13, FKBP8, Prohibitin-2, and others, in addition to mitochondrial protein targets of PINK1/Parkin phospho-ubiquitination. There is also an emerging link between mitochondrial lipid signaling and mitophagy where ceramide, sphingosine-1-phosphate, and cardiolipin have all been shown to promote mitophagy. Here, we review the upstream signaling mechanisms that regulate mitophagy, including components of the mitochondrial fission machinery, AMPK, ATF4, FoxOs, Sirtuins, and mtDNA release, and address the significance of these pathways for stress responses in tumorigenesis and metastasis. In particular, we focus on how mitophagy modulators intersect with cell cycle control and survival pathways in cancer, including following ECM detachment and during cell migration and metastasis. Finally, we interrogate how mitophagy affects tissue atrophy during cancer cachexia and therapy responses in the clinic.


Subject(s)
Carcinogenesis/metabolism , Mitochondria/metabolism , Mitophagy , Neoplasms/metabolism , Animals , Carcinogenesis/pathology , Humans , Mitochondria/pathology , Mitochondrial Dynamics , Neoplasm Metastasis/pathology , Neoplasms/pathology
17.
Cells ; 9(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32629884

ABSTRACT

Forkhead box O transcription factors (FOXOs) regulate several signaling pathways and play crucial roles in health and disease. FOXOs are key regulators of the expression of genes involved in multiple cellular processes and their deregulation has been implicated in cancer. FOXOs are generally considered tumor suppressors and evidence also suggests that they may have a role in the regulation of cancer metabolism and angiogenesis. In order to continue growing and proliferating, tumor cells have to reprogram their metabolism and induce angiogenesis. Angiogenesis refers to the process of new blood capillary formation from pre-existing vessels, which is an essential driving force in cancer progression and metastasis through supplying tumor cells with oxygen and nutrients. This review summarizes the roles of FOXOs in the regulation of cancer metabolism and angiogenesis. A deeper knowledge of the involvement of FOXOs in these two key processes involved in cancer dissemination may help to develop novel therapeutic approaches for cancer treatment.


Subject(s)
Forkhead Transcription Factors/genetics , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Animals , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplasms/pathology , Neovascularization, Pathologic/genetics
18.
Mol Cell Endocrinol ; 517: 110871, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32450284

ABSTRACT

FOXOs belong to the forkhead transcription factor superfamily, several of which are suggested to be involved in the control of food intake. Previously, we proved that the neuropeptide FF (NPFF) peptide was involved in feeding regulation in spotted sea bass. In the present study, seven members of the foxo family were identified in the whole genome of spotted sea bass. The distributions of these genes in different tissues were analyzed by qRT-PCR. Variations in the foxo1a and npff expression profiles during short-term starvation showed similar expression patterns. The colocalization of foxo1a and npff in the telencephalon, hypothalamus, stomach and intestine further provided evidence that foxo1a may act directly to promote the transcription of npff. Thirteen predicted FOXO1 binding sites were found in the 5' upstream region of npff. Luciferase assay results showed that FOXO1A was able to activate npff transcriptional responses by directly binding DNA response elements, and the key regulatory areas and sites of FOXO1A on the npff promoter were confirmed by deletion and site-directed mutagenesis analyses. These findings may help to elucidate the role of FOXO1 in the regulation of feeding processes in teleosts.


Subject(s)
Bass/genetics , Feeding Behavior , Forkhead Box Protein O1/physiology , Gene Expression Regulation , Oligopeptides/biosynthesis , Animals , Base Sequence , Binding Sites , Brain Chemistry , Cells, Cultured , Conserved Sequence , Gastrointestinal Tract/chemistry , Genes, Reporter , Models, Molecular , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Oligopeptides/genetics , Organ Specificity , Phylogeny , Promoter Regions, Genetic , Protein Domains , Random Allocation , Recombinant Proteins/metabolism , Starvation/genetics , Transcription, Genetic , Vertebrates/genetics
19.
J Trace Elem Med Biol ; 61: 126508, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32305626

ABSTRACT

BACKGROUND: Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE: This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS: Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.


Subject(s)
Organometallic Compounds/pharmacology , Vanadium/pharmacology , Animals , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacology , Anticholesteremic Agents/adverse effects , Anticholesteremic Agents/pharmacology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Cardiotonic Agents/adverse effects , Cardiotonic Agents/pharmacology , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacology , Neuroprotective Agents/adverse effects , Neuroprotective Agents/pharmacology , Organometallic Compounds/adverse effects , Vanadium/adverse effects
20.
Int J Mol Sci ; 21(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973091

ABSTRACT

Forkhead box class O family member proteins (FoxOs) are evolutionarily conserved transcription factors for their highly conserved DNA-binding domain. In mammalian species, all the four FoxO members, FoxO1, FoxO3, FoxO4, and FoxO6, are expressed in different organs. In bone, the first three members are extensively expressed and more studied. Bone development, remodeling, and homeostasis are all regulated by multiple cell lineages, including osteoprogenitor cells, chondrocytes, osteoblasts, osteocytes, osteoclast progenitors, osteoclasts, and the intercellular signaling among these bone cells. The disordered FoxOs function in these bone cells contribute to osteoarthritis, osteoporosis, or other bone diseases. Here, we review the current literature of FoxOs for their roles in bone cells, focusing on helping researchers to develop new therapeutic approaches and prevent or treat the related bone diseases.


Subject(s)
Bone and Bones/metabolism , Forkhead Transcription Factors/metabolism , Osteocytes/metabolism , Transcription Factors/metabolism , Bone Diseases/metabolism , Cell Cycle Proteins/metabolism , Cell Lineage , Chondrogenesis/physiology , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Transcription Factors/classification , Forkhead Transcription Factors/genetics , Hematopoietic Stem Cells , Osteoarthritis/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis/physiology , Osteoporosis/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...