Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
J Mech Behav Biomed Mater ; 160: 106760, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39366083

ABSTRACT

Extracranial carotid artery aneurysms (ECCA) lead to rupture and neurologic symptoms from embolisation, with potentially fatal outcomes. Investigating the biomechanical behaviour of EECA with blood flow dynamics is crucial for identifying regions more susceptible to rupture. A coupled three-dimensional (3D) Windkessel-framework and hyperelastic fluid-structure interaction (FSI) analysis of ECCAs with patient-specific geometries, was developed in this paper with a particular focus on hemodynamic parameters and the arterial wall's biomechanical response. The blood flow has been modelled as non-Newtonian, pulsatile, and turbulent. The biomechanical characteristics of the aneurysm and artery are characterised employing a 5-parameter Mooney-Rivlin hyperelasticity model. The Windkessel effect is also considered to efficiently simulate pressure profile of the outlets and to capture the dynamic changes over the cardiac cycle. The study found the aneurysm carotid artery exhibited the high levels of pressure, wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT) compared to the healthy one. The deformation of the arterial wall and the corresponding von Mises (VM) stress were found significantly increased in aneurysm cases, in comparison to that of no aneurysm cases, which strongly correlated with the hemodynamic characteristics of the blood flow and the geometric features of the aneurysms. This escalation would intensify the risk of aneurysm wall rupture. These findings have critical implications for enhancing treatment strategies for patients with extracranial aneurysms.

2.
Sci Rep ; 14(1): 22693, 2024 09 30.
Article in English | MEDLINE | ID: mdl-39349728

ABSTRACT

Wall Shear Stress (WSS) is one of the most important parameters used in cardiovascular fluid mechanics, and it provides a lot of information like the risk level caused by any vascular occlusion. Since WSS cannot be measured directly and other available relevant methods have issues like low resolution, uncertainty and high cost, this study proposes a novel method by combining computational fluid dynamics (CFD), fluid-structure interaction (FSI), conditional generative adversarial network (cGAN) and convolutional neural network (CNN) to predict coronary artery occlusion risk using only noninvasive images accurately and rapidly. First, a cGAN model called WSSGAN was developed to predict the WSS contours on the vessel wall by training and testing the model based on the calculated WSS contours using coupling CFD-FSI simulations. Then, an 11-layer CNN was used to classify the WSS contours into three grades of occlusions, i.e. low risk, medium risk and high risk. To verify the proposed method for predicting the coronary artery occlusion risk in a real case, the patient's Magnetic Resonance Imaging (MRI) images were converted into a 3D geometry for use in the WASSGAN model. Then, the predicted WSS contours by the WSSGAN were entered into the CNN model to classify the occlusion grade.


Subject(s)
Coronary Occlusion , Neural Networks, Computer , Humans , Coronary Occlusion/diagnostic imaging , Hydrodynamics , Magnetic Resonance Imaging/methods , Stress, Mechanical , Models, Cardiovascular , Male , Coronary Vessels/diagnostic imaging
3.
J Am Heart Assoc ; 13(19): e037129, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39291505

ABSTRACT

Coronary artery blood flow is influenced by various factors including vessel geometry, hemodynamic conditions, timing in the cardiac cycle, and rheological conditions. Multiple patterns of disturbed coronary flow may occur when blood flow separates from the laminar plane, associated with inefficient blood transit, and pathological processes modulated by the vascular endothelium in response to abnormal wall shear stress. Current simulation techniques, including computational fluid dynamics and fluid-structure interaction, can provide substantial detail on disturbed coronary flow and have advanced the contemporary understanding of the natural history of coronary disease. However, the clinical application of these techniques has been limited to hemodynamic assessment of coronary disease severity, with the potential to refine the assessment and management of coronary disease. Improved computational efficiency and large clinical trials are required to provide an incremental clinical benefit of these techniques beyond existing tools. This contemporary review is a clinically relevant overview of the disturbed coronary flow and its associated pathological consequences. The contemporary methods to assess disturbed flow are reviewed, including clinical applications of these techniques. Current limitations and future opportunities in the field are also discussed.


Subject(s)
Coronary Artery Disease , Coronary Circulation , Coronary Vessels , Models, Cardiovascular , Stress, Mechanical , Humans , Coronary Circulation/physiology , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/diagnostic imaging , Blood Flow Velocity/physiology , Hemodynamics/physiology , Computer Simulation , Hydrodynamics
4.
Sensors (Basel) ; 24(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39275692

ABSTRACT

Laser dazzling on complementary metal oxide semiconductor (CMOS) image sensors is an effective method in optoelectronic countermeasures. However, previous research mainly focused on the laser dazzling under far fields, with limited studies on situations that the far-field conditions were not satisfied. In this paper, we established a Fresnel diffraction model of laser dazzling on a CMOS by combining experiments and simulations. We calculated that the laser power density and the area of saturated pixels on the detector exhibit a linear relationship with a slope of 0.64 in a log-log plot. In the experiment, we found that the back side illumination (BSI-CMOS) matched the simulations, with an error margin of 3%, while the front side illumination (FSI-CMOS) slightly mismatched the simulations, with an error margin of 14%. We also found that the full-screen saturation threshold for the BSI-CMOS was 25% higher than the FSI-CMOS. Our work demonstrates the applicability of the Fresnel diffraction model for BSI-CMOS, which provides a valuable reference for studying laser dazzling.

5.
Sensors (Basel) ; 24(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39124087

ABSTRACT

Transcatheter aortic valve implantation (TAVI) was initially developed for adult patients, but there is a growing interest to expand this procedure to younger individuals with longer life expectancies. However, the gradual degradation of biological valve leaflets in transcatheter heart valves (THV) presents significant challenges for this extension. This study aimed to establish a multiphysics computational framework to analyze structural and flow measurements of TAVI and evaluate the integration of optical fiber and photoplethysmography (PPG) sensors for monitoring valve function. A two-way fluid-solid interaction (FSI) analysis was performed on an idealized aortic vessel before and after the virtual deployment of the SAPIEN 3 Ultra (S3) THV. Subsequently, an analytical analysis was conducted to estimate the PPG signal using computational flow predictions and to analyze the effect of different pressure gradients and distances between PPG sensors. Circumferential strain estimates from the embedded optical fiber in the FSI model were highest in the sinus of Valsalva; however, the optimal fiber positioning was found to be distal to the sino-tubular junction to minimize bending effects. The findings also demonstrated that positioning PPG sensors both upstream and downstream of the bioprosthesis can be used to effectively assess the pressure gradient across the valve. We concluded that computational modeling allows sensor design to quantify vessel wall strain and pressure gradients across valve leaflets, with the ultimate goal of developing low-cost monitoring systems for detecting valve deterioration.


Subject(s)
Heart Valve Prosthesis , Humans , Photoplethysmography/methods , Aortic Valve/physiology , Aortic Valve/surgery , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Transcatheter Aortic Valve Replacement , Hemodynamics/physiology , Optical Fibers
6.
J Biomed Mater Res B Appl Biomater ; 112(8): e35462, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39133764

ABSTRACT

Investigating the influence of different cellular mechanical and physical properties on cells in vitro is important for assessing cellular activities like differentiation, proliferation, and migration. Evaluating the mechanical response of the cells lodged on a scaffold due to variations in substrate roughness, substrate elasticity, fluid flow, and the shapes of the cells is the main goal of the study. In this comprehensive analysis, a combination of the fluid structure interaction method and the submodeled finite element technique was employed to anticipate the mechanical responses across various cells at the interface between cells and the substrate. Fluid inlet velocity, substrate roughness, and substrate material were varied in this analysis. Different cell shapes were considered along with various components such as cell membrane, cytoplasm, nucleus, and cytoskeletons. This analysis shows the effect of these individual parameters on the elastic strain and strain energy density of cells at the cell-substrate interface. The results highlight that substrate roughness has a more significant impact on the mechanical response of cells at the interface than substrate elasticity. However, effect of the substrate elasticity becomes crucial for extremely soft substrate materials. The results of this research can be applied to identify the optimal parameters for fluid flow and create a suitable condition for cell culture.


Subject(s)
Models, Biological , Humans , Perfusion , Finite Element Analysis , Elasticity , Stress, Mechanical
7.
Sci Rep ; 14(1): 16301, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009618

ABSTRACT

In vitro vascular models, primarily made of silicone, have been utilized for decades for studying hemodynamics and supporting the development of implants for catheter-based treatments of diseases such as stenoses and aneurysms. Hydrogels have emerged as prominent materials in tissue-engineering applications, offering distinct advantages over silicone models for fabricating vascular models owing to their viscoelasticity, low friction, and tunable mechanical properties. Our study evaluated the feasibility of fabricating thin-wall, anatomical vessel models made of polyvinyl alcohol hydrogel (PVA-H) based on a patient-specific carotid artery bifurcation using a combination of 3D printing and molding technologies. The model's geometry, elastic modulus, volumetric compliance, and diameter distensibility were characterized experimentally and numerically simulated. Moreover, a comparison with silicone models with the same anatomy was performed. A PVA-H vessel model was integrated into a mock circulatory loop for a preliminary ultrasound-based assessment of fluid dynamics. The vascular model's geometry was successfully replicated, and the elastic moduli amounted to 0.31 ± 0.007 MPa and 0.29 ± 0.007 MPa for PVA-H and silicone, respectively. Both materials exhibited nearly identical volumetric compliance (0.346 and 0.342% mmHg-1), which was higher compared to numerical simulation (0.248 and 0.290% mmHg-1). The diameter distensibility ranged from 0.09 to 0.20% mmHg-1 in the experiments and between 0.10 and 0.18% mmHg-1 in the numerical model at different positions along the vessel model, highlighting the influence of vessel geometry on local deformation. In conclusion, our study presents a method and provides insights into the manufacturing and mechanical characterization of hydrogel-based thin-wall vessel models, potentially allowing for a combination of fluid dynamics and tissue engineering studies in future cardio- and neurovascular research.


Subject(s)
Carotid Stenosis , Hydrogels , Models, Cardiovascular , Polyvinyl Alcohol , Humans , Carotid Stenosis/physiopathology , Polyvinyl Alcohol/chemistry , Hydrogels/chemistry , Printing, Three-Dimensional , Carotid Arteries/physiopathology , Carotid Arteries/diagnostic imaging , Elastic Modulus , Hemodynamics , Tissue Engineering/methods
8.
Comput Methods Programs Biomed ; 255: 108327, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39018788

ABSTRACT

BACKGROUND AND OBJECTIVE: Atherosclerotic lesions of coronary arteries (stenosis) are caused by the buildup of lipids and blood-borne substances within the artery wall. Their qualitative and rapid assessment is still a challenging task. The primary therapy for this pathology involves implanting coronary stents, which help to restore the blood flow in atherosclerosis-prone arteries. In-stent restenosis is a stenting-procedure complication detected in about 10-40% of patients. A numerical study using 2-way fluid-structure interaction (FSI) assesses the stenting procedure quality and can decrease the number of negative post-operative results. Nevertheless, boundary conditions (BCs) used in simulation play a crucial role in implementation of an adequate computational analysis. METHODS: Three CoCr stents designs were modelled with the suggested approach. A multi-layer structure describing the artery and plaque with anisotropic hyperelastic mechanical properties was adopted in this study. Two kinds of boundary conditions for a solid domain were examined - fixed support (FS) and remote displacement (RD) - to assess their impact on the hemodynamic parameters to predict restenosis. Additionally, the influence of artery elongation (short-artery model vs. long-artery model) on numerical results with the FS boundary condition was analyzed. RESULTS: The comparison of FS and RD boundary conditions demonstrated that the variation of hemodynamic parameters values did not exceed 2%. The analysis of short-artery and long-artery models revealed that the difference in hemodynamic parameters was less than 5.1%, and in most cases, it did not exceed 2.5%. The RD boundary conditions were found to reduce the computation time by up to 1.7-2.0 times compared to FS. Simple stent model was shown to be susceptible to restenosis development, with maximum WSS values equal to 183 Pa, compared to much lower values for other two stents. CONCLUSIONS: The study revealed that the stent design significantly affected the hemodynamic parameters as restenosis predictors. Moreover, the stress-strain state of the system artery-plaque-stent also depends on a proper choice of boundary conditions.


Subject(s)
Computer Simulation , Hemodynamics , Stents , Humans , Coronary Vessels/surgery , Coronary Vessels/physiopathology , Models, Cardiovascular , Stress, Mechanical , Coronary Restenosis , Arteries
9.
Sci Rep ; 14(1): 13346, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858490

ABSTRACT

This work focuses on the prediction and comparison of the fatigue life of topologically optimized pads in an externally adjustable fluid film (EAFF) bearing. It integrates one-way/two-way fluid-structure interaction analysis, topological optimization (TO), and design modifications of the pad of an externally adjustable fluid film bearing. The major goal is to create an optimum pad design that minimizes weight and maintains structural integrity, and then to predict and compare the fatigue life of these alternative designs. The outcomes of the present study are as follows: (i) Two-way FSI results show a decrease of 65.64% in hydrodynamic fluid film pressure when compared to one-way FSI results because they take into account modifications in the fluid region's geometry caused by pad deformation; (ii) even though the maximum pad deformation in optimized pad geometry (Type-4) resulting from oil film pressure is relatively small (0.0036551 mm), the influence of pad deformation on the fluid domain due to hydrodynamic fluid film pressure cannot be understated; and (iii) when comparing the TO technique's results with fatigue life results, four elongated holes in the radial direction (Type-4) are most appropriate.

10.
J Funct Biomater ; 15(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535269

ABSTRACT

Tissue-engineered heart valves can grow, repair, and remodel after implantation, presenting a more favorable long-term solution compared to mechanical and porcine valves. Achieving functional engineered valve tissue requires the maturation of human cells seeded onto valve scaffolds under favorable growth conditions in bioreactors. The mechanical stress and strain on developing valve tissue caused by different pressure and flow conditions in bioreactors are currently unknown. The aim of this study is to quantify the wall shear stress (WSS) magnitude in heart valve prostheses under different valve geometries and bioreactor flow rates. To achieve this, this study used fluid-structure interaction simulations to obtain the valve's opening geometries during the systolic phase. These geometries were then used in computational fluid dynamics simulations with refined near-wall mesh elements and ranges of prescribed inlet flow rates. The data obtained included histograms and regression curves that characterized the distribution, peak, and median WSS for various flow rates and valve opening configurations. This study also found that the upper region of the valve near the commissures experienced higher WSS magnitudes than the rest of the valve.

11.
Sci Rep ; 14(1): 6330, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491057

ABSTRACT

Compact multi-rotor unmanned aerial vehicles (UAVs) can be operated in many challenging environmental conditions. In case the UAV requires certain considerations in designing like lightweight, efficient propulsion system and others depending upon the application, the hybrid UAV comes into play when the usual UAV types cannot be sufficient to meet the requirements. The propulsion system for the UAV was selected to be coaxial rotors because it has a high thrust-to-weight ratio and to increase the efficiency of the propulsion system, a unique propeller was proposed to achieve higher thrust. The proposed propeller was uniquely designed by analyzing various airfoil sections under different Reynolds's number using X-Foil tool to obtain the optimum airfoil section for the propellers. Since the design with duct increases efficiency, the Hybrid UAV presented in this paper has the modified novel convergent-divergent (C-D)-based duct which is a simplified model of a conventional C-D duct. The yawing and rolling maneuverings of the UAV could be achieved by the thrust vectoring method so that the design is simpler from a structural and mechanical perspective. The use of UAVs has risen in recent years, especially compact UAVs, which can be applied for applications like surveillance, detection and inspection, and monitoring in a narrow region of space. The design of the UAV is modeled in CATIA, and its further performance enactment factors are picked from advanced computational simulations relayed bottom-up approach. The predominant computational fluid dynamics (CFD) and fluid structure interaction (FSI) investigations are imposed and optimized through Computational Analyses using Ansys Workbench 17.2, which includes analysis of structural behaviour of various alloys, CFRP and GFRP based composite materials. From the structural analysis Titanium alloy came out to be the best performing materials among the others by having lower total deformation and other parameters such as normal and equivalent stress. The dynamics control response is obtained using MATLAB Simulink. The validations are carried out on the propeller using a thrust stand for CFD and on the duct through a high-jet facility for structural outcomes to meet the expected outcome.

12.
Curr Top Dev Biol ; 156: 19-50, 2024.
Article in English | MEDLINE | ID: mdl-38556423

ABSTRACT

The cardiovascular development in vertebrates evolves in response to genetic and mechanical cues. The dynamic interplay among mechanics, cell biology, and anatomy continually shapes the hydraulic networks, characterized by complex, non-linear changes in anatomical structure and blood flow dynamics. To better understand this interplay, a diverse set of molecular and computational tools has been used to comprehensively study cardiovascular mechanobiology. With the continual advancement of computational capacity and numerical techniques, cardiovascular simulation is increasingly vital in both basic science research for understanding developmental mechanisms and disease etiologies, as well as in clinical studies aimed at enhancing treatment outcomes. This review provides an overview of computational cardiovascular modeling. Beginning with the fundamental concepts of computational cardiovascular modeling, it navigates through the applications of computational modeling in investigating mechanobiology during cardiac development. Second, the article illustrates the utility of computational hemodynamic modeling in the context of treatment planning for congenital heart diseases. It then delves into the predictive potential of computational models for elucidating tissue growth and remodeling processes. In closing, we outline prevailing challenges and future prospects, underscoring the transformative impact of computational cardiovascular modeling in reshaping cardiovascular science and clinical practice.


Subject(s)
Heart Defects, Congenital , Heart , Animals , Computer Simulation , Heart/physiology , Hemodynamics , Models, Cardiovascular
13.
Angew Chem Int Ed Engl ; 63(19): e202402456, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38415324

ABSTRACT

The solid electrolyte interphase (SEI) membrane on the Li metal anode tends to breakdown and undergo reconstruction during operation, causing Li metal batteries to experience accelerated decay. Notably, an SEI membrane with self-healing characteristics can help considerably in stabilizing the Li-electrolyte interface; however, uniformly fixing the repairing agent onto the anode remains a challenging task. By leveraging the noteworthy film-forming attributes of bis(fluorosulfonyl)imide (FSI-) anions and the photopolymerization property of the vinyl group, the ionic liquid 1-vinyl-3-methylimidazolium bis(fluorosulfonyl)imide (VMI-FSI) was crosslinked with polyethylene oxide (PEO) in this study to form a self-healing film fixing FSI- groups as the repairing agent. When they encounter lithium metal, the FSI- groups are chemically decomposed into LiF & Li3N, which assist forming SEI membrane on lithium sheet and repairing SEI membrane in the cracks lacerated by lithium dendrite. Furthermore, the FSI- anions exchanged from film are electrochemically decomposed to generate inorganic salts to strengthen the SEI membrane. Benefiting from the self-healing behavior of the film, Li/LiCoO2 cells with the loading of 16.3 mg cm-2 exhibit the initial discharge capacities of 183.0 mAh ⋅ g-1 and are stably operated for 500 cycles with the retention rates of 81.4 % and the average coulombic efficiency of 99.97 %, operated between 3.0-4.5 V vs. Li+/Li. This study presents a new design approach for self-healing Li metal anodes and durable lithium metal battery.

14.
Quant Imaging Med Surg ; 14(2): 1477-1492, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415169

ABSTRACT

Background: It has been suggested that biomechanical factors may influence plaque development. However, key determinants for assessing plaque vulnerability remain speculative. Methods: In this study, a two-dimensional (2D) structural mechanical analysis and a three-dimensional (3D) fluid-structure interaction (FSI) analysis were conducted based on intravascular optical coherence tomography (IV-OCT) and digital subtraction angiography (DSA) data sets. In the 2D study, 103 IV-OCT slices were analyzed. An in-depth morpho-mechanic analysis and a weighted least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify the crucial features related to plaque vulnerability via the tuning parameter (λ). In the 3D study, the coronary model was reconstructed by fusing the IV-OCT and DSA data, and a FSI analysis was subsequently performed. The relationship between vulnerable plaque and wall shear stress (WSS) was investigated. Results: The influential factors were selected using the minimum criteria (λ-min) and one-standard error criteria (λ-1se). In addition to the common vulnerable factor of the minimum fibrous cap thickness (FCTmin), four biomechanical factors were selected by λ-min, including the average/maximal displacements and average/maximal stress, and two biomechanical factors were selected by λ-1se, including the average/maximal displacements. Additionally, the positions of the vulnerable plaques were consistent with the sites of high WSS. Conclusions: Functional indices are crucial for plaque status assessment. An evaluation based on biomechanical simulations might provide insights into risk identification and guide therapeutic decisions.

15.
Ann Biomed Eng ; 52(6): 1604-1616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38418690

ABSTRACT

Left ventricular assist devices (LVADs) have been used off-label as long-term support of the right heart due to the lack of a clinically approved durable right VAD (RVAD). Whilst various techniques to reduce RVAD inflow cannula protrusion have been described, the implication of the protrusion length on right heart blood flow and subsequent risk of thrombosis remains poorly understood. This study investigates the influence of RVAD diaphragmatic cannulation length on right ventricular thrombosis risk using a patient-specific right ventricle in silico model validated with particle image velocimetry. Four cannulation lengths (5, 10, 15 and 25 mm) were evaluated in a one-way fluid-structure interaction simulation with boundary conditions generated from a lumped parameter model, simulating a biventricular supported condition. Simulation results demonstrated that the 25-mm cannulation length exhibited a lower thrombosis risk compared to 5-, 10- and 15-mm cannulation lengths due to improved flow energy distribution (25.2%, 24.4% and 17.8% increased), reduced stagnation volume (72%, 68% and 49% reduction), better washout rate (13.0%, 11.6% and 9.1% faster) and lower blood residence time (6% reduction). In the simulated scenario, our findings suggest that a longer RVAD diaphragmatic cannulation length may be beneficial in lowering thrombosis risk; however, further clinical studies are warranted.


Subject(s)
Catheterization , Computer Simulation , Heart Ventricles , Heart-Assist Devices , Models, Cardiovascular , Thrombosis , Humans , Heart Ventricles/physiopathology
16.
Mar Environ Res ; 195: 106340, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232436

ABSTRACT

In recent years, the region surrounding Sepetiba Bay (SB; SE Brazil) has become a hub of intense urban expansion and economic exploitation in response to ore transport and industrial and port activities. As a result, contaminants have been introduced into the bay, leading to an overall worsening of the environmental quality. The present work applies for the first time a foraminiferal morphology-based approach (M) and eDNA-based metabarcoding sequencing (G), along with geochemical data to assess the ecological quality status (EcoQS) in the SB. Principal component analysis shows that the eDNA and morphospecies diversity as well as most of the taxa relative abundance decline in response to the environmental stress (ES) gradient related to total organic carbon (TOC) and metal pollution. Based on ecological indices, Exp(H'bc) (G), Exp(H'bc) (M), foraminifera ATZI marine biotic index (Foram-AMBI), Foram Stress Index (FSI), and geochemical indices (TOC and Potential Ecological Risk Index), the lowest values of EcoQS (i.e., bad to moderate) are inferred in the innermost part of the SB. Despite minor discrepancies among the six EcoQS indices, an agreement has been found for 63% of the stations. To improve the agreement between the ecological indices, it is necessary to fill the gap in species ecology; information on the ecology of many species is still unknown. This work reinforces the importance of molecular analysis and morphological methods in environmental impact studies and confirms the reliability of foraminiferal metabarcoding in EcoQS assessment. This is the first study evaluating the EcoQS in the South Atlantic by using combined foraminiferal eDNA metabarcoding with morphological data.


Subject(s)
Foraminifera , Foraminifera/genetics , Environmental Monitoring/methods , Brazil , Bays , Reproducibility of Results , Biodiversity , Geologic Sediments/chemistry
17.
Comput Methods Programs Biomed ; 245: 108034, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244340

ABSTRACT

BACKGROUND AND OBJECTIVE: Fluid-structure interaction (FSI) is required in the study of several cardiovascular engineering problems were the mutual interaction between the pulsatile blood flow and the tissue structures is essential to establish the biomechanics of the system. Traditional FSI methods are partitioned approaches where two independent solvers, one for the fluid and one for the structure, are asynchronously coupled. This process results into high computational costs. In this work, a new FSI scheme which avoids the coupling of different solvers is presented in the framework of the truly incompressible smoothed particle hydrodynamics (ISPH) method. METHODS: In the proposed FSI method, ISPH particles contribute to define both the fluid and structural domains and are solved together in a unified system. Solid particles, geometrically defined at the beginning of the simulation, are linked through spring bounds with elastic constant providing the material Young's modulus. At each iteration, internal elastic forces are calculated to restore the springs resting length. These forces are added in the predictor step of the fractional-step procedure used to solve the momentum and continuity equations for incompressible flows of all particles. RESULTS: The method was validated with a benchmark test case consisting of a flexible beam immersed in a channel. Results showed good agreement with the system coupling approach of a well-established commercial software, ANSYS®, both in terms of fluid-dynamics and beam deformation. The approach was then applied to model a complex cardiovascular problem, consisting in the aortic valve operating function. The valve dynamics during opening and closing phases were compared qualitatively with literature results, demonstrating good consistency. CONCLUSIONS: The method is computationally more efficient than traditional FSI strategies, and overcomes some of their main drawbacks, such as the impossibility of simulating the correct valve coaptation during the closing phase. Thanks to the incompressibility scheme, the proposed FSI method is appropriate to model biological soft tissues. The simplicity and flexibility of the approach also makes it suitable to be expanded for the modelling of thromboembolic phenomena.


Subject(s)
Cardiovascular System , Models, Cardiovascular , Computer Simulation , Hemodynamics/physiology , Biomechanical Phenomena
18.
Biomech Model Mechanobiol ; 23(1): 129-143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37642807

ABSTRACT

Exercise and physical activity exert mechanical loading on the bones which induces bone formation. However, the relationship between the osteocyte lacunar-canalicular morphology and mechanical stress experienced locally by osteocytes transducing signals for bone formation is not fully understood. In this study, we used computational modeling to predict the effect of canalicular density, the number of fluid inlets, and load direction on fluid flow shear stress (FFSS) and bone strains and how these might change following the microstructural deterioration of the lacunar-canalicular network that occurs with aging. Four distinct computational models were initially generated of osteocytes with either ten or eighteen dendrites using a fluid-structure interaction method with idealized geometries. Next, a young and a simulated aged osteocyte were developed from confocal images after FITC staining of the femur of a 4-month-old C57BL/6 mouse to estimate FFSS using a computational fluid dynamics approach. The models predicted higher fluid velocities in the canaliculi versus the lacunae. Comparison of idealized models with five versus one fluid inlet indicated that with four more inlets, one-half of the dendrites experienced FFSS greater than 0.8 Pa, which has been associated with osteogenic responses. Confocal image-based models of real osteocytes indicated a six times higher ratio of canalicular to lacunar surface area in the young osteocyte model than the simulated aged model and the average FFSS in the young model (FFSS = 0.46 Pa) was three times greater than the aged model (FFSS = 0.15 Pa). Interestingly, the surface area with FFSS values above 0.8 Pa was 23 times greater in the young versus the simulated aged model. These findings may explain the impaired mechano-responsiveness of osteocytes with aging.


Subject(s)
Aging , Osteocytes , Mice , Animals , Osteocytes/physiology , Stress, Mechanical , Mice, Inbred C57BL , Computer Simulation , Dendrites
19.
Biomed Tech (Berl) ; 69(1): 39-48, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37540807

ABSTRACT

OBJECTIVES: The main purpose of this paper is to investigate the upper airway (oral and/or nasal) with different inhalation speeds and obstruction depths to generate remarkable notes on palatal snoring and obstructive sleep apnea (OSA). Another important aspect is to study different soft palate biomechanical properties and their relationships with different physical parameters on palatal snoring and OSA. METHODS: The human upper-airway is modelled in 2D, and a cantilever plate model principle is adopted for the soft palate during fluid-structure interaction (FSI) simulations. Various scenarios are investigated under different inhalation speeds to characterize palatal snoring and OSA in terms of relevant physical parameters. RESULTS: The parameters most prone for palatal snoring and OSA are obtained for soft material, the highest obstruction depth, and oral inhalation. Also, it is shown that the biomechanical properties of the human upper airway are the most sensitive parameters affecting the dynamics of the soft palate. CONCLUSIONS: The numerical modeling approach presented allows a better understanding of palatal snoring and may be useful for confirming clinical results as well as for further design of new treatments and therapies.


Subject(s)
Sleep Apnea, Obstructive , Snoring , Humans , Palate, Soft
20.
Comput Methods Programs Biomed ; 244: 107963, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064956

ABSTRACT

BACKGROUND AND OBJECTIVE: Rupture of small intracranial aneurysm (IA) often leads to the development of highly fatal clinical syndromes such as subarachnoid hemorrhage. Due to the patient specificity of small IA, there are many difficulties in evaluating the rupture risk of small IA such as multiple influencing factors, high clinical experience requirements and poor reusability. METHODS: In this study, clinical methods such as transcranial doppler (TCD) and magnetic resonance imaging (MRI) are used to obtain patient-specific parameters, and the fluid-structure interaction method (FSI) is used to model and evaluate the biomechanics and hemodynamics of patient-specific small IA. RESULTS: The results show that a spiral vortex stably exists in the patient-specific small IA. Due to the small size of the patient-specific small IA, the blood flow velocity still maintains a high value with maximum reaching 3 m/s. The inertial impact of blood flow and vortex convection have certain influence on hemodynamic and biomechanics parameters. They cause three high value areas of WSSM on the patient-specific small IA with maximum of 180 Pa, 130 Pa and 110 Pa, respectively. They also cause two types of WSS concentration points, positive normal stress peak value areas and negative normal stress peak value areas to appear. CONCLUSION: This paper found that the factors affecting hemodynamic parameters and biomechanical parameters are different. Unlike hemodynamic parameters, biomechanical parameters are also affected by blood pressure in addition to blood flow velocity. This study reveals the relationship between the flow field distribution and changes of patient-specific small IA, biomechanics and hemodynamics.


Subject(s)
Intracranial Aneurysm , Humans , Intracranial Aneurysm/diagnostic imaging , Biomechanical Phenomena , Hemodynamics/physiology , Blood Flow Velocity , Blood Pressure , Rupture , Patient-Specific Modeling , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL