Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 914
Filter
1.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955335

ABSTRACT

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Subject(s)
Nanogels , Psoriasis , Skin Absorption , Psoriasis/drug therapy , Psoriasis/pathology , Animals , Nanogels/chemistry , Lecithins/chemistry , Skin/metabolism , Skin/pathology , Particle Size , Liposomes/chemistry , Polyethylene Glycols/chemistry , Glycine max/chemistry , Rats , Male , Imiquimod/chemistry , Drug Carriers/chemistry , Polyethyleneimine/chemistry , X-Ray Diffraction , Ethanol/chemistry , Acrylates
2.
Article in English | MEDLINE | ID: mdl-38991258

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are effective as a targeted treatment for chronic myeloid leukemia (CML), which can selectively suppress BCR-ABL1 kinase activity. CML therapy with TKIs combination has been supported by in-vitro, in-vivo, and patient-based data where the nilotinib-dasatinib co-administration has exerted superior anticancer efficacy with greater cellular uptake, less resistance to chemotherapy, and no additive adverse events encountered. Therefore, it is essential to develop a suitable analytical method for the simultaneous estimation of these drugs in the developed novel lipid nanocarriers like liposomes. Design of Experiment (DoE) has been implemented as a tool of QbD to systematically investigate the relation between the HPLC method attributes and analytical responses, i.e., chromatographic detection, quantification, and peak properties for dasatinib and nilotinib. An Ishikawa diagram is constructed to delineate possible influencing variables to the analytical performances. Afterward, 4 factors 2 level full factorial design (FFD) was employed to model and identify the main effects and interaction effects between the factors selected after the initial risk assessment. The suggested design space for optimized chromatographic conditions by QbD analysis is linear within the selected range of drug concentrations, accurate and precise, sensitive, and robust according to the ICH guidelines. The optimal method is comprised of a 1 mL/min flow rate of mobile phase (ACN and 20 mM KH2PO4 of pH 7.00) in gradient mode at 25 °C column temperature for 20 µL sample injection volume and detection wavelength fixed at 297 nm. Most importantly, this novel HPLC method is simple and selective enough to evaluate dasatinib and nilotinib content in the lipid nanocarriers.

3.
AAPS PharmSciTech ; 25(6): 151, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954171

ABSTRACT

The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.


Subject(s)
Administration, Intranasal , Epilepsy , Gels , Nasal Mucosa , Triterpenes , Animals , Administration, Intranasal/methods , Epilepsy/drug therapy , Gels/chemistry , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Male , Triterpenes/administration & dosage , Triterpenes/pharmacokinetics , Triterpenes/pharmacology , Triterpenes/chemistry , Temperature , Saponins/administration & dosage , Saponins/chemistry , Saponins/pharmacology , Saponins/pharmacokinetics , Chemistry, Pharmaceutical/methods , Biological Availability , Rats , Poloxamer/chemistry , Anticonvulsants/administration & dosage , Anticonvulsants/pharmacokinetics , Anticonvulsants/pharmacology , Anticonvulsants/chemistry
4.
Luminescence ; 39(7): e4815, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38972855

ABSTRACT

A green micellar synchronous spectrofluorimetric method was developed and validated for simultaneous determination of tripelennamine hydrochloride and diphenhydramine in bulk and combined pharmaceutical formulation. Synchronous fluorescence of tripelennamine hydrochloride and diphenhydramine was determined using Δλ = 60 nm. The first derivative of synchronous fluorescence was computed to resolve overlap in the synchronous fluorescence spectra. Tripelennamine hydrochloride was quantified at 375 nm, whereas diphenhydramine was quantified at 293 nm; each is the zero-crossing point of the other. As diphenhydramine exhibited weak native fluorescence, micelle enhancement upon incorporation of sodium dodecyl sulfate was considered. Two-level full factorial design was carried out to optimize experimental parameters. Optimum conditions involved using SDS (2% w/v) along with Teorell and Stenhagen buffer (pH 9). The method was found to be linear over the range 0.2-4.5 and 0.2-5 µg/mL for tripelennamine and diphenhydramine, respectively, with limits of detection 0.211 and 0.159 µg/mL. The method was successfully applied for simultaneous determination of tripelennamine hydrochloride and diphenhydramine in laboratory-prepared gel containing all possible excipients with mean percent recoveries ±SD 100.59 ± 0.79 and 98.99 ± 0.98 for tripelennamine hydrochloride and diphenhydramine, respectively. The proposed method was proved to be eco-friendly using different greenness assessment tools.


Subject(s)
Diphenhydramine , Micelles , Spectrometry, Fluorescence , Diphenhydramine/analysis , Diphenhydramine/chemistry , Spectrometry, Fluorescence/methods , Gels/chemistry , Sodium Dodecyl Sulfate/chemistry , Hydrogen-Ion Concentration
5.
Int J Pharm ; 660: 124371, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908809

ABSTRACT

This work aimed to develop amphiphilic nanocarriers such as polymersome based diblock copolymer of Kollicoat ® IR -block-poly(ε-caprolactone) (Kollicoat ® IR-b-PCL) for potential co-delivery of Nisin (Ni) and Curcumin (CUR) for treatment of breast cancer. To generate multi-layered nanocarriers of uniform size and morphology, microfluidics was used as a new technology. In order to characterise and optimize polymersome, design of experiments (Design-Expert) software with three levels full factorial design (3-FFD) method was used. Finally, the optimized polymersome was produced with a spherical morphology, small particle size (dH < 200 nm), uniform size distribution (PDI < 0.2), and high drug loading efficiency (Ni 78 % and CUR 93 %). Furthermore, the maximum release of Ni and CUR was found to be roughly 60 % and 80 % in PBS, respectively. Cytotoxicity assays showed a slight cytotoxicity of Ni and CUR -loaded polymersome (N- Ni /CUR) towards normal cells while demonstrating inhibitory activity against cancer cells compared to the free drugs. Also, the apoptosis assays and cellular uptake confirmed the obtained results from cytotoxic analysis. In general, this study demonstrated a microfluidic approach for preparation and optimization of polymersome for co-delivery of two drugs into cancer cells.

6.
Curr Drug Deliv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38867526

ABSTRACT

INTRODUCTION: Desloratadine, a second-generation antihistaminic drug, is poorly watersoluble and requires amelioration of the dissolution rate to improve its pharmacokinetics properties. METHOD: This study investigated the impact of polymer, surfactant types, and concentration on the particle size, zeta potential, and dissolution efficiency of nanosuspensions formulated through the solvent antisolvent precipitation method. To optimize the delivery of Desloratadine nanosuspension, we used Minitab software and a 4-factor, 2-level full factorial design. Physicochemical properties and drug release studies were conducted to evaluate the suggested nanosuspension formulations. The optimization goals included minimizing particle size and zeta potential while maximizing dissolution efficiencies. RESULT: The selected optimal nanosuspension demonstrated favourable values, including a particle size of 478.63 ± 15.67 nm, a zeta potential of -36.24 ± 3.21 mV, and dissolution efficiencies in double distilled water and buffer of 90.29 ± 3.75 % and 93.70 ± 3.67 %, respectively. The optimized formulation was subjected to additional analysis using X-ray powder diffraction (XPRD), scanning and transmission electron microscopy (SEM and TEM), and Fourier-transform infrared spectroscopy (FTIR). CONCLUSION: The optimized nanosuspension formulation also underwent further studies under optimal lyophilization conditions, revealing the effectiveness of mannitol as a cryoprotectant at a concentration of 8%.

7.
Article in English | MEDLINE | ID: mdl-38918978

ABSTRACT

INTRODUCTION: The objective of the reported work was to develop Montelukast sodium (MS) solid lipid nanoparticles (MS-SLNs) to ameliorate its oral bio-absorption. Herein, the highpressure homogenization (HPH) principle was utilized for the fabrication of MS-SLNs. METHOD: The study encompasses a 23 full factorial statistical design approach where mean particle size (Y1) and percent entrapment efficiency (Y2) were screened as dependent variables while, the concentration of lipid (X1), surfactant (X2), and co-surfactant (X3) were screened as independent variables. The investigation of MS-SLNs by DSC and XRD studies unveiled the molecular dispersion of MS into the SLNs while TEM study showed the smooth surface of developed MSSLNs. The optimized MS-SLNs exhibited mean particle size (MPS) = 115.5 ± 1.27 nm, polydispersity index (PDI) = 0.256 ± 0.04, zeta potential (ζ) = -21.9 ± 0.32 mV and entrapment efficiency (EE) = 90.97 ± 1.12 %. The In vivo pharmacokinetic study performed in Albino Wistar rats revealed 2.87-fold increments in oral bioavailability. RESULTS: The accelerated stability studies of optimized formulation showed good physical and chemical stability. The shelf life estimated for the developed MS-SLN was found to be 22.38 months. CONCLUSION: At the outset, the developed MS-SLNs formulation showed a significant increment in oral bioavailability and also exhibited excellent stability in exaggerated storage conditions.

8.
Article in English | MEDLINE | ID: mdl-38916653

ABSTRACT

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.

9.
Pharmaceutics ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38931827

ABSTRACT

The current research aims to develop thermosensitive polymeric micelles loaded with risperidone for nasal administration, emphasizing the added benefits of their thermosensitive behavior under nasal conditions. An initial risk assessment facilitated the advanced development process, confirming that the key indicators of thermosensitivity were suitable for nasal application. The polymeric micelles exhibited an average size of 118.4 ± 3.1 nm at ambient temperature and a size of 20.47 ± 1.2 nm at 36.5 °C, in both cases in monodisperse distribution. Factors such as pH and viscosity did not significantly impact these parameters, demonstrating appropriate nasal applicability. The model formulations showed a rapid, burst-like drug release profile in vitro, accompanied by a quick and high permeation rate at nasal conditions. Overall, the Quality by Design-based risk assessment process led to the development of an advanced drug delivery system capable of administering risperidone through the nasal cavity.

10.
Am Heart J ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936755

ABSTRACT

BACKGROUND: Patients experiencing myocardial infarction (MI) remain at high risk of future major adverse cardiovascular events (MACE). While low-dose colchicine and spironolactone have been shown to decrease post-MI MACE, more data are required to confirm their safety and efficacy in an unselected post-MI population. Therefore, we initiated the CLEAR SYNERGY (OASIS 9) trial to address these uncertainties. METHODS: The CLEAR SYNERGY trial is a 2 × 2 factorial randomized controlled trial of low-dose colchicine 0.5 mg daily versus placebo and spironolactone 25 mg daily versus placebo in 7,062 post-MI participants who were within 72 hours of the index percutaneous coronary intervention (PCI). We blinded participants, healthcare providers, research personnel, and outcome adjudicators to treatment allocation. The primary outcome for colchicine is the first occurrence of the composite of cardiovascular death, recurrent MI, stroke, or unplanned ischemia-driven revascularization. The co-primary outcomes for spironolactone are (1) the composite of the total numbers of cardiovascular death or new or worsening heart failure and (2) the first occurrence of the composite of cardiovascular death, new or worsening heart failure, recurrent MI or stroke. We finished recruitment with 7,062 participants from 104 centers in 14 countries on November 8, 2022, and plan to present the results in the fall of 2024. CONCLUSIONS: CLEAR SYNERGY is a large international randomized controlled trial that will inform the effects of low-dose colchicine and spironolactone in largely unselected post-MI patients who undergo PCI. (ClinicalTrials.gov Identifier: NCT03048825).

11.
Int J Biol Macromol ; 273(Pt 1): 132992, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857718

ABSTRACT

ß-D-galactosidase is a hydrolase enzyme capable of hydrolyzing lactose in milk-based foods. Its free form can be inactivated in solution during the production of low-dosage lactose foods. Then, it is important to study strategies for avoiding the free enzyme inactivation with the aim of circumventing this problem. The stabilization of ß-D-galactosidase in aqueous solution after interactions with chitosan/eucalyptus sawdust composite membrane proved to be a potential strategy when optimized by central composite rotatable (CCR) design. In this case, the best experimental conditions for ß-D-galactosidase partitioning and stability in an aqueous medium containing the chitosan-based composite membrane reinforced with eucalyptus sawdust were i) enzyme/buffer solution ratio of 0.0057, ii) pH 5.6, iii) membrane mass of 50 mg, and iv) temperature lower than 37 °C. Significance was found for the linear enzyme/buffer solution ratio, linear temperature, and quadratic pH (p < 0.05) in the interval between 0 and 60 min of study. In the interval between 60 and 120 min, there was significance (p < 0.12) for linear temperature, the temperature-enzyme/buffer solution ratio interaction and the interaction between linear pH and linear enzyme/buffer solution ratio. The Pareto charts and response surfaces clearly showed all the effects of the experimental variables on the stabilization of ß-D-galactosidase in solution after interactions with the chitosan composite membrane. In this case, industrial food reactors covered with chitosan/eucalyptus sawdust composite membrane could be a strategy for the hydrolysis of lactose during milk-producing processes.


Subject(s)
Chitosan , Enzyme Stability , beta-Galactosidase , Chitosan/chemistry , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Hydrogen-Ion Concentration , Membranes, Artificial , Solutions , Temperature , Lactose/chemistry
12.
Am J Transl Res ; 16(4): 1135-1144, 2024.
Article in English | MEDLINE | ID: mdl-38715806

ABSTRACT

OBJECTIVE: To establish a cellular-level mechanical injury model for human skeletal muscle cells and investigate changes in the mechanical effect mechanism after such injuries. METHODS: The FX-5000™ Compression System was used to apply constant static mechanical pressure to human skeletal muscle cells. A factorial design analysis was conducted to discover the optimal injury model by evaluating the correlation between the amount of pressure, the duration of mechanical stimulation, and the number of days of observation. Skeletal muscle cell injury was evaluated by measuring cell metabolism, morphology, and calcium homeostasis. RESULTS: Mechanical injury was modeled as continuous pressure of 1 MPa for 2 hours with observation for 3 days. The results show that mechanical injury increased creatine kinase, intracellular Ca2+ concentration, and malondialdehyde content, decreased superoxide dismutase, and caused cell swelling and severe cytoplasmic vacuolization (all P < 0.05). CONCLUSION: This model of mechanically-injured human skeletal muscle cells provides an experimental model for the clinically common skeletal muscle injury caused by static loading pressure. It may be used to study the mechanism of action of treatment methods for mechanically injured skeletal muscle.

13.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710921

ABSTRACT

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Subject(s)
Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
14.
Indian J Psychol Med ; 46(2): 175-177, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38725713

ABSTRACT

A factorial design examines the effects of two independent variables on a single, continuous dependent variable. The statistical test employed to analyze the data is a two-way analysis of variance (ANOVA). This test yields three results: a main effect for each of the independent variables and an interaction effect between the two independent variables. This article explains factorial designs and two-way ANOVA with the help of a worked example using hypothetical data in a spreadsheet provided as a supplementary file. The main effects and interaction effects are explained and illustrated using tables and figures. A short discussion provides general notes about the concepts explained in this article, along with brief notes on repeated measures ANOVA and higher order ANOVAs. Many additional examples, with figures and explanations, are provided in the supplementary materials, which the reader is strongly encouraged to view.

15.
J Neurol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816482

ABSTRACT

BACKGROUND: Trigeminal neuralgia (TN) is difficult to treat due to its severe pain intensity and recurring episodes, which significantly impact quality of life. OBJECTIVES: We aimed to assess the effectiveness of electroacupuncture (EA) in alleviating the pain intensity in TN, and to determine whether EA combined with low-dosage carbamazepine (CBZ) has a synergistic effect. METHODS: A multi-centre, randomized, 2 × 2 factorial trial was conducted. Participants who met the inclusion criteria received active EA or sham EA for 60 min, three times a week for four weeks; CBZ (300 mg per day) or placebo for four weeks. The primary outcome was the change in visual analog scale (VAS) score from baseline to weeks 2, 4, 16, and 28. Secondary outcomes included quality of life and adverse events. RESULTS: A total of 120 participants (75 females and 45 males; mean (SD) age, 58.5 (15.3) years) were included. The main effects of EA and CBZ were significant (P < 0.001), and there was a significant interaction was identified between the interventions (P = 0.041). Participants who received EA (mean difference [MD], -0.3 [95% CI, -0.40 to -0.20] at week 2; -1.6 [-1.70 to -1.50] at week 4; -1.1 [-1.31 to -0.89] at week 16; -0.8 [-1.01 to -0.59] at week 28), CBZ (MD, -0.6 [95% CI, -0.70 to -0.50] at week 2; -0.9 [-1.03 to -0.77] at week 4, -0.2 [-0.41 to 0.01] at week 16, 0.2 [-0.01 to 0.41] at week 28), and the combination of both (MD, -1.8 [95% CI, -1.90 to -1.70] at week 2; -3.7 [-3.83 to -3.57] at week 4, -3.4 [-3.61 to -3.19] at week 16, -2.9 [-3.11 to -2.69] at week 28) had a greater reduction in VAS score over the treatment phase than their respective control groups (sham EA, placebo, and sham EA plus placebo). EA-related adverse events (6/59, 10.17%) were lower than that of CBZ (15/59, 25.42%) during the whole phases. CONCLUSIONS: EA or CBZ alone are effective treatments for TN, while the combination of EA and low-dosage CBZ exerts a greater benefit. These findings in this trial demonstrate that the combination of EA and low-dosage CBZ may be clinically effective under certain circumstances. TRIAL REGISTRATION: NCT03580317.

16.
Saudi Pharm J ; 32(6): 102089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707207

ABSTRACT

Fixed-dose combination (FDC) products represent a novel, safe, and cost-effective formulation. Combined use of anticoagulant and antiplatelet medications is common among comorbid cardiovascular patients. This study aimed to formulate FDC tablets for Apixaban and Clopidogrel, as prophylaxis and treatment of thrombo-embolic events. FDC tablets were developed by combining small tablets of Immediate-Release Clopidogrel 75 mg and Extend-Release Apixaban 5 mg through direct compression and wet granulation. Particularly, Apixaban tablets were developed using design expert software, and various types and concentrations of polymers were entered. For Clopidogrel tablets, various diluents were used to develop the formulation. Then, the dissolution profile for each formula was studied. Finally, the optimized formulations were encapsulated within hard gelatin capsules. Apixaban formulation followed zero-order with super case Ⅱ transport mechanism as the dominant mechanism of drug release. The Apixaban drug release rate was affected by the type and concentration of the polymers in the formulation (P < 0.05). As the HPMC concentration was increased, Apixaban release was retarded. For, Clopidogrel, the formulated tablets with spray-dried lactose filler and sodium stearyl fumarate lubricant were found to be stable with good properties. In conclusion, the optimum formulation yielded Clopidogrel and extended-release Apixaban for 24 h with the desired in vitro drug dissolution.

17.
Heliyon ; 10(8): e29002, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628742

ABSTRACT

The production of coconut sap beverages faces a challenge with the quality of the incoming coconut sap sourced from farmers. The clarification of pivotal factors influencing the quality of coconut sap after harvesting is of paramount importance for fostering mutual benefit between the involved parties. This research focuses on assessing the quality and degradation of coconut sap during the post-harvest stage. It addresses the shortcomings in evaluating coconut sap quality and improper pick-up conditions. To improve these processes, various experiments were designed, including 1) preliminary experiments that explored microbial count, pH, and soluble solids in harvested coconut sap at varying intervals, and 2) the L9 Taguchi Orthogonal Array method. These approaches identify the optimal levels of factors such as cleaning method, storage temperature, and preservative type. By reducing the number of experiments, costs and time were minimized, 3) the 23 factorial design was implemented, reducing the levels of each factor while measuring coconut sap quality based on pH and total soluble solids (representing sweetness) at different post-harvest intervals. The results from the Taguchi method were then used to design the factorial method experiment. The analysis revealed crucial factors influencing coconut sap quality at the 10-h mark. Storage and transportation temperatures, along with the type of preservative, significantly impacted the pH value. However, the washing method and preservative type showed no statistically significant effect on Total Soluble Solids (TSS) value (p > 0.05). Recommendations include using tap water for container cleaning, opting for Payom wood as a preservative, and adhering to cold chain practices for transportation exceeding 4 h, with temperatures maintained below or equal to 10 °C. Swift sap collection within 4 h post-harvest, coupled with stringent temperature control during transportation (not exceeding 10 °C), is advised to ensure optimal quality. Integrating pH with TSS values enhances comprehensive quality assessment, aligning with established best practices in coconut sap handling.

18.
Environ Sci Pollut Res Int ; 31(22): 32246-32263, 2024 May.
Article in English | MEDLINE | ID: mdl-38648004

ABSTRACT

This study investigates how temperature and forward osmosis (FO) membrane properties, such as water permeability (A), solute permeability (B), and structural parameter (S), affect the specific energy consumption (SEC) of forward osmosis-reverse osmosis system. The results show that further SEC reduction beyond the water permeability of 3 LMH bar-1 is limited owing to high concentration polarization (CP). Increasing S by 10-fold increases FO recovery by 177.6%, causing SEC decreases by 33.6%. However, membrane with smaller S also increases external CP. To reduce SEC, future work should emphasize mixing strategies to reduce external CP. Furthermore, increasing the temperature from 10 to 40 °C can reduce SEC by 14.3%, highlighting the energy-saving potential of temperature-elevated systems. The factorial design indicates that at a lower temperature, increasing A and decreasing S have a more significant impact on reducing SEC. This underlines the importance of developing advanced FO membranes, particularly for lower-temperature processes.


Subject(s)
Membranes, Artificial , Osmosis , Temperature , Water Purification , Water Purification/methods , Permeability
19.
J Pharm Sci ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657756

ABSTRACT

The assessment of the mucoadhesive properties peak mucoadhesive force (Fmax) and work of mucoadhesion (Wmuc) with texture analyzers is a common in vitro method for analyzing formulation capabilities. Challenges arise in selecting and standardizing experimental conditions due to various variables influencing mucoadhesion. This complexity hampers direct product performance comparisons. In our study, we explored factors (contact force and time, probe speed and mucin in artificial saliva) impacting a model formulation's mucoadhesive capacity. Using Omcilon-A®Orabase on porcine buccal mucosa, we systematically varied experimental conditions, employing a statistical approach (Central Composite Design - CCD). Three variables (contact force, contact time, probe speed) and their interactions were assessed for their impact on Fmax and Wmuc. Results showed that contact time and force positively affected Fmax, while only contact time influenced Wmuc. In the mucin artificial saliva test, a force of 0.5 N, time of 600 s, and speed of 1 mm/s yielded optimal Fmax (0.587 N) and Wmuc (0.468 N.s). These conditions serve as a reference for comparing mucoadhesive properties of formulations for topical oral use.

20.
Sci Rep ; 14(1): 6361, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493177

ABSTRACT

Loratadine (LoR) is a highly lipophilic and practically insoluble in water, hence having a low oral bioavailability. As it is formulated as topical gel, it competitively binds with the receptors, thus reducing the side-effects. The objective of this study was to prepare LoR loaded nanosponge (LoR-NS) in gel for topical delivery. Nine different formulations of emulsion were prepared by solvent evaporation method with polyvinyl alcohol (PVA), ethyl cellulose (EC), and dichloromethane (DCM). Based on 32 Full Factorial Design (FFD), optimization was carried out by varying the concentration of LOR:EC ratio and stirring rate. The preparations were subjected for the evaluation of particle size (PS), in vitro release, zeta potential (ZP) and entrapment efficiency (EE). The results revealed that the NS dispersion was nanosized with sustained release profiles and significant PS. The optimised formulation was formulated and incorporated into carbopol 934P hydrogel. The formulation was then examined to surface morphological characterizations using scanning electron microscopy (SEM) which depicted spherical NS. Stability studies, undertaken for 2 months at 40 ± 2 °C/75 ± 5% RH, concluded to the stability of the formulation. The formulation did not cause skin irritation. Therefore, the prepared NS hydrogel proved to be a promising applicant for LoR as a novel drug delivery system (NDDS) for safe, sustained and controlled topical application.


Subject(s)
Hydrogels , Loratadine , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...