Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928382

ABSTRACT

Graphene, when electrified, generates far-infrared radiation within the wavelength range of 4 µm to 14 µm. This range closely aligns with the far-infrared band (3 µm to 15 µm), which produces unique physiological effects. Contraction and relaxation of vascular smooth muscle play a significant role in primary hypertension, involving the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate pathway and the renin-angiotensin-aldosterone system. This study utilized spontaneously hypertensive rats (SHRs) as an untr-HT to investigate the impact of far-infrared radiation at specific wavelengths generated by electrified graphene on vascular smooth muscle and blood pressure. After 7 weeks, the blood pressure of the untr-HT group rats decreased significantly with a notable reduction in the number of vascular wall cells and the thickness of the vascular wall, as well as a decreased ratio of vessel wall thickness to lumen diameter. Additionally, blood flow perfusion significantly increased, and the expression of F-actin in vascular smooth muscle myosin decreased significantly. Serum levels of angiotensin II (Ang-II) and endothelin 1 (ET-1) were significantly reduced, while nitric oxide synthase (eNOS) expression increased significantly. At the protein level, eNOS expression decreased significantly, while α-SMA expression increased significantly in aortic tissue. At the gene level, expressions of eNOS and α-SMA in aortic tissue significantly increased. Furthermore, the content of nitric oxide (NO) in the SHR's aortic tissue increased significantly. These findings confirm that graphene far-infrared radiation enhances microcirculation, regulates cytokines affecting vascular smooth muscle contraction, and modifies vascular morphology and smooth muscle phenotype, offering relief for primary hypertension.


Subject(s)
Blood Pressure , Graphite , Hypertension , Infrared Rays , Muscle, Smooth, Vascular , Rats, Inbred SHR , Animals , Rats , Blood Pressure/radiation effects , Male , Muscle, Smooth, Vascular/metabolism , Graphite/chemistry , Hypertension/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type III/genetics , Angiotensin II/metabolism , Angiotensin II/blood , Endothelin-1/metabolism , Endothelin-1/genetics , Endothelin-1/blood , Nitric Oxide/metabolism
2.
Foods ; 13(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397584

ABSTRACT

Both the roots and leaves of American ginseng contain ginsenosides and polyphenols. The impact of thermal processing on enhancing the biological activities of the root by altering its component composition has been widely reported. However, the effects of far-infrared irradiation (FIR), an efficient heat treatment method, on the bioactive components of the leaves remain to be elucidated. In the present study, we investigated the effects of FIR heat treatment between 160 and 200 °C on the deglycosylation and dehydration rates of the bioactive components in American ginseng leaves. As the temperature was increased, the amounts of common ginsenosides decreased while those of rare ginsenosides increased. After FIR heat treatment of American ginseng leaves at an optimal 190 °C, the highest total polyphenolic content and kaempferol content were detected, the antioxidant activity was significantly enhanced, and the amounts of the rare ginsenosides F4, Rg6, Rh4, Rk3, Rk1, Rg3, and Rg5 were 41, 5, 37, 64, 222, 17, and 266 times higher than those in untreated leaves, respectively. Moreover, the radical scavenging rates for 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and the reducing power of the treated leaf extracts were 2.17, 1.86, and 1.77 times higher, respectively. Hence, FIR heat treatment at 190 °C is an efficient method for producing beneficial bioactive components from American ginseng leaves.

3.
J Korean Med Sci ; 38(41): e335, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37873631

ABSTRACT

BACKGROUND: Far-infrared (FIR) irradiation has been reported to improve diverse cardiovascular diseases, including heart failure, hypertension, and atherosclerosis. The dysregulated proliferation of vascular smooth muscle cells (VSMCs) is well established to contribute to developing occlusive vascular diseases such as atherosclerosis and in-stent restenosis. However, the effects of FIR irradiation on VSMC proliferation and the underlying mechanism are unclear. This study investigated the molecular mechanism through which FIR irradiation inhibited VSMC proliferation. METHODS: We performed cell proliferation and cell death assay, adenosine 5'-triphosphate (ATP) assay, inhibitor studies, transfection of dominant negative (dn)-AMP-activated protein kinase (AMPK) α1 gene, and western blot analyses. We also conducted confocal microscopic image analyses and ex vivo studies using isolated rat aortas. RESULTS: FIR irradiation for 30 minutes decreased VSMC proliferation without altering the cell death. Furthermore, FIR irradiation accompanied decreases in phosphorylation of the mammalian target of rapamycin (mTOR) at Ser2448 (p-mTOR-Ser2448) and p70 S6 kinase (p70S6K) at Thr389 (p-p70S6K-Thr389). The phosphorylation of AMPK at Thr172 (p-AMPK-Thr172) was increased in FIR-irradiated VSMCs, which was accompanied by a decreased cellular ATP level. Similar to in vitro results, FIR irradiation increased p-AMPK-Thr172 and decreased p-mTOR-Ser2448 and p-p70S6K-Thr389 in isolated rat aortas. Pre-treatment with compound C, a specific AMPK inhibitor, or ectopic expression of dn-AMPKα1 gene, significantly reversed FIR irradiation-decreased VSMC proliferation, p-mTOR-Ser2448, and p-p70S6K-Thr389. On the other hand, hyperthermal stimulus (39°C) did not alter VSMC proliferation, cellular ATP level, and AMPK/mTOR/p70S6K phosphorylation. Finally, FIR irradiation attenuated platelet-derived growth factor (PDGF)-stimulated VSMC proliferation by increasing p-AMPK-Thr172, and decreasing p-mTOR-Ser2448 and p-p70S6K-Thr389 in PDGF-induced in vitro atherosclerosis model. CONCLUSION: These results show that FIR irradiation decreases the basal and PDGF-stimulated VSMC proliferation, at least in part, by the AMPK-mediated inhibition of mTOR/p70S6K signaling axis irrespective of its hyperthermal effect. These observations suggest that FIR therapy can be used to treat arterial narrowing diseases, including atherosclerosis and in-stent restenosis.


Subject(s)
Atherosclerosis , Coronary Restenosis , Rats , Animals , Platelet-Derived Growth Factor/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , AMP-Activated Protein Kinases/metabolism , Muscle, Smooth, Vascular , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Phosphorylation , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Mammals/metabolism
4.
Heliyon ; 9(4): e15003, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123908

ABSTRACT

A previous study from our laboratory observed the protective effects of far-infrared irradiation (FIR) on bone marrow-derived stem cells (BMSCs) against oxidative stress. However, it remains unknown precisely how FIR influences BMSC survival. We identify an unexpected route among the expression of MITF, BCL2, mTOR, and exosome in FIR-preconditioned BMSCs. MITF siRNA demonstrated that loss of MITF expression not only inhibited cell proliferation but also reduced the FIR-mediated expression of mTOR, BCL2, and exosome. mTOR signaling pathways have been implicated in cell growth, proliferation, and survival. We also found that rapamycin, a potent and selective inhibitor of mTOR, when combined with MITF siRNA, repressed FIR-mediated CD63 and BCL2 expression. In addition, FIR-preconditioned BMSCs demonstrated more tolerance in multiple stressful environments than untreated BMSCs. The elevated exosomes in conditioned medium derived from FIR-preconditioned BMSCs also repaired H9c2 cells that sustained cellular damage after subjected to an array of environmental stress conditions. Taken together, these results reveal a possible mechanism about how FIR-preconditioned BMSCs and its conditioned media could contribute to cellular resilience during environmental changes via MITF-Akt-mTOR associated with exosome manufacture. FIR preconditioning could thus complement and improve therapeutic applications of BMSCs on outcomes of various disorders.

5.
Molecules ; 27(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897960

ABSTRACT

Although ginseng leaf is a good source of health-beneficial phytochemicals, such as polyphenols and ginsenosides, few studies have focused on the variation in compounds and bioactivities during leaf thermal processing. The efficiency of far-infrared irradiation (FIR) between 160 °C and 200 °C on the deglycosylation of bioactive compounds in ginseng leaves was analyzed. FIR treatment significantly increased the total polyphenol content (TPC) and kaempferol production from panasenoside conversion. The highest content or conversion ratio was observed at 180 °C (FIR-180). Major ginsenoside contents gradually decreased as the FIR temperature increased, while minor ginsenoside contents significantly increased. FIR exhibited high efficiency to produce dehydrated minor ginsenosides, of which F4, Rg6, Rh4, Rk3, Rk1, and Rg5 increased to their highest levels at FIR-190, by 278-, 149-, 176-, 275-, 64-, and 81-fold, respectively. Moreover, significantly increased antioxidant activities were also observed in FIR-treated leaves, particularly FIR-180, mainly due to the breakage of phenolic polymers to release antioxidants. These results suggest that FIR treatment is a rapid and efficient processing method for producing various health-beneficial bioactive compounds from ginseng leaves. After 30 min of treatment without leaf burning, FIR-190 was the optimum temperature for producing minor ginsenosides, whereas FIR-180 was the optimum temperature for producing polyphenols and kaempferol. In addition, the results suggested that the antioxidant benefits of ginseng leaves are mainly due to polyphenols rather than ginsenosides.


Subject(s)
Panax , Plant Leaves , Temperature , Antioxidants , Ginsenosides , Infrared Rays , Kaempferols , Panax/chemistry , Panax/radiation effects , Plant Leaves/chemistry , Plant Leaves/radiation effects , Polyphenols
6.
J Adv Res ; 38: 107-118, 2022 05.
Article in English | MEDLINE | ID: mdl-35572409

ABSTRACT

Introduction: Far-infrared radiation (FIR) is widely used in the treatment of various diseases such as insomnia and cardiovascular risk. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which the therapeutic potential of FIR in RA is unclear. Objectives: To determine the therapeutic potential and mechanistic actions of FIR in treatment of RA. Methods: Adjuvant-induced arthritis (AIA) rat models were established to assess the therapeutic potency of FIR in RA treatment. The scoring parameters such as arthritis score, swelling of the hind paw, spleen and thymus indices, micro-CT analysis indices were adopted to estimate the beneficial effects of FIR during RA treatment in AIA model. PCR gene expression arrays were used to analyze inflammatory and autoimmune genes expression profiles in rat synovium. The inflammatory and immunity genes profiling was further analyzed through transcription factor prediction using PROMO. A signaling network map of possible molecular circuits connecting the identified differential genes to the RA's pathogenesis was constructed based on extensive literature reviews, and the major signaling pathways were validated by Western blotting. Results: Thirty minutes of FIR treatment significantly improved the symptoms of AIA in rats. Gene expression profiling indicated that 27 out of 370 genes were down-regulated by FIR. AP-1, CEBPα, CEBPß, c-Fos, GR, HNF-3ß, USF-1, and USF-2 were predicted as key transcription factors that regulated the identified differential genes. In addition, MAPK, PI3K-Akt, and NF-κB signaling are the major molecular pathways down-regulated by FIR treatment. Conclusion: FIR may provide beneficial effects on the AIA rat model of arthritis by suppression of the MAPK, PI3K-Akt and NF-κB signaling pathways. Therefore, we believe that FIR may provide an alternative non-pharmacological and non-surgical therapeutic approach for the treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/radiotherapy , Autoimmunity , Down-Regulation , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/therapeutic use , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats
7.
J Photochem Photobiol B ; 219: 112188, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33901880

ABSTRACT

Far-infrared (FIR) irradiation is reported to inhibit cell proliferation in various types of cancer cells; the underlying mechanism, however, remains unclear. We explored the molecular mechanisms using MDA-MB-231 human breast cancer cells. FIR irradiation significantly inhibited cell proliferation and colony formation compared to hyperthermal stimulus, with no alteration in cell viability. No increase in DNA fragmentation or phosphorylation of DNA damage kinases including ataxia-telangiectasia mutated kinase, ataxia telangiectasia and Rad3-related kinase, and DNA-dependent protein kinase indicated no DNA damage. FIR irradiation increased the phosphorylation of checkpoint kinase 2 (Chk2) at Thr68 (p-Chk2-Thr68) but not that of checkpoint kinase 1 at Ser345. Increased nuclear p-Chk2-Thr68 and Ca2+/CaM accumulations were found in FIR-irradiated cells, as observed in confocal microscopic analyses and cell fractionation assays. In silico analysis predicted that Chk2 possesses a Ca2+/calmodulin (CaM) binding motif ahead of its kinase domain. Indeed, Chk2 physically interacted with CaM in the presence of Ca2+, with their binding markedly pronounced in FIR-irradiated cells. Pre-treatment with a Ca2+ chelator significantly reversed FIR irradiation-increased p-Chk2-Thr68 expression. In addition, a CaM antagonist or small interfering RNA-mediated knockdown of the CaM gene expression significantly attenuated FIR irradiation-increased p-Chk2-Thr68 expression. Finally, pre-treatment with a potent Chk2 inhibitor significantly reversed both FIR irradiation-stimulated p-Chk2-Thr68 expression and irradiation-repressed cell proliferation. In conclusion, our results demonstrate that FIR irradiation inhibited breast cancer cell proliferation, independently of DNA damage, by activating the Ca2+/CaM/Chk2 signaling pathway in the nucleus. These results demonstrate a novel Chk2 activation mechanism that functions irrespective of DNA damage.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Cell Proliferation/radiation effects , Checkpoint Kinase 2/metabolism , DNA Damage/radiation effects , Infrared Rays , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Survival/radiation effects , Checkpoint Kinase 2/antagonists & inhibitors , Checkpoint Kinase 2/genetics , Female , Humans , Phosphorylation/radiation effects , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , Up-Regulation/radiation effects
8.
Food Chem ; 353: 129428, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33714119

ABSTRACT

Roasting process impacts the chemical profile and aroma of roasted tea. To compare the impacts of far-infrared irradiation and drum roasting treatments (light, medium and heavy degrees), the corresponding roasted teas were prepared from steamed green tea for chemical analyses and quantitative descriptive analysis on aroma, and correlations between volatiles and aroma attributes were studied. There were 8 catechins, 13 flavonol glycosides and 105 volatiles quantified. Under heavy roasting treatments, most catechins and flavonol glycosides decreased, and aldehydes, ketones, furans, pyrroles/pyrazines, and miscellaneous greatly increased, while far-infrared irradiated teas had distinct nutty aroma compared with the roasty and burnt odor of drum roasted teas. The weighted correlation network analysis result showed that 56 volatiles were closely correlated with the aroma attributes of roasted teas. This study reveals the differential chemical and sensory changes of roasted teas caused by different roasting processes, and provides a novel way for flavor chemistry study.


Subject(s)
Tea/chemistry , Volatile Organic Compounds/analysis , Catechin/analysis , Cluster Analysis , Cooking/methods , Flavonoids/analysis , Gas Chromatography-Mass Spectrometry , Humans , Infrared Rays , Odorants/analysis , Principal Component Analysis , Tea/metabolism
9.
Cell Physiol Biochem ; 52(2): 240-253, 2019.
Article in English | MEDLINE | ID: mdl-30816672

ABSTRACT

BACKGROUND/AIMS: Far-infrared (FIR) irradiation has been reported to exhibit various biological effects including improvement of cardiovascular function. However, its effect on the differentiation of stem cells has not been studied. Using tonsil-derived mesenchymal stem cells (TMSC), we examined whether and how FIR irradiation affects adipogenic or osteogenic differentiation. METHODS: TMSC were exposed to FIR irradiation (3-25 µm wavelength) for various times (0, 30, or 60 min), and then adipogenic or osteogenic differentiation was induced for 14 days with its respective commercially available differentiation medium. At the end of the differentiation, the cells were stained using Oil red O or Alizarin red S solution, and the expression of differentiation-specific proteins was analyzed by western blotting. RESULTS: FIR irradiation did not alter cell viability or the expression of MSC-specific surface antigens (CD14, CD34, CD45, CD73, CD90, and CD105) in TMSC. However, FIR irradiation significantly inhibited adipogenic differentiation of TMSC, as evidenced by decreased Oil red O staining as well as protein expression of peroxisome proliferator-activated receptor γ and fatty acid binding protein 4. In contrast, FIR irradiation induced osteogenic differentiation, as evidenced by increased Alizarin red S staining as well as protein expression of osteocalcin and alkaline phosphatase. Treatment with heat alone did not inhibit the adipogenic differentiation of TMSC, suggesting that the inhibitory effect on adipogenic differentiation was not due to heat induced by FIR irradiation. However, heat alone did stimulate osteogenic differentiation, but to a lesser extent than FIR irradiation. Furthermore, FIR irradiation increased intracellular Ca²âº levels and the activity of protein phosphatase 2B (PP2B) in TMSC. Treatment with cyclosporin A, a specific PP2B inhibitor, reversed the inhibitory effect of FIR irradiation on adipogenic differentiation of TMSC, but had no effect on osteogenic differentiation. CONCLUSION: Our data demonstrate that FIR irradiation inhibits adipogenic differentiation but enhances osteogenic differentiation of TMSC; the inhibitory effect on adipogenic differentiation is non-thermal and mediated at least in part by activation of Ca²âº-dependent PP2B.


Subject(s)
Adipogenesis , Calcineurin/metabolism , Cell Differentiation , Infrared Rays , Mesenchymal Stem Cells/enzymology , Osteogenesis , Palatine Tonsil/enzymology , Child , Child, Preschool , Female , Humans , Infant , Male , Mesenchymal Stem Cells/cytology , Palatine Tonsil/cytology
10.
Foods ; 7(10)2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30360363

ABSTRACT

The effect of light emitting diode (LED) light and far infrared irradiation (FIR) on total phenol, isoflavones and antioxidant activity were investigated in soybean (Glycine max L.) sprout. Artificial blue (470 nm), green (530 nm) LED and florescent light (control) were applied on soybean sprout, from three to seven days after sowing (DAS) in growth chamber. The photosynthetic photon flux density (PPFD) and photoperiod was 150 ± 5 µmol m-2s-1 and 16 h, respectively. The FIR was applied for 30, 60 and 120 min at 90, 110 and 130 °C on harvested sprout. Total phenolic content (TP) (59.81 mg/g), antioxidant capacity (AA: 75%, Ferric Reduction Antioxidant Power (FRAP): 1357 µM Fe2+) and total isoflavones content (TIC) (51.1 mg/g) were higher in blue LED compared to control (38.02 mg/g, 58%, 632 µM Fe2+ and 30.24 mg/g, respectively). On the other hand, TP (64.23 mg/g), AA (87%), FRAP (1568 µM Fe2+) and TIC (58.98 mg/g) were significantly increased by FIR at 110 °C for 120 min among the treatments. Result suggests that blue LED is the most suitable light to steady accumulation of secondary metabolites (SM) in growing soybean sprout. On the other hand, FIR at 110 °C for 120 min is the best ailment to induce SM in proceed soybean sprout.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-469224

ABSTRACT

Objective To evaluate the therapeutic effects of combining acupuncture and physical therapy with drugs on treating Duchenne muscular dystrophy (DMD).Methods Sixty infants with DMD were randomly divided into a treatment group and a control group (n =30 in each).Both groups were injected with Bozhi glycopeptide and given levocamitine and fructose sodium diphosphate orally.Moreover,the treatment group was additionally given acupuncture and physical therapy.Before and after 90 days of treatment,the time to walk 10 metres and to climb stairs of 2 metres high was measured,as were the serum creatine phosphate kinase (CPK),lactate dehydrogenase (LDH) and aspertate aminotransferase (AST) levels of all participants.Results After treatment,the average walking and stair climbing times of both groups were significantly shorter,and those of the treatment group were significantly shorter than those of the control group.Moreover,the average CPK,LDH and AST levels in the treatment group were significantly lower than before treatment and than those of the control group after treatment.There was a significant difference in the overall response rates,with 93% observed in the treatment group and 73% in the control group.Conclusion Combining acupuncture and physical therapy with drugs can significantly increase the mobility and improve the serum CPK,LDH and AST levels of children with DMD.

SELECTION OF CITATIONS
SEARCH DETAIL
...