Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
Sensors (Basel) ; 24(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065874

ABSTRACT

Synthetic Aperture Radar (SAR) is renowned for its all-weather and all-time imaging capabilities, making it invaluable for ship target recognition. Despite the advancements in deep learning models, the efficiency of Convolutional Neural Networks (CNNs) in the frequency domain is often constrained by memory limitations and the stringent real-time requirements of embedded systems. To surmount these obstacles, we introduce the Split_ Composite method, an innovative convolution acceleration technique grounded in Fast Fourier Transform (FFT). This method employs input block decomposition and a composite zero-padding approach to streamline memory bandwidth and computational complexity via optimized frequency-domain convolution and image reconstruction. By capitalizing on FFT's inherent periodicity to augment frequency resolution, Split_ Composite facilitates weight sharing, curtailing both memory access and computational demands. Our experiments, conducted using the OpenSARShip-4 dataset, confirm that the Split_ Composite method upholds high recognition precision while markedly enhancing inference velocity, especially in the realm of large-scale data processing, thereby exhibiting exceptional scalability and efficiency. When juxtaposed with state-of-the-art convolution optimization technologies such as Winograd and TensorRT, Split_ Composite has demonstrated a significant lead in inference speed without compromising the precision of recognition.

2.
Methods Mol Biol ; 2780: 129-138, 2024.
Article in English | MEDLINE | ID: mdl-38987467

ABSTRACT

Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.


Subject(s)
Databases, Protein , Molecular Docking Simulation , Protein Interaction Mapping , Proteins , Software , Protein Interaction Mapping/methods , Proteins/chemistry , Proteins/metabolism , Computational Biology/methods , Protein Binding , Humans
3.
Sensors (Basel) ; 24(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931757

ABSTRACT

Remote sensing images are inevitably affected by the degradation of haze with complex appearance and non-uniform distribution, which remarkably affects the effectiveness of downstream remote sensing visual tasks. However, most current methods principally operate in the original pixel space of the image, which hinders the exploration of the frequency characteristics of remote sensing images, resulting in these models failing to fully exploit their representation ability to produce high-quality images. This paper proposes a frequency-oriented remote sensing dehazing Transformer named FOTformer, to explore information in the frequency domain to eliminate disturbances caused by haze in remote sensing images. It contains three components. Specifically, we developed a frequency-prompt attention evaluator to estimate the self-correlation of features in the frequency domain rather than the spatial domain, improving the image restoration performance. We propose a content reconstruction feed-forward network that captures information between different scales in features and integrates and processes global frequency domain information and local multi-scale spatial information in Fourier space to reconstruct the global content under the guidance of the amplitude spectrum. We designed a spatial-frequency aggregation block to exchange and fuse features from the frequency domain and spatial domain of the encoder and decoder to facilitate the propagation of features from the encoder stream to the decoder and alleviate the problem of information loss in the network. The experimental results show that the FOTformer achieved a more competitive performance against other remote sensing dehazing methods on commonly used benchmark datasets.

4.
Entropy (Basel) ; 26(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38920526

ABSTRACT

When using traditional Euler deconvolution optimization strategies, it is difficult to distinguish between anomalies and their corresponding Euler tails (those solutions are often distributed outside the anomaly source, forming "tail"-shaped spurious solutions, i.e., misplaced Euler solutions, which must be removed or marked) with only the structural index. The nonparametric estimation method based on the normalized B-spline probability density (BSS) is used to separate the Euler solution clusters and mark different anomaly sources according to the similarity and density characteristics of the Euler solutions. For display purposes, the BSS needs to map the samples onto the estimation grid at the points where density will be estimated in order to obtain the probability density distribution. However, if the size of the samples or the estimation grid is too large, this process can lead to high levels of memory consumption and excessive computation times. To address this issue, a fast linear binning approximation algorithm is introduced in the BSS to speed up the computation process and save time. Subsequently, the sample data are quickly projected onto the estimation grid to facilitate the discrete convolution between the grid and the density function using a fast Fourier transform. A method involving multivariate B-spline probability density estimation based on the FFT (BSSFFT), in conjunction with fast linear binning appropriation, is proposed in this paper. The results of two random normal distributions show the correctness of the BSS and BSSFFT algorithms, which is verified via a comparison with the true probability density function (pdf) and Gaussian kernel smoothing estimation algorithms. Then, the Euler solutions of the two synthetic models are analyzed using the BSS and BSSFFT algorithms. The results are consistent with their theoretical values, which verify their correctness regarding Euler solutions. Finally, the BSSFFT is applied to Bishop 5X data, and the numerical results show that the comprehensive analysis of the 3D probability density distributions using the BSSFFT algorithm, derived from the Euler solution subset of x0,y0,z0, can effectively separate and locate adjacent anomaly sources, demonstrating strong adaptability.

5.
Sci Total Environ ; 928: 172264, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38583635

ABSTRACT

Diagnostic features in near-infrared reflectance spectroscopy (NIRS) are the foundation of knowledge-based approach of petroleum hydrocarbon determination. However, a significant challenge arises when analyzing samples with low levels of petroleum hydrocarbon pollution, as they often lack distinctive diagnostic features in their sample NIRS spectra, limiting the effectiveness of this approach. To address this issue, we have developed a technical workflow for diagnostic spectrum construction and parameterization based on spectral subtraction. This method was applied on a set of NIRS spectra from soil samples that were contaminated with petroleum hydrocarbons (ranged between 178 and 1716 mg/kg of total petroleum hydrocarbon). Then two diagnostic features for low-level petroleum hydrocarbon pollution were found: (1) An overall downward concave emerged on diagnostic spectrum within both 2290-2370 nm and 1700-1780 nm for all low pollution levels even below 200 mg/kg; (2) An indicative pattern of asymmetric "W-shaped" double absorption valley occurred for those exceeding 1000 mg/kg, and its valleys located near 2310 nm, 2348 nm or 1727 nm, 1762 nm stably. These two features on diagnostic spectrum could be parameterized to detect, and the detection limit was at least about 10-50 times lower than that based on sample spectrum. These findings update our understanding on the detectability of spectral response from low petroleum hydrocarbon pollution, and widely extend the application of knowledge-based NIRS approach in either field detection or remote sensing identification for environmental management.

6.
Biol Methods Protoc ; 9(1): bpae018, 2024.
Article in English | MEDLINE | ID: mdl-38571524

ABSTRACT

We introduce a new semi-automated approach to analyzing growth patterns recorded on fish scales. After manually specifying the center of the scale, the algorithm radially unwraps the scale patterns along a series of transects from the center to the edge of the scale. A sliding window Fourier transform is used to produce a spectrogram for each sampled transect of the scale image. The maximum frequency over all sampled transects of the average spectrogram yields a well-discriminated peak frequency trace that can then serve as a growth template for that fish. The spectrogram patterns of individual fish scales can be adjusted to a common period accounting for differences in date of return or size of fish at return without biasing the growth profile of the scale. We apply the method to 147 Atlantic salmon scale images sampled from 3 years and contrast the information derived with this automated approach to what is obtained using classical human operator measurements. The spectrogram analysis quantifies growth patterns using the entire scale image rather than just a single transect and provides the possibility of more robustly analyzing individual scale growth patterns. This semi-automated approach that removes essentially all the human operator interventions provides an opportunity to process large datasets of fish scale images and combined with advanced analyses such as deep learning methods could lead to a greater understanding of salmon marine migration patterns and responses to variations in ecosystem conditions.

7.
Int J Comput Assist Radiol Surg ; 19(6): 1137-1145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598141

ABSTRACT

PURPOSE: Probe-based confocal laser endomicroscopy (pCLE) enables visualization of cellular tissue morphology during surgical procedures. To capture high-quality pCLE images during tissue scanning, it is important to maintain close contact between the probe and the tissue, while also keeping the probe perpendicular to the tissue surface. Existing robotic pCLE tissue scanning systems, which rely on macroscopic vision, struggle to accurately place the probe at the optimal position on the tissue surface. As a result, the need arises for regression of longitudinal distance and orientation via endomicroscopic vision. METHOD: This paper introduces a novel method for automatically regressing the orientation between a pCLE probe and the tissue surface during robotic scanning, utilizing the fast Fourier vision transformer (FF-ViT) to extract local frequency representations and use them for probe orientation regression. Additionally, the FF-ViT incorporates a blur mapping attention (BMA) module to refine latent representations, which is combined with the pyramid angle regressor (PAR) to precisely estimate probe orientation. RESULT: A first of its kind dataset for pCLE probe-tissue orientation (pCLE-PTO) has been created. The performance evaluation demonstrates that our proposed network surpasses other top regression networks in accuracy, stability, and generalizability, while maintaining low computational complexity (1.8G FLOPs) and high inference speed (90 fps). CONCLUSION: The performance evaluation study verifies the clinical value of the proposed framework and its potential to be integrated into surgical robotic platforms for intraoperative tissue scanning.


Subject(s)
Microscopy, Confocal , Robotic Surgical Procedures , Microscopy, Confocal/methods , Humans , Robotic Surgical Procedures/methods , Fourier Analysis , Endoscopy/methods
8.
Materials (Basel) ; 17(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38541581

ABSTRACT

This paper presents a study of 2D roughness profiles on a flat surface generated on a steel workpiece by ball nose end milling with linear equidistant tool paths (pick-intervals). The exploration of the milled surface with a surface roughness tester (on the pick and feed directions) produces 2D roughness profiles that usually have periodic evolutions. These evolutions can be considered as time-dependent signals, which can be described as a sum of sinusoidal components (the wavelength of each component is considered as a period). In order to obtain a good approximate description of these sinusoidal components, two suitable signal processing techniques are used in this work: the first technique provides a direct mathematical (analytical) description and is based on computer-aided curve (signal) fitting (more accurate); the second technique (synthetic, less accurate, providing an indirect and incomplete description) is based on the spectrum generated by fast Fourier transform. This study can be seen as a way to better understand the interaction between the tool and the workpiece or to achieve a mathematical characterisation of the machined surface microgeometry in terms of roughness (e.g., its description as a collection of closely spaced 2D roughness profiles) and to characterise the workpiece material in terms of machinability by cutting.

9.
Micromachines (Basel) ; 15(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542657

ABSTRACT

Previous studies of motility at low temperatures in Chlamydomonas reinhardtii have been conducted at temperatures of up to 15 °C. In this study, we report that C. reinhardtii exhibits unique motility at a lower temperature range (-8.7 to 1.7 °C). Cell motility was recorded using four low-cost, easy-to-operate observation systems. Fast Fourier transform (FFT) analysis at room temperature (20-27 °C) showed that the main peak frequency of oscillations ranged from 44 to 61 Hz, which is consistent with the 60 Hz beat frequency of flagella. At lower temperatures, swimming velocity decreased with decreasing temperature. The results of the FFT analysis showed that the major peak shifted to the 5-18 Hz range, suggesting that the flagellar beat frequency was decreasing. The FFT spectra had distinct major peaks in both temperature ranges, indicating that the oscillations were regular. This was not affected by the wavelength of the observation light source (white, red, green or blue LED) or the environmental spatial scale of the cells. In contrast, cells in a highly viscous (3.5 mPa·s) culture at room temperature showed numerous peaks in the 0-200 Hz frequency band, indicating that the oscillations were irregular. These findings contribute to a better understanding of motility under lower-temperature conditions in C. reinhardtii.

10.
J Struct Biol X ; 9: 100099, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38487378

ABSTRACT

Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted infection worldwide, with an estimated 260 million new cases annually. T. vaginalis contains organelles common to all eukaryotic cells, uncommon cell structures such as hydrogenosomes, and a complex and elaborate cytoskeleton constituting the mastigont system. The mastigont system is mainly formed by several proteinaceous structures associated with basal bodies, the pelta-axostylar complex made of microtubules, and striated filaments named the costa and the parabasal filaments (PFs). Although the structural organization of trichomonad cytoskeletons has been analyzed using several techniques, observation using a new generation of scanning electron microscopes with a resolution exceeding 1 nm has allowed more detailed visualization of the three-dimensional organization of the mastigont system. In this study, we have investigated the cytoskeleton of T. vaginalis using a diverse range of scanning probe microscopy techniques, which were complemented by electron tomography and Fast-Fourier methods. This multi-modal approach has allowed us to characterize an unknown parabasal filament and reveal the ultrastructure of other striated fibers that have not been published before. Here, we show the differences in origin, striation pattern, size, localization, and additional details of the PFs, thus improving the knowledge of the cell biology of this parasite.

11.
Front Physiol ; 15: 1344221, 2024.
Article in English | MEDLINE | ID: mdl-38328304

ABSTRACT

Single-channel continuous wave (CW) radar is widely used and has gained popularity due to its simple architecture despite its inability to measure the range and angular location of the target. Its popularity arises in the industry due to the simplicity of the required components, the low demands on the sampling rate, and their low costs. Through-the-wall life signs detection using microwave Doppler Radar is an active area of research and investigation. Most of the work in the literature focused on utilizing multi-channel frequency modulated continuous wave (FMCW), CW, and ultra-wideband (UWB) radar for their capability of range and direction of arrival (DOA) estimation. In this paper, through-the-wall single-subject and two-subject concurrent heart rate detection using single-channel 24-GHz CW radar leveraged with maximal overlap discrete wavelet transform (MODWT) is proposed. Experimental results demonstrated that the repetitive measurement of seven different subjects at a distance of 20 cm up to 100 cm through two different barriers (wood and brick wall) showed an average accuracy of heart rate extraction of 95.27% for varied distances (20-100 cm) in comparison with the Biopac ECG acquisition signal. Additionally, the MODWT method can also isolate the independent heartbeat waveforms from the two subjects' concurrent measurements through the wall. This involved four trials with eight different subjects, achieving an accuracy of 97.04% for a fixed distance of 40 cm from the Radar without estimating the angular location of the subjects. Notably, it also superseded the performance of the direct FFT method for the single subject after 40 cm distance measurements. The proposed simpler architecture of single-channel CW radar leveraged with MODWT has several potential applications, including post-disaster search and rescue scenarios for finding the trapped, injured people under the debris, emergency evacuation, security, surveillance, and patient vital signs monitoring.

12.
Sensors (Basel) ; 24(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38400365

ABSTRACT

The discrete Fourier transform (DFT) is the most commonly used signal processing method in modern digital sensor design for signal study and analysis. It is often implemented in hardware, such as a field programmable gate array (FPGA), using the fast Fourier transform (FFT) algorithm. The frequency resolution (i.e., frequency bin size) is determined by the number of time samples used in the DFT, when the digital sensor's bandwidth is fixed. One can vary the sensitivity of a radio frequency receiver by changing the number of time samples used in the DFT. As the number of samples increases, the frequency bin width decreases, and the digital receiver sensitivity increases. In some applications, it is useful to compute an ensemble of FFT lengths; e.g., 2P-j for j=0, 1, 2, …, J, where j is defined as the spectrum level with frequency resolution 2j·Δf. Here Δf is the frequency resolution at j=0. However, calculating all of these spectra one by one using the conventional FFT method would be prohibitively time-consuming, even on a modern FPGA. This is especially true for large values of P; e.g., P≥20. The goal of this communication is to introduce a new method that can produce multi-resolution spectrum lines corresponding to sample lengths 2P-j for all J+1 levels, concurrently, while one long 2P-length FFT is being calculated. That is, the lower resolution spectra are generated naturally as by-products during the computation of the 2P-length FFT, so there is no need to perform additional calculations in order to obtain them.

13.
Small Methods ; : e2301352, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349044

ABSTRACT

The efficiency of an organic solar cell is highly dependent on the complex, interpenetrating morphology, and molecular order within the composite phases of the bulk heterojunction (BHJ) blend. Both these microstructural aspects are strongly influenced by the processing conditions and chemical design of donor/acceptor materials. To establish improved structure-function relationships, it is vital to visualize the local microstructural order to provide specific local information about donor/acceptor interfaces and crystalline texture in BHJ blend films. The visualization of nanocrystallites, however, is difficult due to the complex semi-crystalline structure with few characterization techniques capable of visualizing the molecular ordering of soft materials at the nanoscale. Here, it is demonstrated how cryo-electron microscopy can be utilized to visualize local nanoscale order. This method is used to understand the distribution/orientation of crystallites in a BHJ blend. Long-range (>300 nm) texturing of IEICO-4F crystallites oriented in an edge-on fashion is observed, which has not previously been observed for spin-coated materials. This approach provides a wealth of quantitative information about the texture and size of nanocrystallites, which can be utilized to understand charge generation and transport in organic film. This study guides tailoring the material design and processing conditions for high-performance organic optoelectronic devices.

14.
J Biomol Struct Dyn ; : 1-7, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38375605

ABSTRACT

In the present work, a new form of descriptor using minimal moment vector (MMV) is introduced to compare protein sequences in the frequency domain under their component wise binary representations. From every sequence, 20 different binary component sequences are formed, each corresponding to 20 amino acids. Each such vector is now shifted from the time domain to the frequency domain by applying the Fast Fourier Transform (FFT). Next, the power spectrum calculated from the FFT values for each component sequence is so normalized that the sum of the components equals 1. The descriptor is defined as a 20-component vector composed of the 20 second-order minimal moments calculated from the normalized spectrum of the 20 component sequences. Once the descriptor is known, the distance matrix is created by applying the Euclidean Distance measure. The phylogenetic tree is generated by applying the unweighted pair group method with the arithmetic mean (UPGMA) algorithm using Molecular Evolutionary Genetics Analysis11 (MEGA11) software. In this work, the datasets used for similarity studies are 9 NADH dehydrogenase 5 (ND5), 12 Baculoviruses, 24 Transferrins (TF) proteins, and 50 Spike Protein of coronavirus. A qualitative measure using rationalized perception is used to compare the effectiveness of the proposed method. Quantitative measure based on symmetric distance (SD) is used to compare the phylogenetic trees of the present method with those obtained by other methods. It is observed that the phylogenetic trees generated by the proposed technique are at par with their known biological references, and they produce results better than those of the earlier methods.Communicated by Ramaswamy H. Sarma.

15.
Algorithmica ; 86(1): 334-366, 2024.
Article in English | MEDLINE | ID: mdl-38188497

ABSTRACT

In this paper, we consider a general notion of convolution. Let D be a finite domain and let Dn be the set of n-length vectors (tuples) of D. Let f:D×D→D be a function and let ⊕f be a coordinate-wise application of f. The f-Convolution of two functions g,h:Dn→{-M,…,M} is (g⊛fh)(v):=∑vg,vh∈Dns.t.v=vg⊕fvhg(vg)·h(vh)for every v∈Dn. This problem generalizes many fundamental convolutions such as Subset Convolution, XOR Product, Covering Product or Packing Product, etc. For arbitrary function f and domain D we can compute f-Convolution via brute-force enumeration in O~(|D|2n·polylog(M)) time. Our main result is an improvement over this naive algorithm. We show that f-Convolution can be computed exactly in O~((c·|D|2)n·polylog(M)) for constant c:=3/4 when D has even cardinality. Our main observation is that a cyclic partition of a function f:D×D→D can be used to speed up the computation of f-Convolution, and we show that an appropriate cyclic partition exists for every f. Furthermore, we demonstrate that a single entry of the f-Convolution can be computed more efficiently. In this variant, we are given two functions g,h:Dn→{-M,…,M} alongside with a vector v∈Dn and the task of the f-Query problem is to compute integer (g⊛fh)(v). This is a generalization of the well-known Orthogonal Vectors problem. We show that f-Query can be computed in O~(|D|ω2n·polylog(M)) time, where ω∈[2,2.372) is the exponent of currently fastest matrix multiplication algorithm.

16.
Protein J ; 43(1): 1-11, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37848727

ABSTRACT

Protein sequence comparison remains a challenging work for the researchers owing to the computational complexity due to the presence of 20 amino acids compared with only four nucleotides in Genome sequences. Further, protein sequences of different species are of different lengths; it throws additional changes to the researchers to develop methods, specially alignment-free methods, to compare protein sequences. In this work, an efficient technique to compare protein sequences is developed by a graphical representation. First, the classified grouping of 20 amino acids with a cardinality of 4 based on polar class is considered to narrow down the representational range from 20 to 4. Then a unit vector technique based on a two-quadrant Cartesian system is proposed to provide a new two-dimensional graphical representation of the protein sequence. Now, two approaches are proposed to cope with the varying lengths of protein sequences from various species: one uses Dynamic Time Warping (DTW), while the other one uses a two-dimensional Fast Fourier Transform (2D FFT). Next, the effectiveness of these two techniques is analyzed using two evaluation criteria-quantitative measures based on symmetric distance (SD) and computational speed. An analysis is performed on five data sets of 9 ND4, 9 ND5, 9 ND6, 12 Baculovirus, and 24 TF proteins under the two methods. It is found that the FFT-based method produces the same results as DTW but in less computational time. It is found that the result of the proposed method agrees with the known biological reference. Further, the present method produces better clustering than the existing ones.


Subject(s)
Amino Acids , Proteins , Amino Acid Sequence , Proteins/genetics , Proteins/chemistry , Algorithms
17.
Sensors (Basel) ; 23(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067689

ABSTRACT

In the field of water depth inversion using imagery, the commonly used methods are based on water reflectance and wave extraction. Among these methods, the Optical Bathymetry Method (OBM) is significantly influenced by bottom sediment and climate, while the wave method requires a specific study area. This study introduces a method combining the FFT and spatial profile measurement to invert the wavelength of the wave bathymetry method (WBM), which enhances accuracy and reduces workload. The method was applied to remote sensing images of Sanya Bay in China, obtained from the Worldview satellite. The average error of the inverted depth results after applying the wavelength inversion technique was 15.9%, demonstrating consistency with the depth measurements obtained through the OBM in clear water of the bay. The WBM has notable advantages over the OBM, as it is unaffected by water quality. In addition, the influence of wave period on the accuracy of water depth retrieval was theoretically evaluated, revealing that a larger wave period leads to a better depth measurement. The depth measurement from two images with different wave periods aligned with the theoretical analysis. These results showcase the applicability and potential of the WBM for accurately estimating water depth in various coastal environments.

18.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063695

ABSTRACT

Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a recent paper, we proposed the use of sawtooth-shaped voltage pulses for Ti anodization, which controls the pivoting point of the balance between the two processes that compete to create nanotubes during a self-organization process: oxide etching and oxidation. Under these conditions, pulsed anodization clearly reveals the history of nanotube growth as recorded in the nanotube morphology. We show that by selecting the suitable electrolyte and electrical discharge settings, a nanoporous structure may be generated as a repeating pattern along the nanotube wall axis. We report the findings in terms of nanotube morphology, crystallinity, surface chemistry, photocatalytic activity, and surface hydrophilicity as they relate to the electrical parameters of electrochemical anodization. Aside from their fundamental relevance, our findings could lead to the development of a novel form of TiO2 nanotube array layer.

19.
Sensors (Basel) ; 23(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37837155

ABSTRACT

This paper proposes a robust symbol timing synchronization scheme for return link initial access based on the Digital Video Broadcasting-Return Channel via Satellite 2nd generation (DVB-RCS2) system for the Low Earth Orbit (LEO) satellite channel. In most cases, the feedforward estimator structure is considered for implementing Time Division Multiple Access (TDMA) packet demodulators such as the DVB-RCS2 system. More specifically, the Non-Data-Aided (NDA) approach, without using any kind of preamble, pilot, and postamble symbols, is applicable for fine symbol timing synchronization. However, it hinders the improvement in estimation accuracy, especially when dealing with short packet lengths during the initial access from the User Terminal (UT) to the Gateway (GW). Moreover, when a UT sends a short random access packet for initial access or resource request to the LEO satellite channel, the conventional schemes suffer from a large Doppler error depending on UT's location in a beam and satellite velocity. To ameliorate these problems, we propose a novel symbol timing synchronization algorithm for GW, and its advantage is confirmed through computer simulation.

20.
Placenta ; 142: 119-127, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37699274

ABSTRACT

INTRODUCTION: This study was designed to test the efficacy of an ultrasound flow measurement method to evaluate placental function in a hyperandrogenic sheep model that produces placental morphologic changes and an intrauterine growth restriction (IUGR) phenotype. MATERIALS AND METHODS: Pregnant ewes were assigned randomly between control (n = 12) and testosterone-treatment (T-treated, n = 22) groups. The T-treated group was injected twice weekly intramuscularly (IM) with 100 mg testosterone propionate. Control sheep were injected with corn oil vehicle. Lambs were delivered at 119.5 ± 0.48 days gestation. At the time of delivery of each lamb, flow spectra were generated from one fetal artery and two fetal veins, and the spectral envelopes examined using fast Fourier transform analysis. Base 10 logarithms of the ratio of the amplitudes of the maternal and fetal spectral peaks (LRSP) in the venous power spectrum were compared in the T-treated and control populations. In addition, we calculated the resistive index (RI) for the artery defined as ((peak systole - min diastole)/peak systole). Two-tailed T-tests were used for comparisons. RESULTS: LRSPs, after removal of significant outliers, were -0.158 ± 0.238 for T-treated and 0.057 ± 0.213 for control (p = 0.015) animals. RIs for the T-treated sheep fetuses were 0.506 ± 0.137 and 0.497 ± 0.086 for controls (p = 0.792) DISCUSSION: LRSP analysis distinguishes between T-treated and control sheep, whereas RIs do not. LRSP has the potential to identify compromised pregnancies.


Subject(s)
Fetus , Placenta , Sheep , Pregnancy , Animals , Female , Humans , Placenta/blood supply , Fetus/blood supply , Umbilical Veins , Arteries , Umbilical Arteries , Fetal Growth Retardation/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...