Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Chemosphere ; 341: 140090, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37678590

ABSTRACT

In this work, a nanocomposite structured magnetic metal-organic framework named as Fe3O4@UiO-66-NH2 was prepared via a simple hydrothermal approach. The as-mentioned nanocomposite was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and the Brunauer-Emmett-Teller (BET) techniques. Using the Fe3O4@UiO-66-NH2 as a nanosorbent, an easy and highly effective approach was developed to preconcentrate nine organic UV filters before gas chromatography-mass spectrometry (GC-MS) analysis. Different conditions influencing the extraction efficiency encompassing the sorbent amount, nature and volume of desorption solvent, desorption time, pH of the sample, and extraction time, were examined. Under the optimal experimental parameters, the Fe3O4@UiO-66-NH2-based magnetic solid phase extraction and GC-MS (MSPE-GC-MS) demonstrated linearity in the range of 0.03-1500 ng/L (R2 ≥ 0.9974) and the reproducibility, expressed as RSD, was ≤7.5%. The limits of detection ranged between 0.01 and 0.07 ng/L and limits of quantification were in the range of 0.03-0.4 ng/L. Finally, the suggested approach was satisfactorily utilized to determine nine organic UV filters in different water samples (analytical recoveries between 86.5% and 104.2%).


Subject(s)
Magnetic Phenomena , Solid Phase Extraction , Reproducibility of Results , Water
2.
Biomed Environ Sci ; 31(6): 483-488, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30025564

ABSTRACT

A magnetic metal organic framework (MMOF) was synthesized and used to separate Sr2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr2+ in aqueous solution indicated that the adsorption of Sr2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr2+ conformed to the Freundlich isotherm model (R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide 90Sr.


Subject(s)
Ferrosoferric Oxide/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/chemical synthesis , Strontium/analysis , Water Pollutants, Radioactive/analysis , Adsorption , Hydrogen-Ion Concentration , Models, Theoretical , Nanoparticles/chemistry , Surface Properties , Water Purification/methods
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-690630

ABSTRACT

A magnetic metal organic framework (MMOF) was synthesized and used to separate Sr2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr2+ in aqueous solution indicated that the adsorption of Sr2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr2+ conformed to the Freundlich isotherm model (R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide 90Sr.


Subject(s)
Adsorption , Ferrosoferric Oxide , Chemistry , Hydrogen-Ion Concentration , Metal-Organic Frameworks , Chemistry , Models, Theoretical , Nanoparticles , Chemistry , Strontium , Surface Properties , Water Pollutants, Radioactive , Water Purification , Methods
SELECTION OF CITATIONS
SEARCH DETAIL
...