Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Foods ; 11(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36230194

ABSTRACT

The aim of this work was to study the production of kefir-like beverages via the fed-batch fermentation of red table grape juice at initial pHs of 3.99 (fermentation A) and 5.99 (fermentation B) with kefir grains during 4 repeated 24-h fed-batch subcultures. All kefir-like beverages (KLB) were characterized by low alcoholic grade (≤3.6%, v/v) and lactic and acetic acid concentrations. The beverages obtained from fermentation B had lower concentrations of sugars and higher microbial counts than the KLB obtained in fermentation A. Additionally, the KLB samples from fermentation B were the most aromatic and had the highest contents of alcohols, esters, aldehydes and organic acids, in contrast with the nonfermented juice and KLB from fermentation A. These results indicate the possibility of obtaining red table grape KLB with their own distinctive aromatic characteristics and high content in probiotic viable cells, contributing to the valorization of this fruit.

2.
Braz J Microbiol ; 50(4): 915-925, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31385286

ABSTRACT

The production of a highly concentrated probiotic preparation of Lactococcus lactis CECT 539 was studied in both batch and realkalized fed-batch fermentations in diluted whey (DW) media (DW25, DW50, DW75, DW100, and DW125) supplemented with MRS broth nutrients (except glucose and Tween 80) at 25, 50, 75, 100, and 125% of their standard concentrations in the complex medium. The fed-batch culture using DW100 medium provided the highest concentrations of probiotic biomass (5.98 g/L) and nisin (258.47 BU/mL), which were obtained at lower production costs than those estimated for the fed-batch culture in DW medium. The batch and fed-batch cultures reduced the initial chemical oxygen demand (COD) of the media by 29.1-41.7% and 31.2-54.2%, respectively. Graphical abstract.


Subject(s)
Batch Cell Culture Techniques/methods , Lactococcus lactis/growth & development , Lactococcus lactis/metabolism , Nisin/biosynthesis , Probiotics/chemistry , Whey Proteins/metabolism , Biomass , Culture Media/metabolism , Fermentation , Hydrogen-Ion Concentration , Probiotics/metabolism
3.
Lett Appl Microbiol ; 66(1): 77-85, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29108112

ABSTRACT

Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water-diluted sulphuric acid, adjusted to pH 2·0-2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed-batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE-2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3-log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must. SIGNIFICANCE AND IMPACT OF THE STUDY: In Brazilian ethanol-producing industry, water-diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 107 to 104  CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed-batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass.


Subject(s)
Ethanol/analysis , Limosilactobacillus fermentum/metabolism , Saccharomyces cerevisiae/metabolism , Bioreactors/microbiology , Brazil , Ethanol/metabolism , Fermentation , Industrial Microbiology , Limosilactobacillus fermentum/growth & development , Microbial Viability
4.
Biotechnol Bioeng ; 114(10): 2211-2221, 2017 10.
Article in English | MEDLINE | ID: mdl-28627711

ABSTRACT

Alcoholic fermentation of released sugars in pretreatment and enzymatic hydrolysis of biomass is a central feature for second generation ethanol (E2G) production. Saccharomyces cerevisiae used industrially in the production of first generation ethanol (E1G) convert sucrose, fructose, and glucose into ethanol. However, these yeasts have no ability to ferment pentose (xylose). Therefore, the present work has focused on E2G production by Scheffersomyces stipitis and Spathaspora passalidarum. The fermentation strategy with high pitch, cell recycle, fed-batch mode, and temperature decrease for each batch were performed in a hydrolyzate obtained from a pretreatment at 130°C with NaOH solution (1.5% w/v) added with 0.15% (w/w) of anthraquinone (AQ) and followed by enzymatic hydrolysis. The process strategy has increased volumetric productivity from 0.35 to 0.38 g · L-1 · h-1 (first to third batch) for S. stipitis and from 0.38 to 0.81 g · L-1 · h-1 for S. passalidarum (first to fourth batch). Mass balance for the process proposed in this work showed the production of 177.33 kg ethanol/ton of sugar cane bagasse for S. passalidarum compared to 124.13 kg ethanol/ton of sugar cane bagasse for S. stipitis fermentation. The strategy proposed in this work can be considered as a promising strategy in the production of second generation ethanol. Biotechnol. Bioeng. 2017;114: 2211-2221. © 2017 Wiley Periodicals, Inc.


Subject(s)
Ascomycota/physiology , Batch Cell Culture Techniques/instrumentation , Bioreactors/microbiology , Cellulose/metabolism , Ethanol/metabolism , Saccharum/microbiology , Ascomycota/classification , Batch Cell Culture Techniques/methods , Cell Proliferation/physiology , Coculture Techniques/instrumentation , Coculture Techniques/methods , Computer Simulation , Ethanol/isolation & purification , Fermentation/physiology , Hydrolysis , Models, Biological , Species Specificity , Temperature
5.
Electron. j. biotechnol ; Electron. j. biotechnol;26: 84-92, Mar. 2017. graf, tab
Article in English | LILACS | ID: biblio-1008992

ABSTRACT

Background: Fermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01. Results: In the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h. Conclusions: In the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.


Subject(s)
Sorghum/metabolism , Ethanol/metabolism , Biofuels , Fermentation , Saccharomyces cerevisiae/metabolism , Dietary Supplements , Sorghum/chemistry , Batch Cell Culture Techniques , Gravitation , Nitrogen
6.
Biotechnol Biofuels ; 9: 215, 2016.
Article in English | MEDLINE | ID: mdl-27757170

ABSTRACT

BACKGROUND: Microbial synthesis of oleochemicals derived from native fatty acid (FA) metabolism has presented significant advances in recent years. Even so, native FA biosynthetic pathways often provide a narrow variety of usually linear hydrocarbons, thus yielding end products with limited structural diversity. To overcome this limitation, we took advantage of a polyketide synthase-based system from Mycobacterium tuberculosis and developed an Escherichia coli platform with the capacity to synthesize multimethyl-branched long-chain esters (MBE) with novel chemical structures. RESULTS: With the aim to initiate the characterization of these novel waxy compounds, here, we describe the chassis optimization of the MBE producer E. coli strain for an up-scaled oil production. By carrying out systematic metabolic engineering, we improved the final titer to 138.1 ± 5.3 mg MBE L-1 in batch cultures. Fed-batch microbial fermentation process was also optimized achieving a maximum yield of 790.2 ± 6.9 mg MBE L-1 with a volumetric productivity of 15.8 ± 1.1 mg MBE (L h)-1. Purified MBE oil was subjected to various physicochemical analyses, including differential scanning calorimetry (DSC) and pressurized-differential scanning calorimetry (P-DSC) studies. CONCLUSIONS: The analysis of the pour point, DSC, and P-DSC data obtained showed that bacterial MBE possess improved cold flow properties than several plant oils and some chemically modified derivatives, while exhibiting high oxidation stability at elevated temperatures. These encouraging data indicate that the presence of multiple methyl branches in these novel esters, indeed, conferred favorable properties which are superior to those of linear esters.

7.
Electron. j. biotechnol ; Electron. j. biotechnol;19(4): 81-89, July 2016. ilus
Article in English | LILACS | ID: lil-793957

ABSTRACT

Background: Antithrombin III (ATIII) is a protein that inhibits abnormal blood clots (or coagulation) by breaking down thrombin and factor Xa. ATIII helps to keep a healthy balance between hemorrhage and coagulation. The present work demonstrated the production, purification and characterization of recombinant human antithrombin (rhAT) from yeast Saccharomyces cerevisiae BY4741 was demonstrated. After expression of rhAT by S. cerevisiae, the biomass and rhAT concentration were analyzed through fed-batch fermentation process. Results: In fed-batch fermentation, the biomass (maximum cell dry weight of 11.2 g/L) and rhAT concentration (312 mg/L) of the expressed rhAT were achieved at 84 h of cultivation time. The maximum cell lysis efficiency (99.89%) was found at 8 s sonication pulse and 7 mL lysis buffer volume. The rhAT protein solution was concentrated and partially purified using cross-flow filtration with the recovery yield and purity of 95 and 94%, respectively. The concentrated solution was further purified by the single step ion exchange chromatography with the recovery yield and purity of 55 and >98%, respectively. The purified rhAT was characterized by various analytical techniques, such as RP-HPLC, FT-IR, CD, SDS-PAGE, western blotting, and Liquid chromatography mass spectrometry (LC-MS) analysis. The biological activity of rhAT was analyzed as heparin cofactor to meet the therapeutic grade applications. Conclusions: The simple, cost-effective and economically viable nature of the process used in the present study for the production of rhAT will be highly beneficial for the healthcare sector. This may also be used to produce other value-added therapeutic recombinant proteins expressed in S. cerevisiae, with greater effectiveness and ease.


Subject(s)
Saccharomyces cerevisiae/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Antithrombin III/isolation & purification , Antithrombin III/biosynthesis , Blotting, Western , Chromatography, High Pressure Liquid , Bioreactors , Fermentation , Filtration
8.
Electron. j. biotechnol ; Electron. j. biotechnol;18(4): 273-280, July 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-757863

ABSTRACT

Background In the field of microbial fermentation technology, how to optimize the fermentation conditions is of great crucial for practical applications. Here, we use artificial neural networks (ANNs) and support vector machine (SVM) to offer a series of effective optimization methods for the production of iturin A. The concentration levels of asparagine (Asn), glutamic acid (Glu) and proline (Pro) (mg/L) were set as independent variables, while the iturin A titer (U/mL) was set as dependent variable. General regression neural network (GRNN), multilayer feed-forward neural networks (MLFNs) and the SVM were developed. Comparisons were made among different ANNs and the SVM. Results The GRNN has the lowest RMS error (457.88) and the shortest training time (1 s), with a steady fluctuation during repeated experiments, whereas the MLFNs have comparatively higher RMS errors and longer training times, which have a significant fluctuation with the change of nodes. In terms of the SVM, it also has a relatively low RMS error (466.13), with a short training time (1 s). Conclusion According to the modeling results, the GRNN is considered as the most suitable ANN model for the design of the fed-batch fermentation conditions for the production of iturin A because of its high robustness and precision, and the SVM is also considered as a very suitable alternative model. Under the tolerance of 30%, the prediction accuracies of the GRNN and SVM are both 100% respectively in repeated experiments.


Subject(s)
Peptides, Cyclic , Neural Networks, Computer , Algorithms , Fermentation , Batch Cell Culture Techniques , Support Vector Machine
9.
Protein Expr Purif ; 92(2): 235-44, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24141135

ABSTRACT

The codon sequence optimized bovine prochymosin B gene was cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9K and integrated into the genome of the methylotrophic yeast Pichia (Komagataella) pastoris (P. pastoris) strain GS115. A transformant clone that showed resistance to over 4 mg G418/ml and displayed the highest milk-clotting activity was selected. Cell growth and recombinant bovine chymosin production were optimized in flask cultures during methanol induction phase achieving the highest coagulant activity with low pH values, a temperature of 25°C and with the addition of sorbitol and ascorbic acid at the beginning of this period. The scaling up of the fermentation process to lab-scale stirred bioreactor using optimized conditions, allowed to reach 240 g DCW/L of biomass level and 96 IMCU/ml of milk-clotting activity. The enzyme activity corresponded to 53 mg/L of recombinant bovine chymosin production after 120 h of methanol induction. Western blot analysis of the culture supernatant showed that recombinant chymosin did not suffer degradation during the protein production phase. By a procedure that included high performance gel filtration chromatography and 3 kDa fast ultrafiltration, the recombinant bovine chymosin was purified and concentrated from fermentation cultures, generating a specific activity of 800 IMCU/Total Abs(280 nm) and a total activity recovery of 56%. This study indicated that P. pastoris is a suitable expression system for bioreactor based fed-batch fermentation process for the efficient production of recombinant bovine chymosin under methanol-inducible AOX1 promoter.


Subject(s)
Aldehyde Oxidase/genetics , Chymosin/metabolism , Pichia/metabolism , Promoter Regions, Genetic/genetics , Recombinant Proteins/metabolism , Animals , Ascorbic Acid/metabolism , Bioreactors , Cattle , Chymosin/analysis , Chymosin/chemistry , Chymosin/genetics , Culture Media , Fermentation , Hydrogen-Ion Concentration , Pichia/genetics , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sorbitol/metabolism , Temperature
10.
Electron. j. biotechnol ; Electron. j. biotechnol;16(3): 9-9, May 2013. ilus, tab
Article in English | LILACS | ID: lil-684007

ABSTRACT

Background: Recombinant proteins, including antibodies and antibody fragments, often contain disulfide bond bridges that are necessary for their folding, stability and function. Production of disulfide-bond-containing proteins in the periplasm of Escherichia coli has been very useful, due to unique characteristics of the periplasm, for obtaining fully active and correctly folded products and for alleviating downstream processing. Results: In this study, fed-batch cultivation of Escherichia coli (E. coli) for production of Fab D1.3, which is an anti-hen egg white lysozyme (HEWL) antibody fragment was carried out at 37ºC, and the bacterial cells were induced by adding 0.1 mM IPTG to the culture medium. Fermentor was sampled over the course of fermentation; the bacterial cells were centrifugally separated from the culture broth and subjected to osmotic shock (with excluding HEWL) and sonication procedures. The resulting fractions were analysed for Fab using a combination of ELISA, SDS-PAGE and Western blotting and changes in product titre, location, and form was assessed throughout growth. It was shown that osmotic shock released the Fab from the periplasm very efficiently and its efficacy was 20-45% more than sonication. This study demonstrates that, at high cell density cultivation in fermentor, target product can appear inside and outside the cells, depending on the time of induction. The maximum amount of Fab (47 mg/l) in the periplasm was reached at 14 hrs cultivation (4 hrs post induction), being suitable time for cell harvest, selective periplasmic extraction and downstream capture. The Fab increasingly leaked into the culture medium, and reached its maximum culture medium titre of ~78 mg/l after 6 hrs post induction. After 16 hrs cultivation (6 hrs post induction) the amount of Fab remained constant in different locations within and outside the cells. Western blot analysis of cell fractions showed that certain amount of the Fab was also produced in the cells as insoluble form. Conclusions: In this work we showed that the production of Fab in the periplasm during high cell density cultivation of E. coli in fermentor can be challenging as the product may appear in various locations within and outside the cells. To exploit the advantages of the periplasmic expression systems for purification in downstream processing, bacterial cells should be harvested when they maintain the majority of the target protein in their periplasmic space (i.e. 4 hrs post induction).


Subject(s)
Immunoglobulin Fragments/biosynthesis , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Enzyme-Linked Immunosorbent Assay , Cell Fractionation , Blotting, Western , Biomass , Electrophoresis, Polyacrylamide Gel/methods , Fermentation , Batch Cell Culture Techniques
11.
Braz. j. microbiol ; Braz. j. microbiol;43(3): 1042-1050, July-Sept. 2012. graf
Article in English | LILACS | ID: lil-656673

ABSTRACT

Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.


Subject(s)
Plant Structures/enzymology , Fermentation , Flowers/enzymology , Plant Leaves/enzymology , Fungicides, Industrial/analysis , Mitosporic Fungi/enzymology , Mitosporic Fungi/isolation & purification , Yeasts/isolation & purification , Polysaccharides/analysis , Incubators , Methods
12.
Braz J Microbiol ; 43(3): 1042-50, 2012 Jul.
Article in English | MEDLINE | ID: mdl-24031927

ABSTRACT

Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

13.
Article in English | VETINDEX | ID: vti-444955

ABSTRACT

Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

14.
Electron. j. biotechnol ; Electron. j. biotechnol;14(6): 4-4, Nov. 2011. ilus, tab
Article in English | LILACS | ID: lil-640521

ABSTRACT

The batch fermentation of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae SU6 at different crude glycerol concentration (40-100 g l-1), pH (6.5-7.5) and temperature (31-40ºC) combined with two-phase pH-controlled strategy was investigated. Effect of feeding rate (0.10-0.15 L h-1) was studied in fed-batch fermentation. In batch fermentation, the optimal condition was 60 g l-1 crude glycerol, pH control at 6.5 and cultivation temperature at 37ºC. The maximum 1,3-PD of 20 g l-1, the yield of 0.34 g 1,3-PD g-1 glycerol consumed and the productivity of 1.25 g l-1 h-1 were achieved at 16 hrs cultivation. The by-products were acetic acid and succinic acid at 2.7 and 1.1 g l-1, respectively. Two-phase pH-controlled strategy gave better results (24.95 g l-1 1,3-PD and 1.78 g l-1 h-1 productivity) than constant pH-controlled strategy (20 g l-1 and 1.25 g l-1 h-1, respectively) at 16 hrs incubation. In fed-batch fermentation, the maximum 1,3-PD of 45.35 g l-1 was achieved at constant feeding rate of 0.1 L h-1. The yield and productivity were 0.44 g g-1 and 1.94 g l-1 h-1, respectively. The fed-batch fermentation with constant feeding at 0.1 L h-1 with two-phase pH-controlled strategy gave 2.2 folds higher 1,3 PD concentration than the batch fermentation with two-phase pH-controlled strategy. This demonstrated the great impact of combination of pH control and feeding strategies in fed-batch fermentation on enhancing 1,3-propanediol production.


Subject(s)
Fermentation , Glycerol/metabolism , Propylene Glycols/metabolism , Klebsiella pneumoniae , Bioreactors , Culture Media , Hydrogen-Ion Concentration , Temperature
15.
Braz. arch. biol. technol ; Braz. arch. biol. technol;51(3): 441-446, May-June 2008. tab
Article in English | LILACS | ID: lil-487733

ABSTRACT

The volume of biomass in the fermenting medium may significantly affect the values of fermentation parameters calculated from the measured concentrations of the substrates and/or products. The corrections proposed in this paper should be evaluated and, depending on their magnitude, considered in order to obtain more representative results. A numerical example is presented.


O volume da biomassa no meio em fermentação pode afetar significativamente os parâmetros do processo calculados a partir das medidas das concentrações de substratos e/ou produtos. Correções propostas neste trabalho deveriam ser avaliadas e, dependendo de seus valores, consideradas a fim de obter resultados mais representativos. Apresenta-se um exemplo numérico.

SELECTION OF CITATIONS
SEARCH DETAIL