Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Bioresour Technol ; 393: 130078, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37993072

ABSTRACT

The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.


Subject(s)
Petroleum , Polyhydroxyalkanoates , Plastics , Biomass
2.
Bioengineering (Basel) ; 9(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36290507

ABSTRACT

Biodiesel can be produced from vegetable oils, animal fats, frying oils, and from microorganism-synthesized oils. These sources render biodiesel an easily biodegradable fuel. The aim of this work was to perform an advanced bibliometric analysis of primary studies relating to biodiesel production worldwide by identifying the key countries and regions that have shown a strong engagement in this area, and by understanding the dynamics of their collaboration and research outputs. Additionally, an assessment of the main primary feedstocks employed in this research was carried out, along with an analysis of the current and future trends that are expected to define new paths and methodologies to be used in the manufacture of biodegradable and renewable fuels. A total of 4586 academic outputs were selected, including peer-reviewed research articles, conference papers, and literature reviews related to biodiesel production, in the time period spanning from 2010 to 2021. Articles that focused on feedstocks for the production of biodiesel were also included, with a search that returned 330 papers. Lastly, 60 articles relating to biodiesel production via sewage were specifically included to allow for an analysis of this source as a promising feedstock in the future of the biofuel market. Via the geocoding and the document analyses performed, we concluded that China, Malaysia, and India are the largest writers of articles in this area, revealing a great interest in biofuels in Asia. Additionally, it was noted that environmental concerns have caused authors to conduct research on feedstocks that can address the sustainability challenges in the production of biodiesel.

3.
Bioresour Technol ; 320(Pt B): 124426, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33249260

ABSTRACT

Citric acid (CA) has been widely used in different industrial sectors, being produced through fermentation of low-cost feedstock. The development of downstream processes, easier to operate, environmentally friendly, and more economic than precipitation, is certainly a challenge in CA bioproduction. Large volumes of by-products generated in precipitation require treatment before disposal. Adsorption, extraction, and membrane separation have been shown to have a lower environmental impact than precipitation, but the technological maturity of these methods is still limited. However, reactive extraction and adsorption have great potential for industrial applications. This review shows that there is still much to be explored, both about the factors that are intrinsic to the techniques, but also in their combination for new processes' development. This review reports the most recent advances on CA bioproduction, with significant information about recovery and purification methods involving this highly industrially demanded organic acid.


Subject(s)
Citric Acid , Adsorption , Fermentation
4.
ChemSusChem ; 14(1): 169-188, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-32975380

ABSTRACT

This Review highlights the principal crops of Brazil and how their harvest waste can be used in the chemicals and materials industries. The Review covers various plants; with grains, fruits, trees and nuts all being discussed. Native and adopted plants are included and studies on using these plants as a source of chemicals and materials for industrial applications, polymer synthesis, medicinal use and in chemical research are discussed. The main aim of the Review is to highlight the principal Brazilian agricultural resources; such as sugarcane, oranges and soybean, as well as secondary resources, such as andiroba brazil nut, buriti and others, which should be explored further for scientific and technological applications. Furthermore, vegetable oils, carbohydrates (starch, cellulose, hemicellulose, lignocellulose and pectin), flavones and essential oils are described as well as their potential applications.

5.
Sci Total Environ ; 714: 136696, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-31982744

ABSTRACT

The use of renewable jet fuels (RJFs) is an option for meeting the greenhouse gases (GHG) reduction targets of the aviation sector. Therefore, most of the studies have focused on climate change indicators, but other environmental impacts have been disregarded. In this paper, an attributional life cycle assessment is performed for ten RJF pathways in Brazil, considering the environmental trade-offs between climate change and seven other categories, i.e., fossil depletion, terrestrial acidification, eutrophication, human and environmental toxicity, and air quality-related categories, such as particulate matter and photochemical oxidant formation. The scope includes sugarcane and soybean for first-generation (1G) pathways and residual materials (wood and sugarcane residues, beef tallow, and used cooking oil-UCO) for second-generation (2G) pathways. Three certified technologies to produce RJF are considered: hydroprocessed esters and fatty acids (HEFA), alcohol-to-jet (ATJ), and Fischer-Tropsch (FT). Assuming the residual feedstocks as wastes or by-products, the 2G pathways are evaluated by two different approaches, in which the biomass sourcing processes are either accounted for or not. Results show that 1G pathways lead to significant GHG reductions compared to fossil kerosene from 55% (soybean/HEFA) to 65% (sugarcane/ATJ). However, the sugarcane-based pathway generated three-fold higher values than fossil kerosene for terrestrial acidification and air quality impacts, and seven-fold for eutrophication. In turn, soybean/HEFA caused five-fold higher levels of human toxicity. For 2G pathways, when the residual feedstock is assumed to be waste, the potential GHG emission reduction is over 74% with no relevant trade-offs. On the other hand, if the residual feedstocks are assumed as valuable by-products, tallow/HEFA becomes the worst option and pathways from sugarcane residues, even providing a GHG reduction of 67% to 94%, are related to higher impacts than soybean/HEFA for terrestrial acidification and air quality. FT pathways represent the lowest impacts for all categories within both approaches, followed by UCO/HEFA.

6.
Environ Sci Pollut Res Int ; 26(22): 22846-22855, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31175574

ABSTRACT

The aim of this work was to evaluate simultaneously the effect of produced ethanolic biodiesel from several feedstocks (soybean, crambe, macaw, sunflower, and waste cooking oil) and engine operational conditions (low and high engine speed) during combustion of biodiesel/diesel blends on the N2O, NOx, NO, CO2, and CO emission levels in the atmosphere. The biodiesel samples were prepared in one and/or two reaction steps, according to the acid index of each raw material, by esterification using H2SO4 and/or chemical transesterification using sodium ethoxide, both, through ethanolic route. The quality of the produced biodiesels was confirmed by ASTM/EN specifications. Then, biodiesel/diesel blends were prepared according to the following proportions: 10% (B10), 15% (B15), 25% (B25), and 50% (B50). In general way, all raw materials under combustion at low and high engine speed contributed to the formation of NOx and this effect was more drastically increased as the biodiesel concentration in the blends increases. N2O presented a similar behavior except for blends containing crambe and macaw biodiesel whose emissions were slightly reduced as a function of biodiesel content in these blends. Then, Principal component analysis (PCA) was applied to discriminate the effect of engine operating conditions, biodiesel kind, and biodiesel content in the blends during their combustion on the exhaust emissions. The attained results point to crambe and macaw as more environmentally sustainable feedstocks for biodiesel production because they generate less greenhouse gas emissions. These results are particularly attractive considering that, both, crambe and macaw are non-edible feedstocks with great potential for biodiesel production.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Biofuels/analysis , Environmental Monitoring , Vehicle Emissions/analysis , Esterification , Ethanol/analogs & derivatives , Greenhouse Gases
7.
Environ Sci Pollut Res Int ; 25(36): 35949-35959, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29796887

ABSTRACT

During last decades, there has been a growing interest of decreasing the environmental impact generated by humans. This situation has been approached from different perspectives being the integral use of raw materials as one of the best alternatives. It was estimated that 3.7 × 109 tonnes of agricultural residues are produced annually worldwide. Then, the integral use of feedstocks has been studied through the biorefinery concept. A biorefinery can be a promissory option for processing feedstocks in rural zones aiming to boost the techno-economic and social growth. However, many plants produced at small scale in rural zones without high industrial use contribute with residues usually not studied as raw materials for other processes. Cocoyam (Xanthosoma sagittifolium) is a plant grown extensively in tropical regions. Nigeria, China, and Ghana are the main producers with 1.3, 1.18, and 0.9 million tonnes/year, respectively. In Colombia, there are no technified crops, but it is used where it is grown mainly as animal feed. This plant consists of leaves, stem, and a tuber but the use is generally limited to the leaves, discarding the other parts. These discarded parts have great potential (lignocellulose and starch). This work proposes different processing schemes using the parts of the plant to obtain value-added products, and their techno-economic and environmental assessment. The simulation was performed with Aspen Plus and the economic package was used for the economic assessment. For the environmental assessment, Waste Algorithm Reduction of the U.S. EPA was implemented. The obtained results showed that the integral use of plants under a biorefinery scheme allows obtaining better techno-economic and environmental performance and that small-scale biorefineries can be a promissory option for boosting rural zones.


Subject(s)
Animal Feed , Crops, Agricultural , Solid Waste , Starch , Xanthosoma , Agriculture , Animals , Cellulose , China , Colocasia , Colombia , Environment , Ghana , Humans , Industrial Waste , Nigeria , Plant Leaves
8.
Colloids Surf B Biointerfaces ; 165: 150-157, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29477935

ABSTRACT

Nanozeolites with different crystallographic structures (Nano/TS1, Nano/GIS, Nano/LTA, Nano/BEA, Nano/X, and Nano-X/Ni), functionalized with (3-aminopropyl)trimethoxysilane (APTMS) and crosslinked with glutaraldehyde (GA), were studied as solid supports for Thermomyces lanuginosus lipase (TLL) immobilization. Physicochemical characterizations of the surface-functionalized nanozeolites and nanozeolite-enzyme complexes were performed using XRD, SEM, AFM, ATR-FTIR, and zeta potential measurements. The experimental enzymatic activity results indicated that the nanozeolitic supports functionalized with APTMS and GA immobilized larger amounts of enzymes and provided higher enzymatic activities, compared to unfunctionalized supports. Correlations were observed among the nanozeolite surface charges, the enzyme immobilization efficiencies, and the biocatalyst activities. The catalytic performance and reusability of these enzyme-nanozeolite complexes were evaluated in the ethanolysis transesterification of microalgae oil to fatty acid ethyl esters (FAEEs). TLL immobilized on the nanozeolite supports functionalized with APTMS and GA provided the most efficient biocatalysis, with FAEEs yields above 93% and stability during five reaction cycles. Lower FAEEs yields and poorer catalytic stability were found for nanozeolite-enzyme complexes prepared only by physical adsorption. The findings indicated the viability of designing highly efficient biocatalysts for biofuel production by means of chemical modulation of nanozeolite surfaces. The high biocatalyst catalytic efficiency observed in ethanolysis reactions using a lipid feedstock that does not compete with food production is an advantage that should encourage the industrial application of these biocatalysts.


Subject(s)
Biocatalysis , Biofuels/microbiology , Lipids/chemistry , Microalgae/metabolism , Nanoparticles/chemistry , Silanes/chemistry , Zeolites/chemistry , Nanoparticles/ultrastructure , Spectroscopy, Fourier Transform Infrared , Static Electricity , Surface Properties , X-Ray Diffraction
9.
Front Microbiol ; 7: 2093, 2016.
Article in English | MEDLINE | ID: mdl-28082962

ABSTRACT

Cotton boll weevils, Anthonomus grandis, are omnivorous coleopteran that can feed on diets with different compositions, including recalcitrant lignocellulosic materials. We characterized the changes in the prokaryotic community structure and the hydrolytic activities of A. grandis larvae fed on different lignocellulosic diets. A. grandis larvae were fed on three different artificial diets: cottonseed meal (CM), Napier grass (NG) and corn stover (CS). Total DNA was extracted from the gut samples for amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Proteobacteria and Firmicutes dominated the gut microbiota followed by Actinobacteria, Spirochaetes and a small number of unclassified phyla in CM and NG microbiomes. In the CS feeding group, members of Spirochaetes were the most prevalent, followed by Proteobacteria and Firmicutes. Bray-Curtis distances showed that the samples from the CS community were clearly separated from those samples of the CM and NG diets. Gut extracts from all three diets exhibited endoglucanase, xylanase, ß-glucosidase and pectinase activities. These activities were significantly affected by pH and temperature across different diets. We observed that the larvae reared on a CM showed significantly higher activities than larvae reared on NG and CS. We demonstrated that the intestinal bacterial community structure varies depending on diet composition. Diets with more variable and complex compositions, such as CS, showed higher bacterial diversity and richness than the two other diets. In spite of the detected changes in composition and diversity, we identified a core microbiome shared between the three different lignocellulosic diets. These results suggest that feeding with diets of different lignocellulosic composition could be a viable strategy to discover variants of hemicellulose and cellulose breakdown systems.

SELECTION OF CITATIONS
SEARCH DETAIL