Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38851245

ABSTRACT

Short-term adaptation of the microbiota could promote nutrient degradation and the host health. While numerous studies are currently undertaking feeding trials using sustainable diets for the aquaculture industry, the extent to which the microbiota adapts to these novel diets is poorly described. The incorporation of carbohydrates (CHO) within a 100% plant-based diet could offer a novel, cost-effective energy source that is readily available, potentially replacing the protein component in the diets. In this study, we investigated the short-term (3 weeks) effects of a high CHO, 100% plant-based diet on the mucosal and digesta associated microbiota diversity and composition, as well as several metabolic parameters in rainbow trout. We highlighted that the mucosa is dominated by Mycoplasma (44.86%). While the diets did not have significant effects on the main phyla (Proteobacteria, Firmicutes, and Actinobacteria), after 3 weeks, a lower abundance of Bacillus genus, and higher abundances of four lactic-acid bacteria were demonstrated in digesta. In addition, no post-prandial hyperglycemia was observed with high carbohydrate intake. These results provide evidence for the rapid adaptation of the gut microbiota and host metabolism to high CHO in combination with 100% plant ingredients in rainbow trout.


Subject(s)
Animal Feed , Gastrointestinal Microbiome , Oncorhynchus mykiss , Starch , Animals , Oncorhynchus mykiss/microbiology , Animal Feed/analysis , Starch/metabolism , Diet/veterinary , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Adaptation, Physiological , Diet, Plant-Based
2.
J Fish Dis ; : e13985, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923541

ABSTRACT

Fish meal (FM) replacement is essential for the sustainable expansion of aquaculture. This study focussed on the feasibility of replacing FM with a single-cell protein (SCP) derived from methanotrophic bacteria (Methylococcus capsulatus, Bath) in barramundi fry (Lates calcarifer). Three isonitrogenous and isoenergetic diets were formulated with 0%, 6.4% and 12.9% inclusion of the SCP, replacing FM by 0%, 25% and 50%. Barramundi fry (initial body weight 2.5 ± 0.1 g) were fed experimental diets for 21 days to assess growth performance, gut microbiome composition and gut histopathology. Our findings revealed that both levels of SCP inclusion induced detrimental effects in barramundi fry, including impaired growth and reduced survival compared with the control group (66.7% and 71.7% survival in diets replacing FM with SCP by 25% and 50%, respectively; p < .05). Both dietary treatments presented mild necrotizing enteritis with subepithelial oedema and accumulation of PAS positive, diastase resistant droplets within hepatocytes (ceroid hepatopathy) and pancreatic atrophy. Microbiome analysis revealed a marked shift in the gut microbial community with the expansion of potential opportunistic bacteria in the genus Aeromonas. Reduced overall performance in the highest inclusion level (50% SCP) was primarily associated with reduced feed intake, likely related to palatability issues, albeit pathological changes observed in gut and liver may also play a role. Our study highlights the importance of meticulous optimization of SCP inclusion levels in aquafeed formulations, and the need for species and life-stage specific assessments to ensure the health and welfare of fish in sustainable aquaculture practices.

3.
J Anim Sci Biotechnol ; 15(1): 6, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38247008

ABSTRACT

BACKGROUND: High dietary carbohydrates can spare protein in rainbow trout (Oncorhynchus mykiss) but may affect growth and health. Inulin, a prebiotic, could have nutritional and metabolic effects, along with anti-inflammatory properties in teleosts, improving growth and welfare. We tested this hypothesis in rainbow trout by feeding them a 100% plant-based diet, which is a viable alternative to fishmeal and fish oil in aquaculture feeds. In a two-factor design, we examined the impact of inulin (2%) as well as the variation in the carbohydrates (CHO)/plant protein ratio on rainbow trout. We assessed the influence of these factors on zootechnical parameters, plasma metabolites, gut microbiota, production of short-chain fatty acids and lactic acid, as well as the expression of free-fatty acid receptor genes in the mid-intestine, intermediary liver metabolism, and immune markers in a 12-week feeding trial. RESULTS: The use of 2% inulin did not significantly change the fish intestinal microbiota, but interestingly, the high CHO/protein ratio group showed a change in intestinal microbiota and in particular the beta diversity, with 21 bacterial genera affected, including Ralstonia, Bacillus, and 11 lactic-acid producing bacteria. There were higher levels of butyric, and valeric acid in groups fed with high CHO/protein diet but not with inulin. The high CHO/protein group showed a decrease in the expression of pro-inflammatory cytokines (il1b, il8, and tnfa) in liver and a lower expression of the genes coding for tight-junction proteins in mid-intestine (tjp1a and tjp3). However, the 2% inulin did not modify the expression of plasma immune markers. Finally, inulin induced a negative effect on rainbow trout growth performance irrespective of the dietary carbohydrates. CONCLUSIONS: With a 100% plant-based diet, inclusion of high levels of carbohydrates could be a promising way for fish nutrition in aquaculture through a protein sparing effect whereas the supplementation of 2% inulin does not appear to improve the use of CHO when combined with a 100% plant-based diet.

4.
Vet Res Commun ; 48(2): 1061-1072, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072900

ABSTRACT

This study evaluated the effects of a multi-strain prebiotics and probiotics on the diet of tambaqui Colossoma macropomum. One hundred and fifty juvenile tambaqui (20.2 ± 3.6 g and 10.32 ± 5.78 cm) were randomly distributed in 15 experimental units with a volume of 80 L and fed for 45 days with a diet containing the symbiotic additive at five inclusion levels (0, 2, 4, 6 and 8 g kg feed- 1). At the end of the period, growth performance, survival, hemato-biochemical and intestinal parameters, as well as the fish's resistance to stress were evaluated. The additive did not alter the growth performance, hemato-biochemical and intestinal parameters of the tambaqui. However, the hemato-biochemical parameters of aspartate aminotransferase (AST), plasma protein, hematocrit, glucose, triglycerides and cholesterol showed differences between treatments after the stress challenge. AST increased significantly during challenge and post-challenge. Plasma protein increased significantly during and after the challenge. The hematocrit was highest at 48 h after the challenge and lowest in the 2 g, 6 g and 8 g groups. Glucose was significantly reduced 24 h after the challenge, while triglycerides were lower 24 h and 48 h after the challenge. Cholesterol increased significantly in the challenge. There was an interaction between the factors sampling time and symbiotic concentration for hematocrit and glucose. In hypoxic stress situations, the 2 g concentration was more favorable for the fish. We recommend further studies with 2 g kg feed- 1 in trials lasting more than 45 days.


Subject(s)
Characiformes , Probiotics , Animals , Prebiotics , Diet/veterinary , Probiotics/pharmacology , Triglycerides , Cholesterol , Blood Proteins , Glucose , Hypoxia/veterinary
5.
Animals (Basel) ; 13(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38136853

ABSTRACT

The use of organic ingredients as a source of protein in aquaculture diets has gained significant attention due to the growing demand for organic seafood products. This study aimed to evaluate the potential for the use of organic ingredients as protein sources in the diet of juvenile organic seabass (Dicentrarchus labrax). A total of 486 juvenile seabass with an average weight of 90 g were fed six diets containing varied organic proteins. The control group (CON) was fed a diet with conventional fishmeal from sustainable fisheries as the primary protein source. The other five groups were fed diets with different compositions: organic Iberian pig meal byproduct (IB diet), a combination of organic Iberian pig meal byproduct and insect meal (IB-IN diet), a mix of organic Iberian pig meal byproduct and organic rainbow trout meal byproduct (IB-TR diet), a blend of organic rainbow trout meal byproduct and insect meal (TR-IN), and a mixed diet containing all of these protein sources (MIX diet). Over a 125-day feeding trial, growth performance, feed utilisation, feed digestibility, and histological parameters were assessed. The results showed that the fish fed the control diet had the highest final weight and specific growth rate, followed by the fish fed the TR-IN and IB-TR diets. The IB-TR diet had the highest apparent digestibility coefficients (ADCs) for protein, while the TR-IN diet had the lowest. Histological analysis revealed that fish fed the control diet had the largest nucleus diameter and hepatocyte diameter. Use of IN seems to penalise performance in several ways. Fish fed diets containing insect meal grew less, and those diets had lower digestibility. Fish fed the TR and IB diets grew at rates near that of the control, and the feed had acceptable digestibility.

7.
PeerJ ; 11: e16213, 2023.
Article in English | MEDLINE | ID: mdl-37842054

ABSTRACT

Tilapia species are among the most cultivated fish worldwide due to their biological advantages but face several challenges, including environmental impact and disease outbreaks. Feed additives, such as probiotics, prebiotics, and other microorganisms, have emerged as strategies to protect against pathogens and promote immune system activation and other host responses, with consequent reductions in antibiotic use. Because these additives also influence tilapia's gut microbiota and positively affect the tilapia culture, we assume it is a flexible annex organ capable of being subject to significant modifications without affecting the biological performance of the host. Therefore, we evaluated the effect of probiotics and other additives ingested by tilapia on its gut microbiota through a meta-analysis of several bioprojects studying the tilapia gut microbiota exposed to feed additives (probiotic, prebiotic, biofloc). A total of 221 tilapia gut microbiota samples from 14 bioprojects were evaluated. Alpha and beta diversity metrics showed no differentiation patterns in relation to the control group, either comparing additives as a group or individually. Results also revealed a control group with a wide dispersion pattern even when these fish did not receive additives. After concatenating the information, the tilapia gut core microbiota was represented by four enriched phyla including Proteobacteria (31%), Fusobacteria (23%), Actinobacteria (19%), and Firmicutes (16%), and seven minor phyla Planctomycetes (1%), Chlamydiae (1%), Chloroflexi (1%), Cyanobacteria (1%), Spirochaetes (1%), Deinococcus Thermus (1%), and Verrucomicrobia (1%). Finally, results suggest that the tilapia gut microbiota is a dynamic microbial community that can plastically respond to feed additives exposure with the potential to influence its taxonomic profile allowing a considerable optimal range of variation, probably guaranteeing its physiological function under different circumstances.


Subject(s)
Microbiota , Probiotics , Tilapia , Animals , Tilapia/microbiology , Prebiotics , Probiotics/pharmacology , Bacteria , Aquaculture
8.
Fish Physiol Biochem ; 49(5): 829-851, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37507548

ABSTRACT

Giant grouper (Epinephelus lanceolatus) is an economically important yet under-researched species, still reliant on 'trash fish' or generic aquafeeds. The transition toward sustainable formulations is contingent on establishing requirements of target species for limiting nutrients, among which the sulfur amino acids (methionine and cysteine) commonly limit fish growth. Further, there remains significant conjecture around the role of the sulfonic acid taurine in marine aquafeed formulation and its relationship to sulfur amino acids. To develop a species-specific feed formulation for giant grouper, dietary methionine was modulated in a dose-response experiment to achieve five graded levels from 9.5 to 21.5 g/kg, including an additional diet with methionine at 18.6 g/kg supplemented with 8 g/kg taurine. The mean (±SD) cysteine level of the diets was 4.5 ± 0.3 g/kg. Each diet was randomly allocated to triplicate tanks of 14 fish (83.9 ± 8.4 g). The best-fit regression for growth showed that the optimal dietary methionine content was 15.8 g/kg and the total sulfur amino acid content was 20.3 g/kg. Inadequate dietary methionine content triggered physiological responses, including hepatic hyperplasia and hypoplasia at 9.5 and 21.5 g/kg, respectively, and high aspartate transaminase levels at 18.9 g/kg. Moreover, inadequate dietary methionine contents resulted in higher densities of mixed goblet cell mucin and reduced absorptive surface area of posterior intestinal villi. Our results suggest that adequate levels of methionine, but not taurine, improved posterior intestinal conditions and liver homeostasis. These findings may aid in formulating aquafeeds to optimize gastrointestinal and liver functions in juvenile giant grouper.


Subject(s)
Amino Acids, Sulfur , Bass , Animals , Bass/physiology , Cysteine/pharmacology , Taurine , Methionine/pharmacology , Diet/veterinary , Nutritional Requirements
9.
J Nutr Sci ; 12: e61, 2023.
Article in English | MEDLINE | ID: mdl-37252685

ABSTRACT

Choline was recently established as an essential nutrient for Atlantic salmon at all life stages. Choline deficiency is manifested as an excessive accumulation of dietary fat within the intestinal enterocytes, a condition known as steatosis. Most of today's plant-based salmon feeds will be choline-deficient unless choline is supplemented. Choline's role in lipid transport suggests that choline requirement may depend on factors such as dietary lipid level and environmental temperature. The present study was therefore conducted to investigate whether lipid level and water temperature can affect steatosis symptoms, and thereby choline requirement in Atlantic salmon. Four choline-deficient plant-based diets were formulated differing in lipid level of 16, 20, 25 and 28 % and fed to salmon of 25 g initial weight in duplicate tanks per diet at two different environmental temperatures: 8 and 15 °C. After 8 weeks of feeding, samples of blood, tissue and gut content from six fish per tank were collected, for analyses of histomorphological, biochemical and molecular biomarkers of steatosis and choline requirement. Increasing lipid level did not affect growth rate but increased relative weight and lipid content of the pyloric caeca and histological symptoms of intestinal steatosis and decreased fish yield. Elevation of the water temperature from 8 to 15 °C, increased growth rate, relative weight of the pyloric caeca, and the histological symptoms of steatosis seemed to become more severe. We conclude that dietary lipid level, as well as environmental temperature, affect choline requirement to a magnitude of importance for fish biology and health, and for fish yield.


Subject(s)
Salmo salar , Animals , Temperature , Choline , Lipid Metabolism , Liver/metabolism , Diet/veterinary , Dietary Fats , Weight Gain , Intestines , Water/metabolism
10.
Animals (Basel) ; 13(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36611781

ABSTRACT

In the present study, an organic substrate (coffee silverskin) enriched with spirulina (Arthrospira platensis; 15% w/w), as a source of lipids and bioactive molecules, was used to rear the black soldier fly (Hermetia illucens) prepupae. Three grossly isonitrogenous, isoproteic, isolipidic and isoenergetic experimental diets for rainbow trout (Oncorhynchus mykiss) juveniles were then produced: a control diet (HM0) mostly including fish meal and fish oil, and two other test diets named HM3 and HM20, in which 3 or 20% of the marine ingredients were substituted with full fat black soldier fly prepupae meal (HM), respectively. Experimental diets were provided for 6 weeks, and at the end of the trial the physiological responses and marketable traits of the fish were investigated using a multidisciplinary approach. Generally, all test diets were well accepted, and fish growth, gut and liver health status, and marketable characteristics were not impaired by the experimental diets. However, an increased immuno-related gene expression along with a slight reduction of fillet redness and yellowness was evident in fish from the HM20 group.

11.
Br J Nutr ; 129(1): 10-28, 2023 01 14.
Article in English | MEDLINE | ID: mdl-35236527

ABSTRACT

The present study evaluated the effects of increasing the dietary levels of EPA and DHA in Atlantic salmon (Salmo salar) reared in sea cages, in terms of growth performance, welfare, robustness and overall quality. Fish with an average starting weight of 275 g were fed one of four different diets containing 10, 13, 16 and 35 g/kg of EPA and DHA (designated as 1·0, 1·3, 1·6 and 3·5 % EPA and DHA) until they reached approximately 5 kg. The 3·5 % EPA and DHA diet showed a significantly beneficial effect on growth performance and fillet quality compared with all other diets, particularly the 1 % EPA and DHA diet. Fish fed the diet containing 3·5 % EPA and DHA showed 400-600 g higher final weights, improved internal organ health scores and external welfare indicators, better fillet quality in terms of higher visual colour score and lower occurrence of dark spots and higher EPA and DHA content in tissues at the end of the feeding trial. Moreover, fish fed the 3·5 % EPA and DHA diet showed lower mortality during a naturally occurring cardiomyopathy syndrome outbreak, although this did not reach statistical significance. Altogether, our findings emphasise the importance of dietary EPA and DHA to maintain good growth, robustness, welfare and fillet quality of Atlantic salmon reared in sea cages.


Subject(s)
Fatty Acids, Omega-3 , Salmo salar , Animals , Eicosapentaenoic Acid/pharmacology , Docosahexaenoic Acids/pharmacology , Diet/veterinary , Animal Feed/analysis
12.
Trop Anim Health Prod ; 54(6): 395, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36422681

ABSTRACT

The present study investigated the dietary fishmeal replacement by marine red seaweed (Halymenia dilatata) meal (RSM) on growth performance, feed utilization, chemical body composition, hematological constituents, digestive, antioxidant, and metabolic enzymes in freshwater fish Labeo rohita (Rohu) fingerlings. The fish were fed with RSM-free control diet (RSM0) and four experimental diets, which replaced fish meal (FM) with varying levels of RSM (25%, 50%, 75%, and 100%, represented as RSM25, RSM50, RSM75, and RSM100 respectively). After a 60-day feeding trial, the survival rate (SR), growth performance (length gain, weight gain, and specific growth rate), protein efficiency ratio, chemical body composition (protein, lipid, and ash), and digestive enzymes (amylase and protease) were significantly increased (P < 0.05) in the fish fed with RSM50 diet containing 39% protein level. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a higher staining intensity of muscle proteins in fish fed with the RSM50 diet. However, the hematological constituents (hemoglobin, hematocrit, red blood cell, white blood cell, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration), antioxidant enzyme - superoxide dismutase, and metabolic enzymes (glutamic oxaloacetic transaminase and glutamic pyruvic transaminase) were not significantly altered in RSM50 diet when compared to control. In contrast, hematological constituents were decreased (P < 0.05), and antioxidant and metabolic enzymes were increased in rohu fed with RSM75 and RSM100 (P < 0.05). Furthermore, these findings suggest that RSM might be adopted at a pace of 37% (estimated polynomial second-order regression) and is found to be beneficial for freshwater fish L. rohita diets that enhance growth and immune responses. The current study recommended substituting (50%) of marine red seaweed (Halymenia dilatata) for fish meal significantly improves the growth performance, chemical body composition, and digestive enzymes of L. rohita and this could be a valuable natural replacement for fishmeal to reduce the production cost of aquatic feed.


Subject(s)
Cyprinidae , Seaweed , Animals , Animal Feed/analysis , Antioxidants/metabolism , Cyprinidae/metabolism , Fresh Water , Proteins/metabolism , Vegetables
13.
Fish Physiol Biochem ; 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36219350

ABSTRACT

Because of their unique glycosidic bond structure, non-starch polysaccharides (NSP) are difficult for the stomach to break down. NSP can be classified as insoluble NSP (iNSP, fiber, lignin, etc.) and soluble NSP (sNSP, oligosaccharides, ß-glucan, pectin, fermentable fiber, inulin, plant-derived polysaccharides, etc.). sNSP is viscous, fermentable, and soluble. Gut microbiota may catabolize sNSP, which can then control fish lipid, glucose, and protein metabolism and impact development rates. This review examined the most recent studies on the impacts of various forms of sNSP on the nutritional metabolism of various fish in order to comprehend the effects of sNSP on fish. According to certain investigations, sNSP can enhance fish development, boost the activity of digestive enzymes, reduce blood sugar and cholesterol, enhance the colonization of good gut flora, and modify fish nutrition metabolism. In-depth research on the mechanism of action is also lacking in most studies on the effects of sNSP on fish metabolism. It is necessary to have a deeper comprehension of the underlying processes by which sNSP induce host metabolism. This is crucial to address the main issue of the sensible use of carbohydrates in fish feed.

14.
Metabolites ; 12(7)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35888699

ABSTRACT

Our previous study demonstrated that based on growth performance and feed utilization, cottonseed meal (CSM) could substitute 20% fishmeal (FM) without adverse effect on golden pompano (Trachinotus ovatus). Muscle deposition was also an important indicator to evaluate the efficiency of alternative protein sources. Therefore, the present study was conducted to explore the changes of physiobiochemical and nutrient metabolism in muscle after FM replaced by CSM. Four isonitrogenous and isolipidic experimental diets (42.5% crude protein, 14.0% crude lipid) were formulated to replace 0% (CSM0 diet), 20% (CSM20 diet), 40% (CSM40 diet), and 60% (CSM60 diet) of FM with CSM. Juvenile fish (24.8 ± 0.02 g) were fed each diet for 6 weeks. The results presented, which, compared with the CSM0 diet, CSM20 and CSM40 diets, had no effect on changing the muscle proximate composition and free essential amino acid (EAA) concentration. For glycolipid metabolism, the CSM20 diet did not change the mRNA expression of hexokinase (hk), glucose transport protein 4 (glut4), glucagon-like peptide 1 receptor (glp-1r), while over 20% replacement impaired glucose metabolism. However, CSM20 and CSM40 diets had no effect on altering lipid metabolism. Mechanistically, compared with the CSM0 diet, the CSM20 diet did not change muscle nutritive metabolism through keeping the activities of the nutrient sensing signaling pathways stable. Higher replacement would break this balance and lead to muscle nutritive metabolism disorders. Based on the results, CSM could substitute 20-40% FM without affecting the muscle nutritive deposition. All data supplemented the powerful support for our previous conclusion that CSM could successfully replace 20% FM based on growth performance.

15.
Front Physiol ; 13: 897168, 2022.
Article in English | MEDLINE | ID: mdl-35694394

ABSTRACT

Food allergy is an abnormal immune response to specific proteins in a certain food. The chronicity, prevalence, and the potential fatality of food allergy, make it a serious socio-economic problem. Fish is considered the third most allergenic food in the world, affecting part of the world population with a higher incidence in children and adolescents. The main allergen in fish, responsible for the large majority of fish-allergic reactions in sensitized patients, is a small and stable calcium-binding muscle protein named beta-parvalbumin. Targeting the expression or/and the 3D conformation of this protein by adding specific molecules to fish diets has been the innovative strategy of some researchers in the fields of fish allergies and nutrition. This has shown promising results, namely when the apo-form of ß-parvalbumin is induced, leading in the case of gilthead seabream to a 50% reduction of IgE-reactivity in fish allergic patients.

16.
Animals (Basel) ; 12(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35625073

ABSTRACT

The ide (Leuciscus idus) is a native European species of rheophilic cyprinid fish whose wild population status is dependent on conservation efforts, particularly regular restocking. This study aimed to evaluate the effects of including insect meals as a component in the diet of ide juveniles on their growth performance, feed utilization, and nutriphysiological status. Four diets were formulated: three with insect meals, HI-with 20% Hermetia illucens meal, TM-with 20% Tenebrio molitor meal, and ZM-with 20% Zophobas morio meal, and the control group diet, CON-fish meal with no insect component. The effects of the various diets on the efficiency of rearing ide juveniles were assessed based on fish growth parameters, feed utilization parameters, somatic indices, and intestinal and hepatopancreatic histomorphology. The highest increase in fish weight gain and the protein efficiency ratio was observed in the HI and TM groups, while the lowest values were observed in the CON and ZM groups. Comparable results were noted for the feed conversion ratio, which was most favorable in the HI and TM groups and increased in the ZM group. The use of black soldier fly and mealworm larval meal in the diets of ide juveniles had a positive effect on rearing results and overall fish health.

17.
Animals (Basel) ; 12(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35565624

ABSTRACT

The effects of dietary inclusion of soybean-sunflower and olive pomace acid oils on growth, digestibility and flesh composition were studied in European seabass. Eight diets were fed for 100 days (101.37 ± 0.33 g initial weight, mean ± SD), differing in the added fat source (25% fish oil, 75% experimental oil): S (crude soybean oil), SA (soybean-sunflower acid oil), O (crude olive pomace oil) or OA (olive pomace acid oil); 3 blends: S-O, S-OA, SA-OA at a 1:1 ratio; and a diet containing only fish oil (F) as a control. Animals fed OA showed the worst performance among dietary treatments, with the lowest weight, specific growth ratio, average daily gain and the highest feed conversion ratio (p < 0.01). In contrast, other diets including acid oils did not impair performance. Acid oil diets did not affect the apparent digestibility of dry matter, crude protein or total fatty acids (p > 0.05), but a lower digestibility of lipids and saturated fatty acids was observed (p < 0.001). Flesh composition and fatty acid profile were not affected by the high dietary free FA content (p > 0.05). Hence the results suggest that the studied acid oils may potentially be used in fish diets although further studies are needed.

18.
Animal ; 16(5): 100516, 2022 May.
Article in English | MEDLINE | ID: mdl-35468507

ABSTRACT

Insect meals are considered among the most promising feed materials in fish nutrition due to their sustainability and possibility of fish meal replacement. The present study is the first application of full-fat black soldier fly larvae (BSFL) meal in brown trout (Salmo trutta m. fario) diets. Two experiments were performed on 240 brown trout fingerlings (average body mass 4.85 g) distributed into four groups (12 tanks for the growth performance experiment, 10 fish/tank; and 12 metabolic tanks for the digestibility test, 10 fish/tank). The experimental group design was conducted as follows: control diet, with no BSFL and 35% fish meal, and experimental diets: BSFL5 - with 5% BSFL full-fat meal and 32.5% fish meal; BSFL10 - with 10% BSFL full-fat meal and 30% fish meal; and BSFL20 - with 20% BSFL full-fat meal and 25% fish meal. No effects were recorded in the case of growth performance and feed utilization parameters. The environmental sustainability of the usage of insect meals in fish diets was proven - due to the lower fish meal inclusion, the fish-in-fish-out ratio decreased by 31% in BSFL20. In the case of the viscerosomatic index, increases in BSFL5 and BSFL20 were reported. In all experimental groups, decreases in hepatosomatic index values were observed. Crude protein digestibility decreased in BSFL5 and BSFL20, while crude fat digestibility decreased only in the BSFL20 group. The effect of including BSFL full-fat meal in a brown trout diet on serum biochemical parameters was reported. The aspartate transaminase concentration increased in BSFL10 and BSFL20, while the gamma-glutamyl transpeptidase values decreased in BSFL20. In the case of total cholesterol, higher values were observed in BSFL10 and BSFL20. The albumin content decreased in the BSFL20 group, while globulin showed the highest values in the control group. The microbiota composition was not affected by insect meal inclusion. In conclusion, the results of the present study showed the high potential of BSFL full-fat meal application of up to 20% in a brown trout diet.


Subject(s)
Animal Feed , Diptera , Animal Feed/analysis , Animals , Diet/veterinary , Larva , Meals , Trout
19.
Animals (Basel) ; 12(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35327087

ABSTRACT

The objective of this study was to evaluate the effect of diets containing different inclusion levels (0%, 7%, 14%, 21% and 28%) of soybean meal fermented by Lactobacillus acidophilus (SMFL) on the zootechnical performance and intestinal health of South American catfish juveniles (Rhamdia quelen). The experimental design was completely randomized with five treatments and four replications and lasted 56 days. Five isoproteic (39% crude protein) and isoenergetic (4300 kcal of gross energy kg-1) diets were formulated where SMFL was included in replacement of fish meal. Two hundred forty South American catfish juveniles (3.0 ± 0.5 g) were distributed in 20 tanks (70 L) connected in a recirculation aquaculture system. At the end of the experiment, the inclusion of SMFL up to 21% in replacement of fish meal did not affect the zootechnical performance and also decreased the concentration of Vibrionaceae bacteria present in the intestine compared to the control group. The amount of total lactic and heterotrophic bacteria, the enzymatic activity and the intestinal morphometry did not differ between dietary treatments. The results demonstrate that fermentation with Lactobacillus acidophilus enables greater inclusion of soybean protein in South American catfish diets and promotes the control of intestinal pathogenic bacteria.

20.
Animals (Basel) ; 12(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35049801

ABSTRACT

The demand of optimal protein for human consumption is growing. The Food and Agriculture Organization (FAO) has highlighted aquaculture as one of the most promising alternatives for this protein supply gap due to the high efficiency of fish growth. However, aquaculture has been facing its own sustainability problem, because its high demand for protein has been traditionally satisfied with the use of fishmeal (FM) as the main source. Some of the most promising and sustainable protein substitutes for FM come from insects. The present manuscript provides insight into an experiment carried out on rainbow trout (Oncorhynchus mykiss) with a 50% replacement of FM with different larvae insect meals: Hermetia illucens (HI), and Tenebrio molitor (TM). TM showed better results for growth, protein utilization and more active digestive function, supported by intestinal histological changes. Liver histology and intermediary metabolism did not show relevant changes between insect meals, while other parameters such as antioxidant enzyme activities and tissue damage indicators showed the potential of insect meals as functional ingredients.

SELECTION OF CITATIONS
SEARCH DETAIL
...