Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Vet Med Sci ; 10(4): e1526, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963182

ABSTRACT

OBJECTIVES: This study aimed to examine the effects of supplementation of vitamin D to the egg-yolk extender on characteristics of frozen-thawed ram semen. METHODS: Semen samples obtained from adult rams were pooled and divided into five equal volumes. It was reconstituted with extenders containing different concentrations of vitamin D: 0 (control), 12.5 (VITD 12.5), 25 (VITD 25), 50 (VITD 50), and 100 ng/mL (VITD 100), and then they were frozen. Sperm motility parameters, plasma membrane functional integrity, acrosomal integrity, DNA fragmentation, and mitochondrial membrane potential of the groups were evaluated after sperm thawing. RESULTS: Total motility and progressive motility were higher in VITD 50 than in all other groups (p < 0.05). Higher sperm straightness, linearity, and wooble were higher in VITD 50 than in the control group (p < 0.05). A similar pattern of VITD 50 was observed for plasma membrane integrity and mitochondrial membrane potential (p > 0.05). CONCLUSIONS: In the study, it was observed that adding vitamin D to the extender had a beneficial effect on ram spermatological parameters. In addition, it was concluded that the use of the 50 ng/mL vitamin D in the extender provided more effective protection than the other doses.


Subject(s)
Cryopreservation , Semen Preservation , Vitamin D , Animals , Male , Semen Preservation/veterinary , Semen Preservation/methods , Vitamin D/pharmacology , Vitamin D/administration & dosage , Cryopreservation/veterinary , Sheep/physiology , Egg Yolk/chemistry , Semen/drug effects , Semen/physiology , Cryoprotective Agents/pharmacology , Sheep, Domestic
2.
Cell Biochem Biophys ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831173

ABSTRACT

Intracellular protein abundance is routinely measured in mammalian cells using population-based techniques such as western blotting which fail to capture single cell protein levels or using fluorescence microscopy which is although suitable for single cell protein detection but not for rapid analysis of large no. of cells. Flow cytometry offers rapid, high-throughput, multiparameter-based analysis of intracellular protein expression in statistically significant no. of cells at single cell resolution. In past few decades, customized assays have been developed for flow cytometric detection of specific intracellular proteins. This review discusses the scope of flow cytometry for intracellular protein detection in mammalian cells along with specific applications. Technological advancements to overcome the limitations of traditional flow cytometry for the same are also discussed.

3.
Methods Mol Biol ; 2775: 195-209, 2024.
Article in English | MEDLINE | ID: mdl-38758319

ABSTRACT

Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an encapsulated fungal pathogen found ubiquitously in the environment that causes pneumonia and life-threatening infections of the central nervous system. Following inhalation of yeasts or desiccated basidiospores into the lung alveoli, resident pulmonary phagocytic cells aid in the identification and eradication of Cryptococcus yeast through their arsenal of pattern recognition receptors (PRRs). PRRs recognize conserved pathogen-associated molecular patterns (PAMPs), such as branched mannans, ß-glucans, and chitins that are the major components of the fungal cell wall. However, the key receptors/ligand interactions required for cryptococcal recognition and eventual fungal clearance have yet to be elucidated. Here we present an imaging flow cytometer (IFC) method that offers a novel quantitative cellular imaging and population statistics tool to accurately measure phagocytosis of fungal cells. It has the capacity to measure two distinct steps of phagocytosis: association/attachment and internalization in a high-throughput and quantitative manner that is difficult to achieve with other technologies. Results from these IFC studies allow for the potential to identify PRRs required for recognition, uptake, and subsequent activation of cytokine production, as well as other effector cell responses required for fungal clearance.


Subject(s)
Cryptococcus neoformans , Flow Cytometry , Phagocytosis , Flow Cytometry/methods , Cryptococcus neoformans/metabolism , Animals , Mice , Phagocytes/metabolism , Phagocytes/microbiology , Cryptococcosis/microbiology , Cryptococcosis/metabolism , Cryptococcosis/immunology , Cryptococcus/metabolism , Humans , Image Cytometry/methods , Receptors, Pattern Recognition/metabolism
4.
Int Immunopharmacol ; 130: 111743, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38430802

ABSTRACT

OBJECTIVES: To investigate the immunopathogenic mechanisms of anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) by characterizing the changes of immune cells in both peripheral blood (PB) and cerebrospinal fluid (CSF) of patients with NMDAR-E. METHODS: Cytology and flow cytometry were used to explore and compare different immunological parameters in PB and CSF of patients with NMDAR-E, viral encephalitis (VE) and healthy volunteers. Moreover, different models were established to assess the possibility of identifying NMDAR-E patients based on PB and CSF parameters. RESULTS: The neutrophil counts and monocyte-to-lymphocyte ratios (MLR) in PB are higher in NMDAR-E patients than in both VEs and controls (P < 0.001, respectively), while the percentages of CD3 + T, CD4 + T lymphocytes, and the leukocytes count in CSF were lower in NMDAR-Es than in VEs (P < 0.01, respectively). The higher percentages of CD8 + T cells in blood and CSF were both correlated with more severe NMDAR-E (P < 0.05, respectively). The poor neurological status group had significantly higher PB leukocytes but lower CSF leukocyte count (P < 0.05). Longitudinal observations in patients with NMDAR-E showed a decreasing trend of leukocyte count, neutrophils count, neutrophil-to-monocyte ratios (NMR), and neutrophil-to-lymphocyte ratios (NLR) with the gradual recovery of neurological function. CONCLUSIONS: The expression patterns of T lymphocyte subsets were different in patients with NMDAR-E and viral encephalitis. The changing trends of leukocyte and lymphocyte populations in peripheral blood and cerebrospinal fluid may provide clues for the diagnosis of different types of encephalitides, including NMDARE, and can be used as immunological markers to assess and predict the prognosis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Encephalitis, Viral , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Prognosis , CD4-Positive T-Lymphocytes , Immunity, Cellular
5.
Biopreserv Biobank ; 22(4): 312-320, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38265832

ABSTRACT

Ozone has been used as a therapy tool in medical science for conditions such as ulcers, peritonitis, wounds, and mostly joint problems. Ozone therapy strengthens the resistance to infections by kick-starting antioxidant, anti-inflammatory, and immune modulation systems. Ozone creates a defensive response against oxidative stress in membranes and protects metabolism against reactive oxygen species (ROS). Sperm membranes are one of ROS's main targets; therefore, the cells' cryopreservation process requires more defensive elements for better results. This study aimed to investigate the protective effect of nano-ozone solution (NOS) on ram sperm cryopreservation and the influence of the process on various sperm parameters for post-thaw (0 hour) and postincubation (6 hours) time points. Samples were collected from six Merino rams in the breeding season by electroejaculation five times at 3-day intervals. The study was conducted by cryopreservation of the samples using a tris citric acid-egg yolk-based extender. The samples were subjected to freezing in control and NOS (0.5, 1, and 2 µg/mL nano-ozone supplemented). Post-thaw motility, hypo-osmotic swelling test, acrosome (fluorescein isothiocyanate-conjugated Pisum sativum agglutinin [PSA-FITC]), and DNA integrities (terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]) were evaluated with a phase-contrast microscope. Mitochondrial membrane potential (MMP) assessments were conducted by JC1-PI dual staining with a flow cytometer. Malondialdehyde and glutathione (GSH) levels were measured by a spectrophotometer. Sperm kinematics were investigated by a computer-assisted sperm analyzer (CASA) at the post-thaw time point. Compared with the control, relatively low doses of NOS (0.5 and 1 µg/mL) yielded better results in many parameters (motility, membrane and acrosomal integrities, MMP, various sperm kinematics, and GSH levels) (p < 0.05). The addition of low ozone doses to cryopreservation extenders improved the results compared with the control group at post-thaw and postincubation time points. Despite the valuable potential of nano-ozone supplementation in ram sperm cryopreservation, this subject requires further investigations with fertility trials soon.


Subject(s)
Cryopreservation , Flow Cytometry , Ozone , Semen Preservation , Spermatozoa , Male , Animals , Cryopreservation/methods , Sheep , Ozone/pharmacology , Spermatozoa/drug effects , Semen Preservation/methods , Sperm Motility/drug effects , Cryoprotective Agents/pharmacology , Acrosome/drug effects
6.
Cryobiology ; 114: 104849, 2024 03.
Article in English | MEDLINE | ID: mdl-38242276

ABSTRACT

This study aimed to determine the effect of alpha-lipoic acid (ALA) on post-thaw quality of bee semen. In the study, semen from sexually mature drone were collected. A series of experiments were carried out in which the retrieved semen was diluted with diluents containing different ALA concentrations or without ALA supplement (control). Cryopreserved sperm were thawed, and evaluated for motility (phase-contrast microscope), plasma and acrosomal membrane integrity, mitochondrial membrane potential, and DNA fregmantation. The results obtained showed that the highest motility after thawing was observed in the groups containing ALA 0.25 mmol (P < 0.05). Likewise, plasma membrane integrity was found to be better preserved in the ALA 0.25 mmol-added group than in other groups. Acrosomal integrity were also higher in the ALA-containing groups than in the control group (P < 0.05). The results of this study show that ALA supplementation especially at 0.25 mmol improved post-thawed sperm motility, plasma membrane functionality, and mitochondrial membrane potantial quality of honeybee semen.


Subject(s)
Semen Preservation , Thioctic Acid , Male , Animals , Bees , Semen , Thioctic Acid/pharmacology , Unmanned Aerial Devices , Sperm Motility , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Cryoprotective Agents/pharmacology , Spermatozoa , Semen Analysis , Dietary Supplements
7.
Environ Pollut ; 345: 123461, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38286261

ABSTRACT

The increase in effluent discharge from wastewater treatment plants (WWTPs) into urban rivers has raised concerns about the potential effects on pathogen risks. This study utilized metagenomic sequencing combined with flow cytometry to analyze pathogen concentrations and antibiotic resistance in a typical effluent-receiving river. Quantitative microbial risk assessment (QMRA) was employed to assess the microbial risks of pathogens. The results indicated obvious spatial-temporal differences (i.e., summer vs. winter and effluent vs. river) in microbial composition. Microcystis emerged as a crucial species contributing to these variations. Pathogen concentrations were found to be higher in the river than in the effluent, with the winter exhibiting higher concentrations compared to the summer. The effluent discharge slightly increased the pathogen concentrations in the river in summer but dramatically reduced them in winter. The combined effects of cyanobacterial bloom and high temperature were considered key factors suppressing pathogen concentrations in summer. Moreover, the prevalence of antibiotic resistance of pathogens in the river was inferior to that in the effluent, with higher levels in winter than in summer. Three high-concentration pathogens (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were selected for QMRA. The results showed that the risks of pathogens exceeded the recommended threshold value. Escherichia coli posed the highest risks. And the fishing scenario posed significantly higher risks than the walking scenario. Importantly, the effluent discharge helped reduce the microbial risks in the receiving river in winter. The study contributes to the management and decision-making regarding microbial risks in the effluent-receiving river.


Subject(s)
Wastewater , Water Purification , Rivers/microbiology , Drug Resistance, Microbial , Escherichia coli , Anti-Bacterial Agents
8.
Sci Total Environ ; 912: 168876, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38013100

ABSTRACT

As a ubiquitous contaminant in aquatic environments, diethyl phthalate (DEP) is a major threat to ecosystems because of its increasing utilization. However, the ecological responses to and toxicity mechanisms of DEP in aquatic organisms remain poorly understood. To address this environmental concern, we selected Chlorella vulgaris (C. vulgaris) as a model organism and investigated the toxicological effects of environmentally relevant DEP concentrations at the individual, physiological, biochemical, and molecular levels. Results showed that the incorporation of DEP significantly inhibited the growth of C. vulgaris, with inhibition rates ranging from 10.3 % to 83.47 %, and disrupted intracellular chloroplast structure at the individual level, while the decrease in photosynthetic pigments, with inhibition rates ranging from 8.95 % to 73.27 %, and the imbalance of redox homeostasis implied an adverse effect of DEP at the physio-biochemical level. Furthermore, DEP significantly reduced the metabolic activity of algal cells and negatively altered the cell membrane integrity and mitochondrial membrane potential. In addition, the apoptosis rate of algal cells presented a significant dose-effect relationship, which was mainly attributed to the fact that DEP pollutants regulated Ca2+ homeostasis and further increased the expression of Caspase-8, Caspase-9, and Caspase-3, which are associated with internal and external pathways. The gene transcriptional expression profile further revealed that DEP-mediated toxicity in C. vulgaris was mainly related to the destruction of the photosynthetic system, terpenoid backbone biosynthesis, and DNA replication. Overall, this study offers constructive understandings for a comprehensive assessment of the toxicity risks posed by DEP to C. vulgaris.


Subject(s)
Chlorella vulgaris , Phthalic Acids , Water Pollutants, Chemical , Chlorella vulgaris/metabolism , Ecosystem , Environmental Health , Phthalic Acids/metabolism , Water Pollutants, Chemical/metabolism
9.
Cytometry A ; 105(3): 214-221, 2024 03.
Article in English | MEDLINE | ID: mdl-38116677

ABSTRACT

High dimensional flow cytometry relies on multiple laser sources to excite the wide variety of fluorochromes now available for immunophenotyping. Ultraviolet lasers (usually solid state 355 nm) are a critical part of this as they excite the BD Horizon™ Brilliant Ultraviolet (BUV) series of polymer fluorochromes. The BUV dyes have increased the number of simultaneous fluorochromes available for practical high-dimensional analysis to greater than 40 for spectral cytometry. Immunologists are now seeking to increase this number, requiring both novel fluorochromes and additional laser wavelengths. A laser in the deep ultraviolet (DUV) range (from ca. 260 to 320 nm) has been proposed as an additional excitation source, driven by the on-going development of additional polymer dyes with DUV excitation. DUV lasers emitting at 280 and 320 nm have been previously validated for flow cytometry but have encountered practical difficulties both in probe excitation behavior and in availability. In this article, we validate an even shorter DUV 266 nm laser source for flow cytometry. This DUV laser provided minimal excitation of the BUV dyes (a desirable characteristic for high-dimensional analysis) while demonstrating excellent excitation of quantum nanoparticles (Qdots) serving as surrogate fluorochromes for as yet undeveloped DUV excited dyes. DUV 266 nm excitation may therefore be a viable candidate for expanding high-dimensional flow cytometry into the DUV range and providing an additional incidental excitation wavelength for spectral cytometry. Excitation in a spectral region with strong absorption by nucleic acids and proteins (260-280 nm) did result in strong autofluorescence requiring care in fluorochrome selection. DUV excitation of endogenous molecules may nevertheless have additional utility for label-free analysis applications.


Subject(s)
Fluorescent Dyes , Light , Fluorescent Dyes/metabolism , Flow Cytometry/methods , Lasers , Polymers
10.
Article in English | MEDLINE | ID: mdl-37989949

ABSTRACT

Aquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.e., the 8-oxodG, recognized as pre-mutagenic lesion if not or mis-repaired in human biomonitoring. The relevance to include the measure of these lesions by using the Fpg-modified comet assay on erythrocytes of the three-spined stickleback was investigated. An optimization step of the Fpg-modified comet assay considering enzyme buffer impact, Fpg concentration, and incubation time has been performed. Then, this measure was integrated in a battery of genotoxicity and cytotoxicity biomarkers (considering DNA strand breaks, DNA content variation, and cell apoptosis/necrosis and density) and applied in a freshwater monitoring program on six stations of the Artois Picardie watershed (3-week caging of control fish). These biomarkers allowed to discriminate the stations regarding the genotoxic potential of water bodies and specifically by the measure of oxidative DNA lesions, which seem to be a promising tool in environmental genotoxicity risk assessment.

11.
Eur J Pharm Biopharm ; 193: 28-43, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37858803

ABSTRACT

PURPOSE: The objective of the current research work was to fabricate a fosfestrol (FST)-loaded self-nanoemulsifying drug delivery system (SNEDDS) to escalate the oral solubility and bioavailability and thereby the effectiveness of FST against prostate cancer. METHODS: 32 full factorial design was employed, and the effect of lipid and surfactant mixtures on percentage transmittance, time required for self-emulsification, and drug release were studied. The optimized solid FST-loaded SNEDDS (FSTNE) was characterized for in vitro anticancer activity and Caco-2 cell permeability, and in vivo pharmacokinetic parameters. RESULTS: Using different ratios of surfactant and co-surfactant (Km) a pseudo ternary phase diagram was constructed. Thirteen liquid nano emulsion formulations (LNE-1 to LNE-13) were formulated at Km = 3:1. LNE-9 exhibited a higher % transmittance (99.25 ± 1.82 %) and a lower self-emulsification time (24 ± 0.32 s). No incompatibility was observed in FT-IR analysis. Within 20 min the solidified FST loaded LNE-9 (FSTNE) formulation showed almost complete drug release (98.20 ± 1.30 %) when compared to marketed formulation (40.36 ± 2.8 %), and pure FST (32 ± 3.3 %) in 0.1 N HCl. In pH 6.8 phosphate buffer, the release profiles are found moderately higher than in 0.1 N HCl. FSTNE significantly (P < 0.001) inhibited the PC-3 prostate cell proliferation and also caused apoptosis (P < 0.001) compared to FST. The in vitro Caco-2 cell permeability study results revealed 4.68-fold higher cell permeability of FSTNE than FST. Remarkably, 4.5-fold rise in bioavailability was observed after oral administration of FSTNE than plain FST. CONCLUSIONS: FSTNE remarkably enhanced the in vitro anticancer activity and Caco-2 cell permeability, and in vivo bioavailability of FST. Thus, FST-SNEDDS could be utilized as a potential carrier for effective oral treatment of prostate cancer.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Male , Humans , Biological Availability , Spectroscopy, Fourier Transform Infrared , Caco-2 Cells , Drug Delivery Systems/methods , Solubility , Drug Liberation , Surface-Active Agents/chemistry , Administration, Oral , Prostatic Neoplasms/drug therapy , Emulsions/chemistry , Nanoparticles/chemistry , Particle Size
12.
Microorganisms ; 11(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630624

ABSTRACT

In the recent past, various microalgae have been considered a renewable energy source for biofuel production, and their amount and extent can be enhanced by applying certain types of stress including salinity. Although microalgae growing under salinity stress result in a higher lipid content, they simultaneously reduce in growth and biomass output. To resolve this issue, the physiochemical changes in microalgae Scenedesmus sp. BHU1 have been assessed through two-stage cultivation. In stage-I, the maximum carbohydrate and lipid contents (39.55 and 34.10%) were found at a 0.4 M NaCl concentration, while in stage-II, the maximum carbohydrate and lipid contents (42.16 and 38.10%) were obtained in the 8-day-old culture. However, under increased salinity, Scenedesmus sp. BHU1 exhibited a decrease in photosynthetic attributes, including Chl-a, Chl-b, Fv/Fm, Y(II), Y(NPQ), NPQ, qP, qL, qN, and ETRmax but increased Y(NO) and carotenoids content. Apart from physiological attributes, osmoprotectants, stress biomarkers, and nonenzymatic antioxidants were also studied to elucidate the role of reactive oxygen species (ROS) facilitated lipid synthesis. Furthermore, elemental and mineral ion analysis of microalgal biomass was performed to evaluate the biomass quality for biofuel and cell homeostasis. Based on fluorometry analysis, we found the maximum neutral lipids in the 8-day-old grown culture at stage-II in Scenedesmus sp. BHU1. Furthermore, the use of Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy analyses confirmed the presence of higher levels of hydrocarbons and triacylglycerides (TAGs) composed of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) in the 8-day-old culture. Therefore, Scenedesmus sp. BHU1 can be a promising microalga for potential biodiesel feedstock.

13.
J Clin Exp Hepatol ; 13(4): 608-617, 2023.
Article in English | MEDLINE | ID: mdl-37440955

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is asymptomatic at an early stage which delays its timely diagnosis and treatment. Circulating tumor cells (CTCs), derived from a primary or secondary tumor, may help in the management of HCC. Here, we evaluate and characterize CTCs in liver disease patients. Methods: In total, 65 patients, categorized into liver cirrhosis (LC) (n = 30) and HCC (n = 35), were enrolled. Using ImagestreamX MkII imaging flow cytometer, CTCs were detected and characterized using biomarker expression of EpCAM, CK, AFP, CD45, and DRAQ5 in LC and HCC patients. Results: CTCs were detected in 33/35 (94%) HCC patients and in 28/30 (93%) LC patients. In the HCC group, the number of biomarker-positive CTCs was higher in BCLC stage D when compared with others. EpCAM + CK was the most expressed biomarker on CTCs in LC versus HCC (83.3% vs. 77.14%), followed by AFP (80% vs. 65.71%), EpCAM (30% vs. 28.57%), and CK (16.6% vs. 14.28%). The EpCAM cell area was significantly associated (P value = 0.031) with the CTC-positive status. The combination biomarker expression of CTCs cell area (EpCAM, CK, and AFP) performed well with the area under the curve of 0.92, high sensitivity, and specificity in detecting early-stage and AFP-negative HCC as well as in AFP-negative LC cases. Conclusion: Enumeration and cell area of CTCs may be used as a biomarker for early detection of HCC and guiding treatment.

14.
Talanta ; 262: 124495, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37235955

ABSTRACT

Tumor markers play a significant role in early cancer diagnosis, evaluation of the extent of the disease, and monitoring of therapy response. In this study, we described the Pickering emulsion polymerization method to synthesize uniform magnetic/fluorescent microspheres. A Pickering-structure composed of a lot silica nanoparticle closely covered onto the quantum dot-encoded magnetic microbeads is designed and synthesized. The uniform magnetic/fluorescent microspheres were prepared using a microfluidic device and the performance of the microspheres synthesized by the instruments was evaluated by flow cytometry. To avoid fluorescence quenching and intrinsic toxicity, CdSe/ZnS core-shell quantum dot and Fe3O4 nanoparticle were successfully encapsulated into MFM microspheres using the microfluidic technology. Using this structure enables the facile realization of a theoretical 4 × 4 barcoding matrix combining two colors and four fluorescence intensity levels. Then, different optical codes were prepared by simple changing the emission wavelength and the intensity of the quantum dots. The resulting microsphere are combined with flow cytometer using two lasers for decoding of multiplex tumor markers. Moreover, the stability testing of microspheres demonstrated good performance for further application in detection of tumor markers as well. When applied for the high-throughput ultrasensitive detection of three tumor markers (CEA, CA125 and CA199) in a single sample, the detection limits of 0.027 ng/mL for CEA, 1.48 KU/L for CA125 and 1.09 KU/L for CA199 are achieved, which exhibit superior detection performance. Thus, Pickering-structure magnetic/fluorescent microspheres are promising for application in tumor markers.


Subject(s)
Nanoparticles , Quantum Dots , Microfluidics , Microspheres , Biomarkers, Tumor
15.
Methods Mol Biol ; 2635: 23-40, 2023.
Article in English | MEDLINE | ID: mdl-37074655

ABSTRACT

Fluorescence methods are widely used for the study of marine and freshwater phytoplankton communities. However, the identification of different microalgae populations by the analysis of autofluorescence signals remains a challenge. Addressing the issue, we developed a novel approach using the flexibility of spectral flow cytometry analysis (SFC) and generating a matrix of virtual filters (VF) which allowed thorough examination of autofluorescence spectra. Using this matrix, different spectral emission regions of algae species were analyzed, and five major algal taxa were discriminated. These results were further applied for tracing particular microalgae taxa in the complex mixtures of laboratory and environmental algal populations. An integrated analysis of single algal events combined with unique spectral emission fingerprints and light scattering parameters of microalgae can be used to differentiate major microalgal taxa. We propose a protocol for the quantitative assessment of heterogenous phytoplankton communities at the single-cell level and monitoring of phytoplankton bloom detection using a virtual filtering approach on a spectral flow cytometer (SFC-VF).


Subject(s)
Microalgae , Flow Cytometry/methods , Phytoplankton , Fresh Water , Staining and Labeling
16.
J Biol Eng ; 17(1): 24, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997993

ABSTRACT

BACKGROUND: Monoclonal antibodies are essential in life science research and developing antibody drugs and test drugs. Various methods have been developed to obtain monoclonal antibodies, among which hybridoma technology continues to be widely used. However, developing a rapid and efficient method for obtaining conformation-specific antibodies using hybridoma technology remains challenging. We previously developed the membrane-type immunoglobulin-directed hybridoma screening (MIHS) method, which is a flow cytometry-based screening technique based on the interaction between the B-cell receptor expressed on the hybridoma cell surface and the antigen protein, to obtain conformation-specific antibodies. RESULTS: In this study, we proposed a streptavidin-anchored ELISA screening technology (SAST) as a secondary screening method that retains the advantages of the MIHS method. Anti-enhanced green fluorescent protein monoclonal antibodies were generated as a model experiment, and their structural recognition abilities were examined. Examination of the reaction profiles showed that all monoclonal antibodies obtained in this study recognize the conformational epitopes of the protein antigen. Furthermore, these monoclonal antibodies were classified into two groups: those with binding activities against partially denatured proteins and those with complete loss of binding activities. Next, when screening monoclonal antibodies by the MIHS method as the first screening, we found that monoclonal antibodies with stronger binding constants may be selected by double-staining for hybridomas with fluorescently labeled target antigens and fluorescently labeled B cell receptor antibodies. CONCLUSIONS: The proposed two-step screening method, which incorporates MIHS and SAST, constitutes a rapid, simple, and effective strategy to obtain conformation-specific monoclonal antibodies generated through hybridoma technology. The novel monoclonal antibody screening strategy reported herein could accelerate the development of antibody drugs and antibody tests.

17.
Int J Comput Assist Radiol Surg ; 18(5): 877-885, 2023 May.
Article in English | MEDLINE | ID: mdl-36809456

ABSTRACT

The tumor resection ratio must be improved due the increased possibility of recurrence or malignancy. The purpose of this study was to develop a system that includes forceps with a continuous suction function and flow cytometry to diagnose the malignancy of the tumor for safe, accurate, and effective surgery. A newly developed continuous tumor resection forceps consists of a triple pipe structure, which enables continuous suction of the tumor by integrating the reflux water and suction system. The forceps includes tip opening/closure detection switch to control the adsorption and suction strength when tip is opened and closed. To perform accurate tumor diagnosis using flow cytometry, a filtering mechanism was developed for dehydrating reflux water from continuous suction forceps. In addition, a cell isolation mechanism comprising a roller pump and shear force loading mechanism was also newly developed. By using a triple pipe structure, a significantly larger tumor collection ratio was observed compared to the previous double-pipe structure. By performing suction pressure control with the opening/closure detection switch, inaccurate suction can be prevented. By widening the filter area of dehydration mechanism, it was possible to improve the reflux water dehydration ratio. The most appropriate filter area was 85 mm2. By using a newly developed cell isolation mechanism, the processing time can be reduced to less than 1/10 of the original time, keeping the same cell isolation ratio, when compared to the existing pipetting method. Neurosurgery assistance system with continuous tumor resection forceps and a cell separation, dehydration and isolation mechanism was developed. An effective and safe tumor resection, accurate and fast diagnosis of malignancy can be achieved by using the current system.


Subject(s)
Brain Neoplasms , Dehydration , Humans , Surgical Instruments , Suction , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Cell Separation
18.
Micromachines (Basel) ; 14(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36838016

ABSTRACT

Flow cytometers are instruments used for the rapid quantitative analysis of cell suspension. Traditional flow cytometry uses multi-channel filters to detect fluorescence, whereas full-spectrum fluorescence based on dispersion detection is a more effective and accurate method. The application of various dispersion schemes in flow cytometry spectroscopy has been studied. From the perspective of modern detectors and demand for the miniaturization of flow cytometry, prism dispersion exhibits higher and more uniform light energy utilization, meaning that it is a more suitable dispersion method for small flow cytometers, such as microfluidic flow cytometers. Prism dispersion designs include the size, number, and placement of prisms. By deducing the formula of the final position of light passing through the prism and combining it with the formula of transmittance, the design criteria of the top angle and the incident angle of the prism in pursuit of the optimum transmittance and dispersion index can be obtained. Considering the case of multiple prisms, under the premise of pursuing a smaller size, the optimal design criteria for dispersion system composed of multiple prisms can be obtained. The design of prism dispersion fluorescence detection was demonstrated with a microfluidic flow cytometer, and the effectiveness of the design results was verified by microsphere experiments and practical biological experiments. This design criterion developed in this study is generally applicable to spectral flow cytometers.

19.
Biosensors (Basel) ; 13(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36671918

ABSTRACT

Electrical impedance biosensors are powerful and continuously being developed for various biological sensing applications. In this line, the sensitivity of impedance biosensors embedded with microfluidic technologies, such as sheath flow focusing, dielectrophoretic focusing, and interdigitated electrode arrays, can still be greatly improved. In particular, reagent consumption reduction and analysis time-shortening features can highly increase the analytical capabilities of such biosensors. Moreover, the reliability and efficiency of analyses are benefited by microfluidics-enabled automation. Through the use of mature microfluidic technology, complicated biological processes can be shrunk and integrated into a single microfluidic system (e.g., lab-on-a-chip or micro-total analysis systems). By incorporating electrical impedance biosensors, hand-held and bench-top microfluidic systems can be easily developed and operated by personnel without professional training. Furthermore, the impedance spectrum provides broad information regarding cell size, membrane capacitance, cytoplasmic conductivity, and cytoplasmic permittivity without the need for fluorescent labeling, magnetic modifications, or other cellular treatments. In this review article, a comprehensive summary of microfluidics-based impedance biosensors is presented. The structure of this article is based on the different substrate material categorizations. Moreover, the development trend of microfluidics-based impedance biosensors is discussed, along with difficulties and challenges that may be encountered in the future.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Microfluidics , Electric Impedance , Reproducibility of Results , Lab-On-A-Chip Devices
20.
Res Vet Sci ; 154: 108-112, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36571888

ABSTRACT

The objective of this study was to evaluate the effect of antifreeze protein type III (AFP III) on the freezing of epididymal spermatozoa of goats. A total of 16 pairs of testicles were collected in a slaughterhouse and transported at approximately 5 °C in a thermal box. Epididymal spermatozoa were recovered by retrograde lavage and evaluated using a phase contrast microscope. Then, they were cryopreserved in extender based on Tris-egg yolk, supplemented with AFP III (0, 1, 10, 100 µg/mL), using an automated system. After thawing (37 °C/30 s), the spermatozoa kinetics were evaluated using the CASA automated system; and plasma and acrosome membrane integrity, mitochondrial membrane potential, and intracellular ROS production, by flow cytometry. There was no difference (P ≥ 0.05) between the experimental groups for the parameters of spermatozoa kinetics, mitochondrial membrane potential, and ROS production. However, the integrity of plasma and acrosome membranes of frozen spermatozoa with 100 µg/mL of AFP III was lower (P < 0.05) than the control group. It was concluded that the addition of AFP III to the Tris-egg yolk extender, used in the freezing of sperm obtained from the epididymis of goats, did not improve the preservation of these cells.


Subject(s)
Epididymis , Semen Preservation , Male , Animals , Freezing , Goats , Reactive Oxygen Species/pharmacology , alpha-Fetoproteins , Sperm Motility , Semen , Spermatozoa , Cryopreservation/veterinary , Antifreeze Proteins/pharmacology , Semen Preservation/veterinary , Cryoprotective Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...