Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Res Sq ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38765959

ABSTRACT

Heightened muscle sympathetic nerve activity (MSNA) contributes to impaired vasodilatory capacity and vascular dysfunction associated with aging and cardiovascular disease. The contribution of elevated MSNA to the vasodilatory response during passive leg movement (PLM) has not been adequately addressed. This study sought to test the hypothesis that elevated MSNA diminishes the vasodilatory response to PLM in healthy young males (n = 11, 25 ± 2 year). Post exercise circulatory occlusion (PECO) following 2 min of isometric handgrip (HG) exercise performed at 25% (ExPECO 25%) and 40% (ExPECO 40%) of maximum voluntary contraction was used to incrementally engage the metaboreceptors and augment MSNA. Control trials were performed without PECO (ExCON 25% and ExCON 40%) to account for changes due to HG exercise. PLM was performed 2 min after the cessation of exercise and central and peripheral hemodynamics were assessed. MSNA was directly recorded by microneurography in the peroneal nerve (n = 8). Measures of MSNA (i.e., burst incidences) increased during ExPECO 25% (+ 15 ± 5 burst/100 bpm) and ExPECO 40% (+ 22 ± 4 burst/100 bpm) and returned to pre-HG levels during ExCON trials. Vasodilation, assessed by the change in leg vascular conductance during PLM, was reduced by 16% and 44% during ExPECO 25% and ExPECO 40%, respectively. These findings indicate that elevated MSNA attenuates the vasodilatory response to PLM and that the magnitude of reduction in vasodilation during PLM is graded in relation to the degree of sympathoexcitation.

2.
J Vasc Res ; : 1-15, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749406

ABSTRACT

INTRODUCTION: Acquisition of a deeper understanding of microvascular function across physiological and pathological conditions can be complicated by poor accessibility of the vascular networks and the necessary sophistication or intrusiveness of the equipment needed to acquire meaningful data. Laser Doppler fluximetry (LDF) provides a mechanism wherein investigators can readily acquire large amounts of data with minor inconvenience for the subject. However, beyond fairly basic analyses of erythrocyte perfusion (fluximetry) data within the cutaneous microcirculation (i.e., perfusion at rest and following imposed challenges), a deeper understanding of microvascular perfusion requires a more sophisticated approach that can be challenging for many investigators. METHODS: This manuscript provides investigators with clear guidance for data acquisition from human subjects for full analysis of fluximetry data, including levels of perfusion, single- and multiscale Lempel-Ziv complexity (LZC) and sample entropy (SampEn), and wavelet-based analyses for the major physiological components of the signal. Representative data and responses are presented from a recruited cohort of healthy volunteers, and computer codes for full data analysis (MATLAB) are provided to facilitate efforts by interested investigators. CONCLUSION: It is anticipated that these materials can reduce the challenge to investigators integrating these approaches into their research programs and facilitate translational research in cardiovascular science.

3.
Sci Total Environ ; 912: 168892, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38029974

ABSTRACT

Riparian zones, crucial for linking fluvial and terrestrial habitats, are among the most diverse ecosystems. However, they are intensively invaded by alien plants, particularly in dam-regulated rivers. Therefore, understanding the mechanisms underlying plant invasion in dam-regulated river systems has become increasingly important, given that over two-thirds of global rivers are artificially regulated. Regulated rivers may flood upland areas or pristine riparian zones, resulting in shorelines developed from pre-upland and pre-riparian areas. However, differences in invasion intensities, adaptive strategies of invasive plants, and native species' resistance (namely the diversity-invasibility relationship) across these shorelines are unclear. To address these uncertainties, we performed field investigations in the Three Gorges Reservoir (TGR) on the upper Yangtze River, where both pre-upland and pre-riparian shorelines are present. Our findings indicate that pre-upland shorelines are more intensively invaded, showing higher relative richness and cover of invasive species. Invasive plants in this area displayed more conservative resource strategies and greater drought tolerance, exhibiting lower community-weighted mean (CWM) specific leaf area, higher CWM leaf dry mass content, and larger CWM seed mass. Pre-upland shorelines' invasibility decreased as the richness and cover of native species increased, a trend not observed in pre-riparian shorelines. The observed variations in plant invasion between the two shoreline types are primarily driven by differences in resident plant presence, soil moisture levels, and hydrological disturbances. This study provides valuable insights for policymakers and practitioners involved in managing invasive plants in regulated river ecosystems.


Subject(s)
Ecosystem , Plants , Soil , Rivers , Introduced Species
4.
Microvasc Res ; 151: 104624, 2024 01.
Article in English | MEDLINE | ID: mdl-37926135

ABSTRACT

Vascular impairment is closely related to increased mortality in chronic kidney disease (CKD). The objective of this study was to assess impairments in the regulation of peripheral microvascular perfusion in patients with CKD based on time-frequency spectral analysis of resting near-infrared spectroscopy (NIRS) signals. Total hemoglobin (tHb) concentration and tissue saturation index (TSI) signals were collected using NIRS for a continuous 5 mins at 10 Hz from the forearm of 55 participants (34 CKD including 5 with end-stage renal disease, and 21 age-matched control). Continuous wavelet transform-based spectral analysis was used to quantify the spectral amplitude within five pre-defined frequency intervals (I, 0.0095-0.021 Hz; II, 0.021-0.052 Hz; III, 0.052-0.145 Hz; IV, 0.145-0.6 Hz and V, 0.6-2.0 Hz), representing endothelial, neurogenic, myogenic, respiratory and heartbeat activity, respectively. CKD patients showed lower tHb average spectral amplitude within the neurogenic frequency interval compared with controls (p = 0.014), consistent with an increased sympathetic outflow observed in CKD. CKD patients also showed lower TSI average spectral amplitude within the endothelial frequency interval compared with controls (p = 0.046), consistent with a reduced endothelial function in CKD. These findings demonstrate the potential of wavelet analysis of NIRS to provide complementary information on peripheral microvascular regulation in CKD.


Subject(s)
Kidney Failure, Chronic , Wavelet Analysis , Humans , Spectroscopy, Near-Infrared , Microcirculation
5.
Environ Sci Pollut Res Int ; 30(51): 111309-111324, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814048

ABSTRACT

Decreasing water volume and increasing pollutants in wetlands pose challenges to aquatic life. While environmental flow regulation is widely applied to enhance aquatic habitats, its effectiveness needs to be evaluated. In this study, a hydrodynamic-water quality model was used to simulate the fields of flow, temperature, and pollutants. The Ecological Niche Modeling at the MetaLand EcologyLab (ENMTML) was utilized to evaluate the area of suitable habitats for aquatic organisms under both environmental flow regulation and no environmental flow regulation conditions. The typical Baiyangdian Wetland in northern China was taken as the study area, and the important economic fish, Cyprinus carpio, served as the indicator of aquatic species. The effectiveness of environmental flow regulation was evaluated from December 1, 2017, to June 30, 2018. The results indicated that the variables of water depth, dissolved oxygen (DO), ammonia nitrogen (NH4+-N) and Chlorophyll a (Chla) were the major environmental factors determining the variability of the suitable habitat area for Cyprinus carpio. The environmental flow regulation capacity of the Baiyangdian Wetland was 2.6 [Formula: see text] 108 m3, which produced a suitable habitat area of 135.538 km2 at the end of the water supply period. Compared with the no environmental flow regulation condition, the highly and moderately suitable habitat areas for Cyprinus carpio were enlarged by 56.30 km2 and 34.11 km2, respectively. The outcome provides not only a basic reference for wetland management, but also a scientific perspective for understanding the impact of environmental flow regulation on aquatic organisms. The proposed method demonstrates the important potential of evaluating the effectiveness of environmental flow regulation on aquatic organisms in wetlands.


Subject(s)
Carps , Environmental Pollutants , Animals , Aquatic Organisms , Chlorophyll A , China , Ecosystem , Wetlands , Environmental Monitoring
7.
Hear Res ; 438: 108877, 2023 10.
Article in English | MEDLINE | ID: mdl-37651921

ABSTRACT

Pericytes are specialized mural cells surrounding endothelial cells in microvascular beds. They play a role in vascular development, blood flow regulation, maintenance of blood-tissue barrier integrity, and control of angiogenesis, tissue fibrosis, and wound healing. In recent decades, understanding of the critical role played by pericytes in retina, brain, lung, and kidney has seen significant progress. The cochlea contains a large population of pericytes. However, the role of cochlear pericytes in auditory pathophysiology is, by contrast, largely unknown. The present review discusses recent progress in identifying cochlear pericytes, mapping their distribution, and defining their role in regulating blood flow, controlling the blood-labyrinth barrier (BLB) and angiogenesis, and involvement in different types of hearing loss.


Subject(s)
Deafness , Hearing Loss , Humans , Pericytes , Endothelial Cells , Cochlea
8.
J Hazard Mater ; 459: 132293, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37597391

ABSTRACT

Microbial electron flow (MEF) is produced from microbial degradation of organic compounds. Regulating MEF to promote organic pollutants biodegradation such as naphthalene (Nap) is a potential way but remains a lack of theoretical basis. Here, we regulated MEF by adding electron acceptor NO3- to achieve 2.6 times increase of Nap biodegradation with cyclodextrin as co-metabolism carbon source. With the NO3- addition, the genes inhibited by Nap of electron generation significantly up-regulated. Especially, key genes ubiD and nahD for anaerobic Nap degradation significantly up-regulated respectively 3.7 times and 6.7 times. Moreover, the ability of electron transfer in MEF was also improved consistent with 7.2 times increase of electron transfer system (ETS) activity. Furthermore, total 60 metagenome-assembled genomes (MAGs) were reconstructed through the metagenomic sequencing data with assembly and binning strategies. Interestingly, it was also first found that the Klebsiella MAG. SDU (Shandong University) 14 had the ability of simultaneous Nap biodegradation and denitrification. Our results firstly offered an effective method of regulating MEF to promote polycyclic aromatic hydrocarbons (PAHs) degradation and simultaneous methanogenesis.


Subject(s)
Electrons , Nitrates , Humans , Anaerobiosis , Organic Chemicals , Naphthalenes , Microbial Interactions , Oxidants
9.
J Thromb Thrombolysis ; 56(3): 388-397, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37466848

ABSTRACT

Coronary microvascular endothelial cells (CMECs) react to changes in coronary blood flow and myocardial metabolites and regulate coronary blood flow by balancing vasoconstrictors-such as endothelin-1-and the vessel dilators prostaglandin, nitric oxide, and endothelium-dependent hyperpolarizing factor. Coronary microvascular endothelial cell dysfunction is caused by several cardiovascular risk factors and chronic rheumatic diseases that impact CMEC blood flow regulation, resulting in coronary microcirculation dysfunction (CMD). The mechanisms of CMEC dysfunction are not fully understood. However, the following could be important mechanisms: the overexpression and activation of nicotinamide adenine dinucleotide phosphate oxidase (Nox), and mineralocorticoid receptors; the involvement of reactive oxygen species (ROS) caused by a decreased expression of sirtuins (SIRT3/SIRT1); forkhead box O3; and a decreased SKCA/IKCA expression in the endothelium-dependent hyperpolarizing factor electrical signal pathway. In addition, p66Shc is an adapter protein that promotes oxidative stress; although there are no studies on its involvement with cardiac microvessels, it is possible it plays an important role in CMD.


Subject(s)
Myocardial Ischemia , Vascular Diseases , Humans , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Microcirculation , Endothelial Cells/metabolism , Vascular Diseases/metabolism , Coronary Vessels , Endothelium, Vascular/metabolism
10.
Ideggyogy Sz ; 76(7-8): 230-232, 2023 Jul 30.
Article in Hungarian | MEDLINE | ID: mdl-37471201

ABSTRACT

Professor László Molnár was born in 1923. He completed his university studies in Szeged and continued his clinical work in Pécs. He qualified as a neurologist, psychiatrist and neurosurgeon. He first studied the regulation of cerebral blood circulation in animal experiments in Germany, and then worked in Paris as a fellow with Professor Seylaz. He obtained his doctorate at the Sorbonne. He obtained his Candidate’s thesis in 1966 and his Doctorate in 1977. Between 1969 and 1992 he was Head of the Neurological Clinic of the University of Debrecen, where he studied the consequences of focal ischemia in animal experiments. In Debrecen he founded the Cerebrovascular Department, the second in Europe to specialize in the care of stroke patients. Eleven of his staff became senior physicians, four became university professors, and six received PhDs and three MTA doctorates. He died in 1999.

.

11.
J Appl Physiol (1985) ; 135(3): 489-499, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37439238

ABSTRACT

The tight coupling between myocardial oxygen demand and supply has been recognized for decades, but it remains controversial whether this coupling persists under asynchronous activation, such as during left bundle branch block (LBBB). Furthermore, it is unclear whether the amount of local cardiac wall growth, following longer-lasting asynchronous activation, can explain differences in myocardial perfusion distribution between subjects. For a better understanding of these matters, we built upon our existing modeling framework for cardiac mechanics-to-perfusion coupling by incorporating coronary autoregulation. Regional coronary flow was regulated with a vasodilator signal based on regional demand, as estimated from regional fiber stress-strain area. Volume of left ventricular wall segments was adapted with chronic asynchronous activation toward a homogeneous distribution of myocardial oxygen demand per tissue weight. Modeling results show that 1) both myocardial oxygen demand and supply are decreased in early activated regions and increased in late-activated regions; 2) but that regional hyperemic flow remains unaffected; while 3) regional myocardial flow reserve (the ratio of hyperemic to resting myocardial flow) decreases with increases in absolute regional myocardial oxygen demand as well as with decreases in wall thickness. These findings suggest that septal hypoperfusion in LBBB represents an autoregulatory response to reduced myocardial oxygen demand. Furthermore, oxygen demand-driven remodeling of wall mass can explain asymmetric hypertrophy and the related homogenization of myocardial perfusion and flow reserve. Finally, the inconsistent observations of myocardial perfusion distribution can primarily be explained by the degree of dyssynchrony, the degree of asymmetric hypertrophy, and the imaging modality used.NEW & NOTEWORTHY This versatile modeling framework couples myocardial oxygen demand to oxygen supply and myocardial growth, enabling simulation of resting and hyperemic myocardial flow during acute and chronic asynchronous ventricular activation. Model-based findings suggest that reported inconsistencies in myocardial perfusion and flow reserve responses with asynchronous ventricular activation between patients can primarily be explained by the degree of dyssynchrony and wall mass remodeling, which together determine the heterogeneity in regional oxygen demand and, hence, supply with autoregulation.


Subject(s)
Heart , Myocardium , Humans , Bundle-Branch Block , Arrhythmias, Cardiac , Hypertrophy , Perfusion , Oxygen , Coronary Circulation/physiology
12.
Biomech Model Mechanobiol ; 22(6): 2063-2082, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37505299

ABSTRACT

The production, removal, and remodeling of fibrillar collagen is fundamental to mechanical homeostasis in arteries, including dynamic morphological and microstructural changes that occur in response to sustained changes in blood flow and pressure under physiological conditions. These dynamic processes involve complex, coupled biological, chemical, and mechanical mechanisms that are not completely understood. Nevertheless, recent simulations using constrained mixture models with phenomenologically motivated constitutive relations have proven able to predict salient features of the progression of certain vascular adaptations as well as disease processes. Collagen turnover is modeled, in part, via stress-dependent changes in collagen half-life, typically within the range of 10-70 days. By contrast, in this work we introduce a biochemomechanical approach to model the cellular synthesis of procollagen as well as its transition from an intermediate state of assembled microfibrils to mature cross-linked fibers, with mechano-regulated removal. The resulting model can simulate temporal changes in geometry, composition, and stress during early vascular adaptation (weeks to months) for modest changes in blood flow or pressure. It is shown that these simulations capture salient features from data presented in the literature from different animal models.


Subject(s)
Arteries , Models, Cardiovascular , Animals , Arteries/physiology , Collagen/physiology , Hemodynamics , Fibrillar Collagens , Stress, Mechanical
13.
Entropy (Basel) ; 25(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37190438

ABSTRACT

The bistable flow is attractive as it can be analogous to a switch to realize flow control. Based on the previous studies on actuation technique, the present study first proposed temperature-driven switching of bistable slit flow. A two-dimensional numerical simulation was conducted to investigate the flow deflection characteristics and switching mechanism. It was concluded that the temperature gradient not only biases the slit flow but also locks it to the high-temperature side. The flow deflection angle became larger with the increase in temperature gradient. Being driven by the temperature, the flow can be switched from one side to the other. Furthermore, the fluid viscosity, which varies with temperature, determines the degree of flow deflection and the entire switching time. This research can enrich the active regulation of flow and has significant potential applications in thermal sensors, thermal detectors, microelectromechanical systems, biomedicine, and other equivalent fields.

14.
Aging (Albany NY) ; 15(10): 4334-4362, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37211381

ABSTRACT

Exploration and utilization of exosome biomarkers and their related functions provide the possibility for the diagnosis and treatment of post-stroke cognitive impairment (PSCI). To identify the new diagnostic and prognostic biomarkers of plasma exosome were uzed label-free quantitative proteomics and biological information analysis in PSCI patients. Behavioral assessments were performed, including the Mini-Mental Status Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Barthel index, the Morse Fall Seale (MFS) between control group (n = 10) and PSCI group (n = 10). The blood samples were collected to analyse the biomarker and differentially expressed proteins of plasma exosome using label-free quantitative proteomics and biological information. The exosomes marker proteins were determined by Western blot. The exosome morphology was observed by transmission electron microscopy. The scores of MMSE and MoCA were significantly decreased in the PSCI group. The PT% and high-density lipoprotein decreased and the INR ratio increased in PSCI group. The mean size of exosome was approximately 71.6 nm and the concentration was approximately 6.8E+7 particles/mL. Exosome proteomics identified 259 differentially expressed proteins. The mechanisms of cognitive impairment are related to regulate the degradation of ubiquitinated proteins, calcium dependent protein binding, cell adhesive protein binding, formation of fibrin clot, lipid metabolism and ATP-dependent degradation of ubiquitinated proteins in plasma exosome of PSCI patients. Plasma levels of YWHAZ and BAIAP2 were significantly increased while that of IGHD, ABCB6 and HSPD1 were significantly decreased in PSCI patients. These proteins might be target-related proteins and provide global insights into pathogenesis mechanisms of PSCI at plasma exosome proteins level.


Subject(s)
Cognitive Dysfunction , Exosomes , Stroke , Humans , Ubiquitinated Proteins , Proteomics , Cognitive Dysfunction/psychology , Biomarkers
15.
Front Med Technol ; 5: 1121674, 2023.
Article in English | MEDLINE | ID: mdl-37065968

ABSTRACT

Asymmetrical distribution of acute lung injury in mechanically ventilated patients can result in a heterogeneity of gas distribution between different regions, potentially worsening ventilation-perfusion matching. Furthermore, overdistension of healthier, more compliant lung regions can lead to barotrauma and limit the effect of increased PEEP on lung recruitment. We propose a System for Asymmetric Flow Regulation (SAFR) which, combined with a novel double lumen endobronchial tube (DLT) may offer individualized lung ventilation to the left and right lungs, better matching each lung's mechanics and pathophysiology. In this preclinical experimental model, the performance of SAFR on gas distribution in a two-lung simulation system was tested. Our results indicate that SAFR may be a technically feasible and potentially clinically useful although further research is warranted.

16.
J Appl Physiol (1985) ; 134(5): 1124-1134, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36927146

ABSTRACT

The age-related increase in α-adrenergic tone may contribute to decreased leg vascular conductance (LVC) both at rest and during exercise in the old. However, the effect on passive leg movement (PLM)-induced LVC, a measure of vascular function, which is markedly attenuated in this population, is unknown. Thus, in eight young (25 ± 5 yr) and seven old (65 ± 7 yr) subjects, this investigation examined the impact of systemic ß-adrenergic blockade (propanalol, PROP) alone, and PROP combined with either α1-adrenergic stimulation (phenylephrine, PE) or α-adrenergic inhibition (phentolamine, PHEN), on PLM-induced vasodilation. LVC, calculated from femoral artery blood flow and pressure, was determined and PLM-induced Δ peak (LVCΔpeak) and total vasodilation (LVCAUC, area under curve) were documented. PROP decreased LVCΔpeak (PROP: 4.8 ± 1.8, Saline: 7.7 ± 2.7 mL·mmHg-1, P < 0.001) and LVCAUC (PROP: 1.1 ± 0.7, Saline: 2.4 ± 1.6 mL·mmHg-1, P = 0.002) in the young, but not in the old (LVCΔpeak, P = 0.931; LVCAUC, P = 0.999). PE reduced baseline LVC (PE: 1.6 ± 0.4, PROP: 2.3 ± 0.4 mL·min-1·mmHg-1, P < 0.01), LVCΔpeak (PE: 3.2 ± 1.3, PROP: 4.8 ± 1.8 mL·min-1·mmHg-1, P = 0.004), and LVCAUC (PE: 0.5 ± 0.4, PROP: 1.1 ± 0.7 mL·mmHg-1, P = 0.011) in the young, but not in the old (baseline LVC, P = 0.199; LVCΔpeak, P = 0.904; LVCAUC, P = 0.823). PHEN increased LVC at rest and throughout PLM in both groups (drug effect: P < 0.05), however LVCΔpeak was only improved in the young (PHEN: 6.4 ± 3.1, PROP: 4.4 ± 1.5 mL·min-1·mmHg-1, P = 0.004), and not in the old (P = 0.904). Furthermore, the magnitude of α-adrenergic modulation (PHEN - PE) of LVCΔpeak was greater in the young compared with the old (Young: 3.35 ± 2.32, Old: 0.40 ± 1.59 mL·min-1·mmHg-1, P = 0.019). Therefore, elevated α-adrenergic tone does not appear to contribute to the attenuated vascular function with age identified by PLM.NEW & NOTEWORTHY Stimulation of α1-adrenergic receptors eliminated age-related differences in passive leg movement (PLM) by decreasing PLM-induced vasodilation in the young. Systemic ß-blockade attenuated the central hemodynamic component of the PLM response in young individuals. Inhibition of α-adrenergic receptors did not improve the PLM response in older individuals, though withdrawal of α-adrenergic modulation augmented baseline and maximal vasodilation in both groups. Accordingly, α-adrenergic signaling plays a role in modulating the PLM vasodilatory response in young but not in old adults, and elevated α-adrenergic tone does not appear to contribute to the attenuated vascular function with age identified by PLM.


Subject(s)
Leg , Vasodilation , Humans , Aged , Vasodilation/physiology , Leg/blood supply , Adrenergic Agents/pharmacology , Movement/physiology , Hemodynamics , Regional Blood Flow/physiology
17.
Neurobiol Dis ; 179: 106066, 2023 04.
Article in English | MEDLINE | ID: mdl-36889483

ABSTRACT

Although both are myeloid cells located surrounding cerebral vasculature, vessel-associated microglia (VAM) and perivascular macrophages (PVMs) can be distinguished by their distinct morphologies, signatures and microscopic location. As key component of neuro-glia-vascular unit (NGVU), they play prominent roles in neurovasculature development and pathological process of various central nervous system (CNS) diseases, including phagocytosis, angiogenesis, vessel damage/protection and blood flow regulation, therefore serving as potential targets for therapeutics of a broad array of CNS diseases. Herein, we will provide a comprehensive overview of heterogeneity of VAM/PVMs, highlight limitations of current understanding in this field, and discuss possible directions of future investigations.


Subject(s)
Central Nervous System Diseases , Microglia , Humans , Microglia/physiology , Brain/pathology , Macrophages , Phagocytosis , Central Nervous System Diseases/pathology
18.
Front Robot AI ; 10: 1078253, 2023.
Article in English | MEDLINE | ID: mdl-36824984

ABSTRACT

Recent investigations of the electric braking booster (E-Booster) focus on its potential to enhance brake energy regeneration. A vehicle's hydraulic system is composed of the E-Booster and electric stability control to control the master cylinder and wheel cylinders. This paper aims to address the independent closed-loop control of the position and pressure as well as the maintenance of the pedal feel. To track both the reference signals related to piston displacement and the wheel cylinder pressure, an explicit model predictive control (MPC) is developed. First, the new flow model is introduced as the foundation for controller design and simulation. Next, in accordance with the operational conditions, the entire system is divided into three switchable subsystems. The three distributed MPCs are constructed based on the linearized subsystems, and a state machine is used to perform the state jump across the controllers. A linear piecewise affine control law can then be obtained by solving the quadratic program (QP) of explicit MPC. Afterwards, the non-linear extended Kalman filter including the recorded time-variant process noise is used to estimate all the state variables. The effectiveness of the explicit MPC is evidenced by the simulations compared with a single MPC in regenerative and dead-zone conditions. The proposed controller decreases the latency significantly by 85 milliseconds, which also helps to improve accuracy by 22.6%. Furthermore, the pedal feel remains consistent, even when factoring in the number of vibrations caused by the inherent hydraulic characteristic of pressure versus volume.

19.
J Physiol ; 601(5): 889-901, 2023 03.
Article in English | MEDLINE | ID: mdl-36751860

ABSTRACT

The brain is an energy hog, consuming available energy supplies at a rate out of all proportion to its relatively small size. This outsized demand, largely reflecting the unique computational activity of the brain, is met by an ensemble of neurovascular coupling mechanisms that link neuronal activity with local increases in blood delivery. This just-in-time replenishment strategy, made necessary by the limited energy-storage capacity of neurons, complicates the nutrient-delivery task of the cerebral vasculature, layering on a temporo-spatial requirement that invites - and challenges - mechanistic interpretation. The centre of gravity of research efforts to disentangle these mechanisms has shifted from an initial emphasis on astrocyte-arteriole-level processes to mechanisms that operate on the capillary level, a shift that has brought into sharp focus questions regarding the fine control of blood distribution to active neurons. As these investigations have drilled down into finer reaches of the microvasculature, they have revealed an arteriole-proximate subregion of CNS capillary networks that serves a regulatory function in directing blood flow into and within downstream capillaries. They have also illuminated differences in researchers' perspectives on the vascular structures and identity of mural cells in this region that impart the vasomodulatory effects that control blood distribution. In this review, we highlight the regulatory role of a variably named region of the microvasculature, referred to here as the post-arteriole transition zone, in channeling blood flow within CNS capillary networks, and underscore the contribution of dynamically contractile perivascular mural cell - generally, but not universally, recognized as pericytes - to this function.


Subject(s)
Capillaries , Microvessels , Arterioles/physiology , Capillaries/physiology , Pericytes/physiology , Brain/blood supply
20.
Environ Sci Pollut Res Int ; 30(14): 40356-40374, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36609973

ABSTRACT

The water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) acts as an important sink for inflowing suspended sediment loads over the inundation periods following regular dam operations. This study depicts the sedimentary geochemical dynamics along a sedimentary profile based on the determined chronology and explores its links to the specific hydrological regime created by dam flow regulation and riverine seasonal suspended sediment dynamics. A compact 345-cm-long sediment core was extracted near the base water level (145.3 m) from the WLFZ of the TGR and sectioned at 5-cm intervals. Extracted sediment subsamples were analyzed for grain size composition, organic matter (OM), total nitrogen (TN), and geochemical elements (Na, K, Ca, Mg, Pb, Zn, Ni, Co, Mn, Cr, Fe, and Cu). The sediment core chronology was determined using 137Cs elemental analysis. Sedimentary geochemistry and grain size properties of extracted sediment core exhibited greater variations during initial submergence years till the first complete impoundment of the TGR (2006-2010). Afterward (2011-2013), although upstream inflowing suspended sediments and reservoir water level were comparable, sediment deposition and concentrations of sedimentary geochemical constituents showed considerably fewer variations. Seasonal variations in sediment deposition and geochemical composition were also observed during the rainy (October-April) and dry (May-September) seasons, in addition to annual variations. Grain size, OM, and other sediment geochemical constituents all had significant correlations with each other and with sediment core depth. The concentrations of geochemical elements in various sediment stratigraphic layers exhibited staggering associations with each other and were dependent on each other in several ways. The arrangement of geochemical elements in various stratigraphic layers of the extracted core illustrated amalgamation with inputs from upstream seasonal suspended sediment dynamics and reservoir water levels. During shortened submergence periods and higher input sediment loads, geochemical elements demonstrated impulsive distributions. Alternatively, during longer submergence periods, elemental distributions were relatively uniform attributed to higher settling time to deposit according to grain size and geochemical affinities. Higher suspended sediment loads in association with seasonal floods also resulted in rough sediment deposition patterns, imparting variations in the distributions of geochemical elements. Interim mediations in geochemical element concentrations are associated with seasonal distal flash floods and local terrace bank collapses, which generate significant amounts of distal sediment loads that are quickly deposited and are not sorted hydrodynamically. Overall, although a specific mechanism was devised to circumvent the siltation process, a considerable amount of sediment is trapped at pre-dam sites. In addition, siltation caused nutrients and geochemical elements' enrichment.


Subject(s)
Water Pollutants, Chemical , Water , Water/analysis , Rain , China , Floods , Cesium Radioisotopes/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...