Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42.920
Filter
1.
J Biomed Opt ; 30(Suppl 1): S13703, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39034959

ABSTRACT

Significance: Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim: We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach: We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results: We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to ∼ 35 dB (SNR), ∼ 8.65 a . u . (contrast), and ∼ 0.67 a . u . (BM score). Conclusions: The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.


Subject(s)
Benchmarking , Molecular Imaging , Optical Imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Molecular Imaging/methods , Molecular Imaging/standards , Optical Imaging/methods , Optical Imaging/standards , Image Processing, Computer-Assisted/methods
2.
J Environ Sci (China) ; 147: 462-473, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003062

ABSTRACT

Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.


Subject(s)
Environmental Monitoring , Lakes , Lakes/chemistry , China , Environmental Monitoring/methods , Eutrophication , Humic Substances/analysis , Water Quality , Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Ecosystem
3.
Se Pu ; 42(8): 792-798, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086248

ABSTRACT

Sodium cyclamate in Baijiu is a key item in the China National Food Safety Supervision and Inspection Plan. A simple, economical, sensitive, and reliable method is urgently needed for routine analysis and internal quality control. A method based on high performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for the determination of sodium cyclamate in Baijiu by o-phthalaldehyde derivatization. First, the sodium cyclamate in the sample solution was converted into amino compounds using the desulfurization reaction under acidic conditions. Next, 400 g/L sodium hydroxide solution was added to the sample solution for neutralization. The amino compounds in the sample solution were then derivatized with o-phthalaldehyde to produce indole-substituted derivatives that are capable of producing fluorescence signals. Separation was carried out on a C18 column (250 mm×4.6 mm, 5 µm) in isocratic elution mode using a mobile phase consisting of acetonitrile and phosphate buffer. Finally, the eluate was monitored using a fluorescence detector, and an external standard method was used for quantification. A good linear relationship was obtained in the range of 0.1-2.0 mg/L, with correlation coefficients greater than 0.999. The average recoveries of sodium cyclamate spiked at levels of 0.1-1.0 mg/kg in Baijiu samples ranged from 90.7% to 100.9%, with relative standard deviations (RSDs) of 3.5%-5.6% (n=6). The limits of detection and quantification were 0.03 and 0.10 mg/kg, respectively. Nine Baijiu samples collected from the market were tested, and the results demonstrated that the contents of sodium cyclamate detected by the developed method were consistent with those obtained using the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method described in GB 5009.97-2016 (the third method). The proposed method is economical, sensitive, specific, and accurate; thus, it provides a basic approach for the determination of sodium cyclamate in Baijiu samples and has great potential for routine analysis in foodstuffs.


Subject(s)
Cyclamates , Fluorometry , Food Contamination , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Cyclamates/analysis , Fluorometry/methods
4.
Article in English | MEDLINE | ID: mdl-39086551

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.

5.
J Biomed Opt ; 29(8): 086502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086928

ABSTRACT

Significance: Lattice light-sheet structured illumination microscopy (latticeSIM) has proven highly effective in producing three-dimensional images with super resolution rapidly and with minimal photobleaching. However, due to the use of two separate objectives, sample-induced aberrations can result in an offset between the planes of excitation and detection, causing artifacts in the reconstructed images. Aim: We introduce a posterior approach to detect and correct the axial offset between the excitation and detection focal planes in latticeSIM and provide a method to minimize artifacts in the reconstructed images. Approach: We utilized the residual phase information within the overlap regions of the laterally shifted structured illumination microscopy information components in frequency space to retrieve the axial offset between the excitation and the detection focal planes in latticeSIM. Results: We validated our technique through simulations and experiments, encompassing a range of samples from fluorescent beads to subcellular structures of adherent cells. We also show that using transfer functions with the same axial offset as the one present during data acquisition results in reconstructed images with minimal artifacts and salvages otherwise unusable data. Conclusion: We envision that our method will be a valuable addition to restore image quality in latticeSIM datasets even for those acquired under non-ideal experimental conditions.


Subject(s)
Imaging, Three-Dimensional , Microscopy, Fluorescence , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Artifacts , Image Processing, Computer-Assisted/methods , Algorithms , Humans , Animals , Computer Simulation
6.
Lasers Med Sci ; 39(1): 204, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088059

ABSTRACT

Due to antimicrobial drug resistance, there is a growing interest in the development of light based alternative antibacterial therapies. This research work is focused on the inactivation of Escherichia coli (E. coli) by exploiting the absorption bands 405, 505, 542, 580 and 631 nm of its indigenously produced Protoporphyrin IX (PpIX) excited by three LEDs with broad emission bands at 418, 522 and 630 nm and two laser diodes with narrow emission bands at 405 and 635 nm. Fluorescence spectroscopy and plate count method have been employed for studying the inactivation rate of E. coli strain in autoclaved water suspension. It has been found that LEDs at 418, 522 and 630 nm produced pronounced antimicrobial photodynamic effect on E. coli strain comparing laser diodes at 405 and 635 nm, which might be attributed to the overlapping of broad emission bands of LEDs with the absorption bands of PpIX than narrow emission bands of laser diodes. Particular effect of LED at 522 nm has been noticed because its broad emission band overlaps three absorption bands 505, 542 and 580 nm of PpIX. The gold standard plate count method strongly correlates with Fluorescence spectroscopy, making it an innovative tool to administer bacterial inactivation. The experimental results suggested the development of a light source that entirely overlap absorption bands of PpIx to produce a pronounced antimicrobial photodynamic effect, which might become an effective modality for in vivo disinfection of antibiotic resistant microbes in wounds and lesions.


Subject(s)
Escherichia coli , Photochemotherapy , Photosensitizing Agents , Protoporphyrins , Spectrometry, Fluorescence , Escherichia coli/drug effects , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Lasers, Semiconductor/therapeutic use , Humans
7.
Planta ; 260(3): 67, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088064

ABSTRACT

MAIN CONCLUSION: Overexpression of VvmybA1 transcription factor in 'Hamlin' citrus enhances cold tolerance by increasing anthocyanin accumulation. This results in improved ROS scavenging, altered gene expression, and stomatal regulation, highlighting anthocyanins' essential role in citrus cold acclimation. Cold stress is a significant threat to citrus cultivation, impacting tree health and productivity. Anthocyanins are known for their role as pigments and have emerged as key mediators of plant defense mechanisms against environmental stressors. This study investigated the potential of anthocyanin overexpression regulated by grape (Vitis vinifera) VvmybA1 transcription factor to enhance cold stress tolerance in citrus trees. Transgenic 'Hamlin' citrus trees overexpressing VvmybA1 were exposed to a 30-day cold stress period at 4 °C along with the control wild-type trees. Our findings reveal that anthocyanin accumulation significantly influences chlorophyll content and their fluorescence parameters, affecting leaf responses to cold stress. Additionally, we recorded enhanced ROS scavenging capacity and distinct expression patterns of key transcription factors and antioxidant-related genes in the transgenic leaves. Furthermore, VvmybA1 overexpression affected stomatal aperture regulation by moderating ABA biosynthesis, resulting in differential responses in a stomatal opening between transgenic and wild-type trees under cold stress. Transgenic trees exhibited reduced hydrogen peroxide levels, enhanced flavonoids, radical scavenging activity, and altered phytohormonal profiles. These findings highlighted the role of VvmybA1-mediated anthocyanin accumulation in enhancing cold tolerance. The current study also underlines the potential of anthocyanin overexpression as a critical regulator of the cold acclimation process by scavenging ROS in plant tissues.


Subject(s)
Anthocyanins , Citrus sinensis , Cold-Shock Response , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Anthocyanins/metabolism , Citrus sinensis/genetics , Citrus sinensis/metabolism , Citrus sinensis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response/genetics , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Vitis/genetics , Vitis/physiology , Vitis/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Chlorophyll/metabolism , Cold Temperature , Plant Stomata/physiology , Plant Stomata/genetics , Abscisic Acid/metabolism , Plant Growth Regulators/metabolism
8.
R Soc Open Sci ; 11(7): 231642, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39076368

ABSTRACT

Two rapid, simple, sensitive and selective derivative spectrofluorimetric methods (first and second derivative synchronous spectrofluorimetric (FDSFS and SDSFS) procedures) have been developed for the analysis of florfenicol in the presence of its various degradation products. FDSFS was applied to assay the drug in the presence of its alkaline, oxidative and photolytic degradation products while SDSFS was used to quantify it in the presence of its acidic degradation product. These methods permitted quantification of florfenicol at corresponding λ Em of 288, 287, 279 and 284 nm without interferences from any of its degradation products. Full validation procedures were applied to the suggested method according to International Conference of Harmonization guidelines. Moreover, different degradation kinetic parameters were calculated such as half-life (t 1/2), degradation rate constant (K) and activation energy (E a). Using the analytical eco-scale, green analytical procedure index and analytical greenness metric approach AGREE as greenness assessment tools, the proposed method was found to be environmentally friendly.

9.
Front Plant Sci ; 15: 1397852, 2024.
Article in English | MEDLINE | ID: mdl-38947950

ABSTRACT

Cakile maritima subsp. maritima Scop. (sea rocket) is a succulent halophyte with significant potential as a nutritious food source, being rich in essential nutrients such as vitamins, minerals, and antioxidants. This annual species exhibits two distinct leaf morphotypes: entire lamina (EL) and pinnatifid lamina (PL). Our understanding of their ecophysiological and nutritional profiles is still limited. The present study investigated the wild EL and PL sea rocket plants from southern Italy during their vegetative stage. The bio-morphological traits (leaf mass area-LMA, dry matter and chlorophyll concentrations), main inorganic ions, key antioxidants (carotenoids, anthocyanins, phenols, flavonoids, glucosinolates, vitamin C as ascorbic and dehydroascorbic acid), and antioxidant activity (by FRAP, DPPH, ABTS assays) were analyzed. Additionally, photosynthetic gas exchange and chlorophyll fluorescence were measured. PL plants showed thicker leaves (higher LMA) and greater accumulation of photo-protective pigments (carotenoids and anthocyanins), despite similar chlorophyll levels. The PL plants also demonstrated higher photosynthetic activity, transpiration rates, and stomatal conductance, with reduced non-photochemical quenching. The EL morphotype had higher cation (K, Mg, Ca, Na) and vitamin C (135.3 mg 100 g-1 FW) concentrations, while no significant disparities were observed between the morphotypes in phenolic concentration (208.5 mg g.a.e. 100 g-1 FW), flavonoids (71.5 mg q.e. 100 g-1 FW), or glucosinolates (61 mg g-1 FW). Interestingly, while the EL type had higher vitamin C, the PL morphotype showed superior antioxidant activity (FRAP, DPPH) and seems to be better adapted to water/nutrient scarcity typical of southern Italy. Both morphotypes offer potential as high-nutritional foods, however, future research should investigate the genotype-specific production of antioxidant compounds in EL and PL plants in response to environmental stresses, including salinity for potential exploitation as a new crop.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124743, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38950478

ABSTRACT

Devising carbon dots with long wavelength emission (red light or near infrared), high selectivity and good bio-compatibility is critical in fluorescence detection and imaging, but achieving this goal remains a great challenge. Herein, near-infrared emissive carbon dots (NIR-CDs) with obvious emission characteristic of 653 nm were synthesized through hydrothermally treatment of toluidine bule and gallic acid. Noticeably, the NIR-CDs exhibited excellent selectivity and sensitivity to hypochlorite (ClO-), and the limit of detection is as low as 42.7 nM. The selective recognition reaction between ClO- and the surface functional groups of NIR-CDs inhibits the fluorescence from NIR-CDs. The quenching mechanism was confirmed by fluorescence lifetime decays, FT-IR spectroscopy and UV-vis absorption spectra. More remarkably, the NIR-CDs have rich hydrophilic groups showed lower cytotoxicity, excellent bio-compatibility and specific cell membrane localization ability. The established spectrofluorometric method based on NIR-CDs has been used to determination of ClO- level in tap water sample, the recoveries were 97.7 %-103.3 %. In addition, the NIR-CDs also has been successfully applied for the imaging of cell membrane. The study provides a novel idea for developing NIR ClO- probe as well as cell membrane localization probe based on CDs, which present bright prospects in real water samples monitoring and cell membrane imaging.

11.
Neuroinformatics ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951389

ABSTRACT

CADENCE is an open Python 3-written neuroinformatics tool with Qt6 graphic user interface for supervised calcium events detection. In neuronal ensembles recording during calcium imaging experiments, the output of instruments such as Celena X, Zeiss LSM 5 Live confocal microscope and Miniscope is a movie showing flashing cells somata. There are few pipelines to convert video to relative fluorescence ΔF/F, from simplest ImageJ plugins to sophisticated tools like MiniAn (Dong et al. in Elife 11, https://doi.org/10.7554/eLife.70661 , 2022). Minian, an open-source miniscope analysis pipeline. Elife, 11.). While in some areas of study relative fluorescence ΔF/F may be the desired result in itself, researchers of neuronal ensembles are typically interested in a more detailed analysis of calcium events as indirect proxy of neuronal electrical activity. For such analyses, researchers need a tool to infer calcium events from the continuous ΔF/F curve in order to create a raster representation of calcium events for later use in analysis software, such as Elephant (Denker, M., Yegenoglu, A., & Grün, S. (2018). Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework. Neuroinformatics, 19.). Here we present such an open tool with supervised calcium events detection.

12.
Angew Chem Int Ed Engl ; : e202409725, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953140

ABSTRACT

Fluorescent molecular systems are important for various applications such as sensing of analytes, probes for biologically relevant processes and as optoelectronic materials. Achieving high fluorescence quantum yield across the spectrum of solvent polarity and in solid-state is challenging in molecular materials. Herein, we present a strategy to achieve strongly fluorescent molecular materials based on weak intramolecular charge-transfer (ICT) in a family of unsymmetrical donor-thiazolo[5,4-d]thiazoles-acceptor systems (both neutral and cationic). Detailed photophysical studies reveal that the delicate balance between the donor and acceptor result in high solution-state fluorescence quantum yield (> 80%) in both polar protic and apolar solvents. Quantum chemical computations uncover a hitherto unappreciated insight that the extent of ICT is aptly represented by the change in Mulliken charges between the ground and excited-state for different fragments rather than the classical approach of monitoring the change in dipole moment for the entire molecule. This insight rationalizes the observed photophysical properties and can have implications in the design of tuneable donor-π-acceptor systems.

13.
Methods Mol Biol ; 2814: 195-207, 2024.
Article in English | MEDLINE | ID: mdl-38954207

ABSTRACT

Activation of G protein-coupled receptors upon chemoattractant stimulation induces activation of multiple signaling pathways. To fully understand how these signaling pathway coordinates to achieve directional migration of neutrophils, it is essential to determine the dynamics of the spatiotemporal activation profile of signaling components at the level of single living cells. Here, we describe a detailed methodology for monitoring and quantitatively analyzing the spatiotemporal dynamics of 1,4,5-inositol trisphosphate (IP3) in neutrophil-like HL60 cells in response to various chemoattractant fields by applying Förster resonance energy transfer (FRET) fluorescence microscopy.


Subject(s)
Fluorescence Resonance Energy Transfer , Inositol 1,4,5-Trisphosphate , Microscopy, Confocal , Microscopy, Fluorescence , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Fluorescence Resonance Energy Transfer/methods , HL-60 Cells , Microscopy, Fluorescence/methods , Microscopy, Confocal/methods , Inositol 1,4,5-Trisphosphate/metabolism , Signal Transduction , Neutrophils/metabolism
14.
J Colloid Interface Sci ; 674: 862-872, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38955017

ABSTRACT

A multifunctional COF@HOF (ETTA-DFP@TCBP-HOF) composite is prepared by adding red-fluorescent ETTA-DFP COF to the blue-fluorescent TCBP-HOF preparation system through molecular hydrogen bonding or π - π stacking interactions in situ one-pot synthesis. ETTA-DFP@TCBP-HOF is a multifunctional material for the quantitative detection and simultaneous adsorption of 4-nitrophenol (4-NP) and metamitron (MET) in aqueous solution. As a dual-emission fluorescent sensor, the ETTA-DFP@TCBP-HOF has both fluorescence of TCBP-HOF at 474 nm and ETTA-DFP COF at 592 nm, which shows a ratiometric response to 4-NP and MET with high selectivity, good sensitivity, good anti-interference performance and fast response. As a adsorbent, ETTA-DFP@TCBP-HOF displays rapid adsorption kinetics, and acceptable adsorption capacity for 4-NP and MET. In conclusion, this work constructs a novel multifunctional hybrid material with dual-emission center of HOF and COF, which can not only be used as a ratiometric fluorescent probe for detection, but also for removal of hazardous pollutants, suggesting a new strategy for environmental remediation and human health.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124754, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38955067

ABSTRACT

Hypochlorous acid (HClO) as a kind of reactive oxygen species (ROS) plays a vital role in many biological processes. Organic fluorescence probes have attracted great interests for the detection of HClO, due to their relatively high selectivity and sensitivity, satisfactory spatiotemporal resolution and good biocompatibility. Constructing fluorescence probes to detect HClO with advantages of large Stokes shift, wide emission gap, near infrared emission and good water solubility is still challenging. In this work, a new ratiometric fluorescence probe (named HCY) for HClO was developed. FRET-based HCY was constructed by bonding a coumarin and a flavone fluorophore. In absence of HClO, HCY exists FRET process, however, FRET is inhibited in the presence of HClO because the conjugated double bond broke. Due to the good match of the emission spectrum of the donor and the absorption spectrum of the acceptor, the FRET system appears favorable energy transfer efficiency. HCY showed high sensitivity and rapid response time. The linearity between the ratios of fluorescence intensity and concentration of HClO was established with a low limit of detection. What's more, HCY was also applied for fluorescence images of HClO in RAW264.7 cells.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124729, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955073

ABSTRACT

There is an urgent requirement for the development of sensitive and quick sensors to monitor chromium (VI) due to its substantial carcinogenic and mutagenic properties. A coexisting system of coumarin 334 and diphenylcarbazide (C334/DPC) was used in this study as a fluorescent chemosensor to detect Cr(VI) ions. Upon the addition of Cr(VI), a purple chelate complex (Cr(III)-diphenylcarbazone) was produced, which resulted from the quantitative reaction between Cr(VI) ions and diphenylcarbazide (DPC), whereas no interaction between Cr(VI) and coumarin 334 took place. More interestingly, the absorption spectra of purple (Cr(III)-diphenylcarbazone) complex (λmax = 540 nm) were overlapped with emission and excitation spectra of coumarin 334 (λex/em = 453/492), resulting in the efficient quenching of coumarin 334 (C334) via the inner filter effect. Furthermore, the semi-quantitative estimation of Cr(VI) ion concentration may be achieved by visually watching the progressive color transformation of the probe from yellow to red after the addition different concentration of Cr(VI). The calibration plot for determination of Cr(VI) by this method is ranging from 0.048 to 268 µM. DFT calculations were conducted to enrich our understanding about the mechanism of action. This approach demonstrates an excellent selectivity and sensitivity for Cr(VI) including a detection limit of 48 nM. The new sensor was successfully applied to water samples (tap, mineral, and waste waters). The accuracy was confirmed by the atomic absorption spectroscopy.

17.
Talanta ; 278: 126427, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38955101

ABSTRACT

Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.

18.
J Cell Sci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38958032

ABSTRACT

Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm x 5 mm x 3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.

19.
Small ; : e2400346, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958090

ABSTRACT

All-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals have drawn great interest because of their excellent photophysical properties and potential applications. However, their poor stability in water greatly limited their use in applications that require stable structures. In this work, a facile approach to stabilize CsPbBr3 nanowires is developed by using SU-8 as a protection medium; thereby creating stable CsPbBr3/SU-8 microstructures. Through photolithography and layer-by-layer deposition, CsPbBr3/SU-8 is used to fabricate bilayer achiral microswimmers (BAMs), which consist of a top CsPbBr3/SU-8 layer and a bottom Fe3O4 magnetic layer. Compared to pure CsPbBr3 nanowires, the CsPbBr3/SU-8 shows long-term structural and fluorescence stability in water against ultrasonication treatment. Due to the magnetic layer, the motion of the microswimmers can be controlled precisely under a rotating magnetic field, allowing them to swim at low Reynolds number and tumble or roll on surfaces. Furthermore, CsPbBr3/SU-8 can be used to fabricate various types of planar microstructures with high throughput, high consistency, and fluorescence properties. This work provides a method for the stabilization of CsPbBr3 and demonstrates the potential to mass fabricate planar microstructures with various shapes, which can be used in different applications such as microrobotics.

20.
Chem Biodivers ; : e202400719, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958461

ABSTRACT

A versatile and efficient chemo selective synthesis of 4-aryl-3-formyl-2H-chromenes (AFC) was undertaken using Pd-catalyzed cross-coupling conditions. The key oxidative transmetalation was successfully applied to a significant range of substitutions on the chromene moiety and aryl ring in Ar(BOH)3, accommodating both electron-rich and electron-deficient groups. These π-extended scaffolds exhibited green-yellow fluorescence with a large Stokes shift and high quantum yield. Measurement of photophysical properties revealed that the compound with methoxy substitution in the chromene ring, 3t, caused a significant bathochromic shift. The AFCs obtained from this method can be transformed into biologically active 4-aryl-3-iminoantipyrine-2H-chromenes (AAC) through functionalization of the formyl chromenes. The AFCs and AACs with methoxy substitutions (3t and 4e) were docked against AChE inhibition, and compound 4e had the lowest binding energy of -11.20 kcal/mol. DFT calculations performed on representative compounds revealed that compound 4e is more reactive than 3t, which is in accordance with the docking studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...