Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 652
Filter
1.
Anal Chim Acta ; 1316: 342802, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969400

ABSTRACT

BACKGROUND: Cirrhosis represents the terminal stage of liver disease progression and timely intervention in a diseased liver can enhance the likelihood of recovery. Viscosity, a crucial parameter of the cellular microenvironment, is intricately linked to the advancement of cirrhosis. However, viscosity monitoring still faces significant challenges in achieving non-invasive and rapid early diagnosis of cirrhosis. Near-infrared (NIR) fluorescence imaging has the advantages of high sensitivity, non-destructive detection, and ignoring background fluorescence interference, plays an important role in diagnosing and treating various biological diseases. Hence, monitoring cellular viscosity changes with NIR fluorescence probe holds great significance in the early diagnosis of cirrhosis. RESULTS: In this study, the NIR fluorescence probe based on the intramolecular charge transfer (TICT) mechanism was developed for imaging applications in mouse model of liver cirrhosis. A molecular rotor-type viscosity-responsive probe was synthesized by linking dioxanthracene groups via carbon-carbon double bonds. The probe demonstrated remarkable sensitivity, high selectivity and photostability, with its responsiveness to viscosity largely unaffected by factors such as polarity, pH, and interfering ions. The probe could effectively detect various drug-induced changes in cellular viscosity, enabling the differentiation between normal cells and cancerous cells. Furthermore, the enhanced tissue penetration capabilities of probe facilitated its successful application in mouse model of liver cirrhosis, allowing for the assessment of liver disease severity based on fluorescence intensity and providing a powerful tool for early diagnosis of cirrhosis. SIGNIFICANCE: A NIR viscosity-sensitive fluorescent probe was specifically designed to effectively monitor alterations in cellular and organ viscosity, which could advance the understanding of the biological characteristics of cancer and provide theoretical support for the early diagnosis of cirrhosis. Overall, this probe held immense potential in monitoring viscosity-related conditions, expanding the range of biomedical tools available.


Subject(s)
Fluorescent Dyes , Liver Cirrhosis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Animals , Humans , Mice , Optical Imaging , Viscosity , Infrared Rays , Molecular Structure
2.
Top Curr Chem (Cham) ; 382(3): 26, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023635

ABSTRACT

In this review, we present a systematic and comprehensive summary of the recent developments in the synthetic strategies of 2-(2-hydroxyarylsubstituted)-benzothiazole (HBT) framework along with incorporation of various substituents on phenolic and benzothiazole rings which affect the emission process. The literature, spanning the years 2015-2024, on excited-state intramolecular proton transfer (ESIPT)-based studies of HBT derivatives comprising the effects of solvent polarity, substituents, and extended conjugation on fluorophores has been searched. ESIPT, intramolecular charge transfer, and aggregation-induced emissions enable these fluorescent probes to specifically interact with analytes, thereby altering their luminescence characteristics to achieve analyte detection. These fluorescent probes exhibit large Stokes shifts, high quantum yields, and excellent color transitions. Finally, the applications of HBTs as ESIPT-based fluorescent probes for the detection of cations, anions, and biomolecules have been summarized. We anticipate that this review will provide a comprehensive overview of the current state of research in this field and encourage researchers to develop novel ESIPT-based fluorophores with new applications.


Subject(s)
Benzothiazoles , Fluorescent Dyes , Protons , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Ions/chemistry , Ions/analysis , Molecular Structure
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124747, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959694

ABSTRACT

Hydrazine (N2H4) and bisulfite (HSO3-) detection methods are urgently needed due to its harmful to the human health and environment safety. Herein, we reported a dual-response fluorescence probe EPC, which is capable of sequential detection of N2H4 and HSO3- by two different fluorescence signals. The probe EPC itself showed yellow florescence. In presence of N2H4, probe EPC exhibited an obviously fluorescence change (from yellow to green). However, a new addition product came into being after probe EPC mixed with HSO3-, followed with weak yellow emission. More important, probe EPC exhibited excellent fluorescence response properties for N2H4 and HSO3-, such as high sensitivity (0.182 µM for N2H4, 0.093 µM for HSO3-), rapid response (55 s for N2H4, 45 s for HSO3-), excellent selectivity and anti-interference performance. The sensing mechanisms for N2H4 and HSO3- were proved by 1H NMR and MS spectra. Practical applications were studied. EPC based test paper can be utilized for quantitative detecting N2H4 in actual water samples. And, probe EPC has been successfully applied to recognize N2H4 contaminant in soil samples. Moreover, EPC has great potential to be used to detect HSO3- in real food samples.

4.
ACS Appl Mater Interfaces ; 16(26): 33780-33788, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961579

ABSTRACT

A quantitative water detection method is urgently needed in storage facilities, space exploration, and the chemical industry. Although numerous physical techniques have been widely utilized to determine the water content, they still suffer from many disadvantages such as highly expensive special instruments, complicated analysis processes, etc. Hence, a convenient, rapid, and sensitive water analysis method is highly desirable. Herein, we developed a visual fluorescence sensing technology for water detection based on reversible PL off-on switching of organic-inorganic hybrid zero-dimensional (0D) manganese halides. In this work, a family of hybrid manganese halides were synthesized through a facile solution method, namely, [NH4(18-Crown-6)]2MnBr4, [Ca(18-Crown-6)·3H2O](18-Crown-6)MnBr4, [NH4(dibenzo-18-Crown-6)]2MnBr4, and [Ca(dibenzo-18-Crown-6)·2H2O]MnBr4. Excited by UV light, these highly crystalline manganese halides exhibit strong green light emissions from the d-d electron transition of Mn2+ with near-unity photoluminescence quantum yield and submillisecond lifetime. Benefiting from the dynamic and weak ionic bonding interactions, these 0D manganese halides display reversible water-response on/off luminescence switching but fail in any other aprotic solvents. Therefore, these 0D hybrid manganese halides can be explored as ultrafast visual fluorescence probes to detect the trace amount of water in organic solvents with multiple superiorities of rapid response time (< 2 s), ultralow detection limit (9.71 ppm), excellent repeatability, etc. The reversible water-response luminescent on/off switching also provides a binary optical gate with advanced applications in anticounterfeiting and information security, etc.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124754, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38955067

ABSTRACT

Hypochlorous acid (HClO) as a kind of reactive oxygen species (ROS) plays a vital role in many biological processes. Organic fluorescence probes have attracted great interests for the detection of HClO, due to their relatively high selectivity and sensitivity, satisfactory spatiotemporal resolution and good biocompatibility. Constructing fluorescence probes to detect HClO with advantages of large Stokes shift, wide emission gap, near infrared emission and good water solubility is still challenging. In this work, a new ratiometric fluorescence probe (named HCY) for HClO was developed. FRET-based HCY was constructed by bonding a coumarin and a flavone fluorophore. In absence of HClO, HCY exists FRET process, however, FRET is inhibited in the presence of HClO because the conjugated double bond broke. Due to the good match of the emission spectrum of the donor and the absorption spectrum of the acceptor, the FRET system appears favorable energy transfer efficiency. HCY showed high sensitivity and rapid response time. The linearity between the ratios of fluorescence intensity and concentration of HClO was established with a low limit of detection. What's more, HCY was also applied for fluorescence images of HClO in RAW264.7 cells.

6.
Talanta ; 278: 126427, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38955101

ABSTRACT

Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124784, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981283

ABSTRACT

A bisalicylhydrazone based fluorescence probe, bisalicyladehyde benzoylhydrazone (BS-BH), has been designed to detect Al3+. It exhibited high sensitivity and selectivity towards Al3+ in methanol-water media in physiological condition. Large stokes shifts (∼122 nm) and over ∼1000-fold enhanced fluorescence intensity were observed, which was ascribed to the formation of the two relatively independent rigid extended π conjugated systems bridged by biphenyl group when binding with Al3+. A 1:2 binding ratio between BS-BH and Al3+ was shown by Job's plot. Based on the fluorescence titration data, the detection limit was down to 3.50 nM and the association constant was evaluated to be 1.12 × 109 M-2. The plausible fluorescence sensing mechanism of suppressed ESIPT, inhibited PET, activated CHEF and restricted C = N isomerization was confirmed by a variety of spectral experiments and DFT / TD-DFT calculations. The reversibility of recognition of Al3+ for probe BS-BH was validated by adding Na2-EDTA. In addition, the MTT assay showed the good biocompatibility of BS-BH and BS-BH could be used for imaging Al3+ in living cells.

8.
Mikrochim Acta ; 191(7): 436, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38954059

ABSTRACT

A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.


Subject(s)
Carbon , Fluorescent Dyes , Limit of Detection , Meat Products , Molecularly Imprinted Polymers , Quantum Dots , Smartphone , Tyramine , Tyramine/analysis , Tyramine/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Meat Products/analysis , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Spectrometry, Fluorescence/methods , Biomass , Fermentation
9.
J Fluoresc ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878194

ABSTRACT

Nitrite ion is one of the materials widely used in human life, and the accurate, sensitive and stable detection of nitrite ions is of great significance to people's healthy life. In this study, nitrogen-doped fluorescent carbon dots (N-CDs) for detecting nitrite salt solutions were prepared using citric acid monohydrate and Chrysoidin as precursors through a one-pot hydrothermal method. Under the condition of pH = 3, a noticeable quenching phenomenon occurred in the carbon dot solution with the increase in nitrite ion concentration. This quenching effect might be attributed to the diazonium effect. N-CDs have been successfully used as fluorescence probes for NO2- detection. NO2- can effectively quench the fluorescence intensity of N-CDs, providing a linear response to fluorescence quenching efficiency with respect to NO2- concentration within the range of 0-10µM and 10-30µM, and a detection limit of 52nM, showing high sensitivity. In addition, the probe was applied to the determination of NO2- in ham sausage samples with a detection limit of 0.67µM and recoveries in the range of 99.5-102.3%, the fluorescent probe showed satisfactory reliability.

10.
Environ Technol ; : 1-12, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887014

ABSTRACT

2,4,6-Trinitrophenol (TNP) has high explosive risks and biological toxicity, and there has been considerable concern over the determination of TNP. In the present work, fluorescent carbon dots (CDs) stemmed from a green carbon source of pinecone by the facile hydrothermal approach. A novel environment- friendly fluorescent probe was developed to efficiently detect TNP by using the obtained CDs with remarkable fluorescence stability. The fluorescent CDs exhibited obvious excitation dependence with the highest peaks for excitation and emission occurring at 321 and 411 nm, respectively. The fluorescence intensity is significantly reduced by TNP owing to the inner filter effect with the CDs. The probe exhibited good linearity with TNP concentrations in the range of 0.025-20 µg mL-1, and the limit of detection was as low as 8.5 ng mL-1. Additionally, the probe proved successful in sensing TNP quantitatively in actual environmental samples with satisfied recoveries of 95.6-99.6%. The developed fluorescent probe offered an environment-friendly, efficient, rapid, and reliable platform for detecting trace TNP in the environmental field.HighlightsNovel carbon dots were synthesised from green precursors of pineal powder.The highly effective quenching process was put down to the inner filter effect.The as-constructed fluorescent probe was successfully utilised for sensing 2,4,6-trinitrophenol in environmental samples.The proposed method was simple, rapid, efficient, economical, and eco-friendly.

11.
Chemosphere ; 361: 142535, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844108

ABSTRACT

Antibiotics are widely used in clinical medicine due to their excellent antibacterial abilities. As typical emerging pollutants, their misuse can lead to excess antibiotics entering the environment, causing antimicrobial resistance and leading to serious health problems via food chain. Herein, a nano-fluorescent probe based on nitrogen-doped carbon dots (N-CDs) was constructed for the sensitive detection of chlortetracycline (CTC). N-CDs with stable fluorescence were synthesized by hydrothermal method using alizarin red and melamine as raw materials. The N-CDs exhibited significant independence to excitation wavelength. The fluorescence of N-CDs was significantly quenched by CTC ascribing to the fluorescence resonance energy transfer mechanism. The concentration of N-CDs, solution pH and incubation time were optimized to obtain the optimal detection parameters. Under optimal conditions, CTC exhibited excellent linearity over the range of 20-1200 µg/L, and the detection limit was 8.74 µg/L. The method was validated with actual water samples and achieved satisfied spiked recoveries of 97.6-102.6%. Therefore, the proposed method has significant application value in the detection of CTC in waters.


Subject(s)
Anti-Bacterial Agents , Carbon , Chlortetracycline , Fluorescent Dyes , Limit of Detection , Nitrogen , Quantum Dots , Water Pollutants, Chemical , Chlortetracycline/analysis , Nitrogen/chemistry , Nitrogen/analysis , Carbon/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Quantum Dots/chemistry , Anti-Bacterial Agents/analysis , Fluorescence Resonance Energy Transfer , Fluorescence
12.
J Fluoresc ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907118

ABSTRACT

In this study, a ratiometric fluorescence nanoprobe is developed for the analysis of hydrogen peroxide (H2O2). Silver nanoclusters (AgNCs) were synthesized by chemical reduction method using sodium borohydride (NaBH4) as reducing agent, and were coupled with CdSe/ZnS quantum dots (QDs) to form the ratiometric fluorescence nanoprobe silver nanoclusters-quantum dots (AgNCs-QDs). The effect of the volume ratio of CdSe/ZnS QDs to AgNCs on the fluorescence ratio of AgNCs-QDs was investigated. The fluorescence characterization results show that two emission peaks of AgNCs-QDs are located at 473 nm and 661 nm, respectively. Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) results show that H2O2 can cause the fluorescence probe to aggregate, while etching AgNCs to produce silver ions, which together cause the fluorescence of the QDs in the ratiometric fluorescent probe to be quenched. Based on this strategy, the fluorescence intensity ratio of the two emission peaks F473/F661 exhibits a strong linear correlation with the concentration of H2O2. The detection range is 3.32 µM ~ 2.65 mM with a detection limit of 3.32 µM. In addition, the ratiometric fluorescence probe can specifically recognize H2O2 and has excellent anti-interference performance and good fluorescence stability. Importantly, the probe was utilized for the detection of H2O2 in serum, showing the possibility of the probe in clinical detection applications.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124547, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823237

ABSTRACT

It is crucial to identify aberrant HClO levels in living things since they pose a major health risk and are a frequent reactive oxygen species (ROS) in living organisms. In order to detect HClO in various biological systems, we created and synthesized a near-infrared fluorescent probe with an oxime group (-C = N-OH) as a recognition unit. The probe DCMP1 has the advantages of fast response (10 min), near-infrared emission (660 nm), large Stokes shift (170 nm) and high selectivity. This probe DCMP1 not only detects endogenous HClO in living cells, but also enables further fluorescence detection of HClO in living zebrafish. More importantly, it can also be used for fluorescence imaging of HClO in an rheumatoid arthritis mouse model. This fluorescent probe DCMP1 is anticipated to be an effective tool for researching HClO.


Subject(s)
Arthritis, Rheumatoid , Disease Models, Animal , Fluorescent Dyes , Hypochlorous Acid , Zebrafish , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Hypochlorous Acid/analysis , Hypochlorous Acid/metabolism , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/pathology , Mice , Humans , Optical Imaging , Spectrometry, Fluorescence
14.
J Hazard Mater ; 474: 134734, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850937

ABSTRACT

Fast and real-time detection of trace Hg(Ⅱ) by fluorescent probes under acidic conditions is urgently required due to the high toxicity and accessibility to creatures and human being. However, fluorescent probes for Hg(Ⅱ) detection in environmental samples are rarely reported due to the protonation potential of acidic mercury sources. In this study, the SD probe was developed by 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) loaded on sepiolite by hydrothermal treatment, and showed excellent Hg(Ⅱ) detection performances for mercury sources at pH 4-10 due to buffering ability of the hyperconjugated lactam rings. Sepiolite functioned as the support skeleton to decrease intermolecular transition, and thus increased the sensitivity. At pH 4, the SD probe showed high selectivity and sensitivity for Hg(Ⅱ) among various species, with low LOD and binding constant of 4.78 × 10-9 M and 1.34 × 106 M-1, respectively. Through DFT calculations, MAS 1H NMR and 2D-COS analysis, the detection mechanism was demonstrated as SN1 substitution of the spontaneous leaving H on amino groups in the transient state during tautomeric equilibrium, rather than the expected high-affinity sulphydryl. Additionally, the SD probe exhibited promising potential in quantifying water-soluble and bioavailable Hg(Ⅱ) in acidic polluted soil and water samples. Moreover, real-time detection was realized by paper-based strips.

15.
Sci Total Environ ; 944: 173810, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871324

ABSTRACT

Hydrazine (N2H4), a crucial chemical raw material, enhances people's lives and fosters human progress. Hydrazine usage or leakage has caused environmental contamination, affecting water, soil, and living beings. Hydrazine simultaneously presents a possible risk to human health due to its carcinogenic properties. Thus, quick and precise detection of hydrazine is crucial in environmental studies and biological contexts. We prepared a red-emitting fluorescence turn-on probe (XT-HZ) to detect hydrazine specifically. The probe has a low detecting limit for hydrazine (63 nM) with excitation wavelength at 570 nm and emission wavelength at 625 nm. Besides, the probe XT-HZ had excellent water solubility, high selectivity, and good sensitivity for detecting hydrazine. Finally, probe XT-HZ was applied in the imaging of N2H4 in living cells, zebrafish and environmental water samples.


Subject(s)
Environmental Monitoring , Fluorescent Dyes , Hydrazines , Water Pollutants, Chemical , Hydrazines/analysis , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Zebrafish , Animals , Humans
16.
Biosens Bioelectron ; 261: 116514, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908291

ABSTRACT

Thyroid cancer always appears insidiously with few noticeable clinical symptoms. Due to its limitations, conventional ultrasound imaging can lead to missed or misdiagnosed cases. Surgery is still the primary treatment method of thyroid cancer, but removal of surrounding healthy tissues to minimize recurrence leads to overtreatment and added patient suffering. To address this challenge, herein, a nitroreductase (NTR) fluorescent probe, Ox-NTR, has been developed for detecting thyroid cancer and tracking the surgical removal of thyroid tumors by fluorescence imaging. The conjugated structure of oxazine 1 was disrupted, significantly reducing the issue of high background signals, thus effectively achieving low background fluorescence. Under hypoxic conditions, the nitro group of Ox-NTR can be reduced to an amine and subsequently decomposed into oxazine 1, emitting intense red fluorescence. Ox-NTR has a low detection limit of 0.09 µg/mL for NTR with excellent photostability and selectivity. Cellular studies show that Ox-NTR can effectively detect NTR levels in hypoxic thyroid cancer cells. Moreover, the ability of Ox-NTR of rapid response to thyroid cancer in vivo is confirmed by fluorescence imaging in mice, distinguishing tumors from normal tissues due to its superior low background fluorescence. Utilizing this fluorescence imaging method during surgical resection can guide the removal of tumors, preventing both missed tumor tissues and accidental removal of healthy tissue. In summary, the novel Ox-NTR offers precise detection capabilities that provide significant advantages over traditional imaging methods for thyroid cancer diagnosis and treatment, making it a valuable tool to guide tumor removal in surgical procedures.


Subject(s)
Fluorescent Dyes , Nitroreductases , Optical Imaging , Thyroid Neoplasms , Nitroreductases/metabolism , Fluorescent Dyes/chemistry , Thyroid Neoplasms/surgery , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Humans , Animals , Optical Imaging/methods , Mice , Biosensing Techniques/methods , Cell Line, Tumor , Surgery, Computer-Assisted/methods , Mice, Nude
17.
J Fluoresc ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874823

ABSTRACT

Tyrosinase inhibitors have the ability to resist melanin formation and can be used for clinical and cosmetic, so it is becoming extremely crucial to search a rapid and effective method for detecting t the activity of tyrosinase. In this study, a sensing probe based on Nitrogen-doped graphene quantum dots (N-GQDs) were prepared with carbamide and citric acid. Tyrosinase can oxidize dopamine to dopamine quinone, which can quench the fluorescence of N-GQDs based on the principle of fluorescence resonance energy transfer (FRET) process, and then the detection of tyrosinase activity can be achieved. The result demonstrated that the fluorescence intensity of N-GQDs was a linear correlation with the activity of tyrosinase. Wide detection linear ranges between 0.05 and 5 U/mL and high selectivity. The detection range of tyrosinase was 0.05 to 5 U/mL and LOD of 0.005 U/mL. According to the above, the fluorescence method established in this work could be successfully used for the trace analysis of tyrosinase and it was verified that KA is an inhibitor of tyrosinase.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124386, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763017

ABSTRACT

pH and Cu2+ ion concentration changes are linked to disorders like Alzheimer's and cancer. Rapid detection of pH and Cu2+ ions is critical for public health and environmental concerns. The semi-salamo-type probe (E)-2-hydroxy-1-naphthaldehyde O-(2-(aminooxy)ethyl) oxime (NSS) demonstrated substantial dual-functional performance, sensing pH change and Cu2+ ions. A single excitation and double emission characteristic on the probe NSS made it distinctive. Probe NSS exhibits pH-dependent excited state intramolecular proton transfer (ESIPT), and its optical properties vary based on the pH environment. Probe NSS detects pH changes from 2 to 11 by changing the "off-on-off" of the excited state intra-molecular proton transfer (ESIPT) mechanism, exhibiting rapid, reversible, and selective responses. In addition, the luminescent salamo-like naphthalene-based probe NSS can coordinate with Cu2+ ions, achieving great selectivity and sensitivity to identify Cu2+ ions with a detection limit of 0.84 ppb (13.2 nM) Probe NSS can detect Cu2+ ions in actual water samples such as tap water and yellow river water. The test strip loaded with probe NSS enabled quick and accurate detection of Cu2+ ions in water samples. Consequently, the versatile salamo-type probe NSS lays the foundation for developing high sensitivity and fast-response dual-mode pH meters as well as Cu2+ sensing.

19.
Talanta ; 275: 126069, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692042

ABSTRACT

Lipid deposition has been considered one of the key factors in the occurrence of valvular heart disease (VHD) and a great potential target for the diagnosis of VHD. However, the development of lipid imaging technologies and efficient lipid specific probes is in urgent demand. In this work, we have prepared a lipid droplets (LDs) targeted fluorescence probe CPTM based on a push-pull electronic structure for the imaging of diseased aortic valves. CPTM showed obvious twisted intramolecular charge transfer (TICT) effect and its emission changed from 600 nm in water to 508 nm in oil. CPTM not only exhibited good biocompatibility and high photostability, but also impressive LDs specific imaging performance in human primary valvular interstitial cells and human diseased aortic valves. Moreover, the dynamic changes of intracellular LDs could be monitor in real-time after staining with CPTM. These results were expected to offer new ideals for the designing of novel LDs specific probes for further bioimaging applications.


Subject(s)
Aortic Valve , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Optical Imaging , Lipid Droplets/chemistry , Color , Aortic Valve Disease/diagnostic imaging , Lipids/chemistry , Lipids/analysis
20.
ACS Sens ; 9(6): 3075-3084, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38807573

ABSTRACT

Cardiac hypertrophy characterized by abnormal cardiomyocyte viscosity is a typical sign of heart failure (HF) with vital importance for early diagnosis. However, current biochemical and imaging diagnostic methods are unable to detect this subclinical manifestation. In this work, we developed a series of NIR-I fluorescence probes for detecting myocardial viscosity based on the pyridazinone scaffold. The probes showed weak fluorescence due to free intramolecular rotation under low-viscosity conditions, while they displayed strong fluorescence with limited intramolecular rotation in response to a high-viscosity environment. Among them, CarVis2 exhibited higher stability and photobleaching resistance than commercial dyes. Its specific response to viscosity was not influenced by the pH and biological species. Furthermore, CarVis2 showed rapid and accurate responses to the viscosity of isoproterenol (ISO)-treated H9C2 cardiomyocytes with good biocompatibility. More importantly, CarVis2 demonstrated excellent sensitivity in monitoring myocardial viscosity variation in HF mice in vivo, potentially enabling earlier noninvasive identification of myocardial abnormalities compared to traditional clinical imaging and biomarkers. These findings revealed that CarVis2 can serve as a powerful tool to monitor myocardial viscosity, providing the potential to advance insights into a pathophysiological mechanism and offering a new reference strategy for early visual diagnosis of HF.


Subject(s)
Fluorescent Dyes , Heart Failure , Fluorescent Dyes/chemistry , Heart Failure/diagnostic imaging , Animals , Mice , Viscosity , Myocytes, Cardiac , Early Diagnosis , Rats , Cell Line , Isoproterenol , Humans , Optical Imaging , Infrared Rays , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...