Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Appl Radiat Isot ; 211: 111413, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38944898

ABSTRACT

The plant acts as an important route for the transfer of radionuclides from the soil to animals, leading to the transfer of radiation to human food products such as beef and milk. Therefore, the level of radioactivity in fodder plays a crucial role in deciding whether cattle may be allowed to graze in a certain area. In this study, the activities of 226Ra, 232Th and 40K were measured via gamma-ray spectrometry on different fodder samples, including napier leaves, rice straw, corn stalks, guinea grass, mixed pasture, palm oil leaves and palm kernel collected from Penang, Malaysia. Theoretical calculations were also conducted to estimate the levels of these radionuclides in caw's products (beef and milk), as well as their potential radiological impact on local consumers. On average, the annual effective dose due to ingestion of radionuclides in milk was 11.39 µSv y-1, whereas in beef it was 5.63 µSv y-1. These values are significantly lower than the worldwide average of 290 µSv y-1. Research confirmed that farmers' usage of the aforementioned feeds did not cause any radiation-related health risks.

2.
J Anim Sci ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943457

ABSTRACT

Rations containing different rates of the mixed fodder beet tops-wheat straw silage (BS), instead of corn silage (CS), were given to 30 mid-lactation Holstein cows (all in parity 2) to measure the effects on feed consumption, milk production efficiency, milk chemistry, urinary purine-derivatives (PD), blood chemistry, antioxidant levels, and in vitro methane (CH4) emission. The BS was prepared by mixing the fodder beet tops with wheat straw at a ratio of 9:1 based on fresh weight. The experimental design was completely randomized (one 28-d period with 21-d adaptation) using 30 cows (10 animals/treatment) and 3 treatments. The treatments were 1) a diet containing CS only (25 g/100 g DM) (CSD), 2) a diet containing 50% CS (12.5 g/100 g DM) and 50% BS (12.5 g/100 g DM) (CBSD), and 3) diet containing BS only (25 g/100 g DM) (BSD). Each animal (as an experimental unit) was housed individually in the tie stall and had ad libitum access to its diet. Dietary replacing 50% of CS with BS showed no significant differences in milk production, fat-corrected milk, fat and protein yields, feed efficiency, and apparent digestibility, however, these variables were less (P < 0.05) in the cows fed with BSD. Cows fed on BSD had less intakes of DM, organic matter, crude protein, and neutral detergent fiber but greater oxalic acid intake and blood urea-N, as compared to the other cows. Milk percentages of fat, protein, lactose, urea N, blood serum glucose, triglyceride, cholesterol, total protein, albumin, globulin, Ca, and P, as well as in vitro ruminal pH, were not affected by the diets. Saturated fatty acids concentration was less and monounsaturated FA and polyunsaturated FA (PUFA) was greater in the milk of cows receiving CBSD, compared to the other groups. The inclusion of both BS rates in the diet decreased the in vitro gas production, protozoa number, and CH4 emission in comparison to the control. Cows fed BSD had decreased levels of urinary allantoin, PD excreted or absorbed, and estimated microbial-N synthesis than the control and CBSD-fed groups. The milk and blood total antioxidant capacity (TAC) of the animals fed CBSD was the maximum among the cows. Overall, under the current experimental conditions, replacing 50% of dietary CS with BS did not affect milk production, but increased milk PUFA, as well as blood and milk TAC, and decreased in vitro CH4 emission, so it's feeding to lactating Holstein cows is recommended.

3.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890560

ABSTRACT

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Subject(s)
Festuca , Lolium , Phenotype , Seeds , Lolium/growth & development , Lolium/genetics , Lolium/anatomy & histology , Festuca/genetics , Festuca/growth & development , Festuca/anatomy & histology , Seeds/growth & development , Seeds/genetics , Seeds/anatomy & histology
4.
Front Plant Sci ; 15: 1396602, 2024.
Article in English | MEDLINE | ID: mdl-38845850

ABSTRACT

The clubroot disease has become a worldwide threat for crucifer crop production, due to its soil-borne nature and difficulty to eradicate completely from contaminated field. In this study we used an elite resistant European fodder turnip ECD04 and investigated its resistance mechanism using transcriptome, sRNA-seq, degradome and gene editing. A total of 1751 DEGs were identified from three time points after infection, among which 7 hub genes including XTH23 for cell wall assembly and two CPK28 genes in PTI pathways. On microRNA, we identified 17 DEMs and predicted 15 miRNA-target pairs (DEM-DEG). We validated two pairs (miR395-APS4 and miR160-ARF) by degradome sequencing. We investigated the miR395-APS4 pair by CRISPR-Cas9 mediated gene editing, the result showed that knocking-out APS4 could lead to elevated clubroot resistance in B. napus. In summary, the data acquired on transcriptional response and microRNA as well as target genes provide future direction especially gene candidates for genetic improvement of clubroot resistance on Brassica species.

5.
Front Microbiol ; 15: 1405018, 2024.
Article in English | MEDLINE | ID: mdl-38765686

ABSTRACT

Waxy maize (Zea mays L. sinensis Kulesh) is highly regarded for its high nutritional content and unique taste. Although the stalks and leaves contain high carbohydrate levels after ear harvesting, inadequate crude protein (CP) limits the utilization and promotion of waxy maize silage in animal husbandry. In this study, waxy maize and fodder soybeans were mixed for sowing in different proportions [1:0 (CK), 1:1 (A1), 1:2 (A2), 1:3 (A3), and 1:4 (A4)] to investigate the effects of different mixing ratios on the growth of the waxy maize, the chemical indices, fermentation quality, and the microbial community of the mixed silage after ear harvesting. The mixed planting of waxy maize and fodder soybeans in different proportions had no effect on the yield and quality of the waxy maize ears and increased the aboveground biomass after ear harvesting. After ear harvesting, the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents significantly decreased, and the CP content and relative feeding value (RFV) gradually increased in the mixed silage. The pH of the treatments was lower than 4.2 except for A4, and the lowest ammonia nitrogen (AN) concentration was observed in A3. With increasing proportions of fodder soybeans, the abundance of beneficial bacteria increased and that of harmful bacteria decreased; Firmicutes and Lactobacillus were the dominant phylum and genus, respectively, and both increased gradually. Redundancy analysis (RDA) revealed that the fermentation indices affecting the microbial community composition in the silage were inconsistent among the different mixed sowing combinations. The Mantel test showed that the composition of the microbial communities in the treatments was significantly correlated with the ADF, water-soluble carbohydrate (WSC), and propionic acid (PA) contents. Comprehensive analysis revealed that the optimal mixed sowing ratio of waxy maize to fodder soybeans was 1:3, and waxy maize and fodder soybeans silage can increase the utilization of aboveground biomass and improve the fermentation quality and feeding quality of silage by changing the microbial community. These findings lay a certain theoretical foundation for improving the utilization of waxy maize.

6.
Heliyon ; 10(9): e30790, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756567

ABSTRACT

Corn (Zea mays) silage is an important and popular feed for dairy production in the Amazon region, so it is necessary to evaluate the agronomic performance of forage varieties of corn for cattle feeding in Amazonas. For this purpose, three corn varieties were evaluated (variety 1: Yellow Starchy Corn, variety 2: Chuska INIA 617, and variety 3: DOW 2B710), with two planting densities (density 1: 30 × 80 cm and density 2: 35 × 75 cm) and two fertilization conditions: with fertilization (F1) and without fertilization (F2). The parameters evaluated were plant height, number of leaves, leaf length and width, stem diameter, fresh forage, and dry matter. Student t-tests, correlation analysis of variables, and principal component analysis using R software version 4.1.3 were used for data analysis. The results indicated that variety 2 obtained the best values for the variables leaf width (12.33 cm) and stem diameter (3.25 cm), fresh forage (17.77 kg/m2), and dry matter (4.8 kg/m2), which would explain the directly proportional correlation found between leaf width and stem diameter with fresh forage and dry matter. The principal component analysis showed constant height and leaf length increases, and the best-evaluated parameters were associated with applying fertilizer. The variety that showed the best agronomic performance under Chachapoyas conditions was Chuska INIA 617, emerging as a potential feed for cattle.

7.
PeerJ ; 12: e17274, 2024.
Article in English | MEDLINE | ID: mdl-38737742

ABSTRACT

Background: This experiment was conducted in the Research and Application Field of Canakkale Onsekiz Mart University, Faculty of Agriculture, during the 2020 and 2021 summer period. The objective of this experiment was to determine the effects of different harvesting heights on forage yields and crude ash, fat, protein, and carbon and nitrogen content of leaves and stalks of sweet sorghum (SS) and sorghum sudangrass hybrid (SSH) cultivars. Methods: Nutri Honey and Nutrima varieties of SSH and the M81-E and Topper-76 varieties of SS were used in this study. The experiment was conducted using the randomized complete block design with four replications. The main plots each included two early and late varieties of SS and SSH cultivars, while the subplots were used to test different harvesting heights (30, 60, 90, 120, 150 cm) and physiological parameters of each crop. Results: The results of this study showed that dry forage yields increased with plant growth, with the amount of forage produced at the end of the growth cycle increasing 172.2% compared to the early growth stages. Carbon (C) content of leaves decreased by 6.5%, nitrogen (N) by 46%, crude protein (CP) by 54%, crude fat (CF) by 34%, while crude ash (CA) content increased by 6% due to the increase in plant height harvest. At the same time, in parallel with the increase in plant height at harvest, the nitrogen content of the stems of the plants decreased by 87%, crude protein by 65%, crude ash by 33% and crude fat by 41%, while the carbon content increased by 4%. As plant height at harvest increased, hay yield increased but nutrient contents of the hay decreased. However, the Nutrima, Nutri Honey and M81-E sorghum cultivars, harvested three times at heights of 90 to 120 cm, are recommended for the highest yield.


Subject(s)
Sorghum , Sorghum/growth & development , Sorghum/metabolism , Sorghum/chemistry , Nitrogen/metabolism , Nitrogen/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Carbon/metabolism , Carbon/analysis , Animal Feed/analysis
8.
Sci Rep ; 14(1): 11705, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778064

ABSTRACT

A serious environmental problem that threatens soil quality, agricultural productivity, and food safety is heavy metal pollution in water sources. Heavy metal pollution is the main problem in tehsil Pasrur, Sialkot, Pakistan. Present study was arranged to notice the heavy metals in water, soil, forages and buffalo milk. There are seven sites that were used for this experiment. Highest malondialdehyde (MDA) contents (3.00 ± 0.01) were noticed in barseem roots at site 7. Ascorbate Peroxidase (APX) was reached at its peak (1.93 ± 0.01) at site 7 in the fresh barseem. Maximum protein contents (0.36 ± 0.01) were observed in fresh plant samples at site 2. Site 3's buffalo milk samples had the highest Ni content (7.22 ± 0.33 ppm), while Site 3's soil samples had the lowest Cr content (8.89 ± 0.56 ppm), Site 1's plant shoots had the lowest Cr content (27.75 ± 1.98 ppm), and Site 3's water had the highest Cr content (40.07 ± 0.49 ppm). The maximum fat content (5.38 ± 2.32%) was found in the milk of the animals at site 7. The highest density (31.88 ± 6.501%), protein content (3.64 ± 0.33%), lactose content (5.54 ± 0.320%), salt content (0.66 ± 0.1673%), and freezing point (- 0.5814 ± 0.1827 °C) were also observed in the milk from animals at site 7, whereas site 5 displayed the highest water content (0.66 ± 0.1673%) and peak pH value (11.64 ± 0.09). In selected samples, the pollution load index for Ni (which ranged from 0.01 to 1.03 mg/kg) was greater than 1. Site 7 has the highest conductivity value (5.48 ± 0.48). Values for the health risk index varied from 0.000151 to 1.00010 mg/kg, suggesting that eating tainted animal feed may pose health concerns. Significant health concerns arise from metal deposition in the food chain from soil to feed, with nickel having the highest health risk index.


Subject(s)
Metals, Heavy , Milk , Soil Pollutants , Soil , Animals , Metals, Heavy/analysis , Soil Pollutants/analysis , Milk/chemistry , Milk/metabolism , Pakistan , Soil/chemistry , Water Pollutants, Chemical/analysis , Animal Feed/analysis , Buffaloes , Environmental Monitoring/methods , Malondialdehyde/metabolism , Malondialdehyde/analysis
9.
Heliyon ; 10(7): e28765, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586349

ABSTRACT

The implementation of integrated potassium management presents a viable approach for augmenting plant growth, yield, and nutrient uptake while enhancing soil nutrient availability. A field experiment was executed during the rabi season of 2020, employing a randomized complete block design encompassing eight treatments involving standard (100%) and reduced (75% and 50%) rates of the recommended dose of potassium (RDK) administered through muriate of potash (MOP). Treatments included variations in the incorporation/exclusion of plant growth-promoting rhizobacteria (PGPR), farmyard manure (FYM) at 25% of potassium recommendation, and foliar application of nano potash. The use of 100% RDK +25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T8) exhibited significant enhancements in green fodder yield (64.0 ± 2.2 t ha-1) over control with no potassium application (47.3 ± 3.7 t ha-1) and found at par with and 75% RDK + 25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T7). These treatments yielded maximum percent increase for plant height (34.9%), leaf count (38.5%), leaf dimensions (28.8-31.5%), stem girth (25.84%), root volume (27.0%), and root length (37.64%), observed at the harvest stage compared to control (T1-no potassium application). The treatment T8 was on par with T7 and recorded highest uptake of macro (N, P, and K) and micro (Zn, Fe, Cu, and Mn) nutrients. While soil parameters such as available nitrogen and potassium levels were notably increased through the application of treatment T7 across various treatment combinations and found significantly superiority over treatment T8. Multivariate analysis also highlighted treatment T7 is more efficient in maintaining sustainability. Hence, based on the present findings it can be concluded that application of 75% RDK +25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T7) can be recommended for achieving enhanced productivity and soil fertility improvement within agricultural systems.

10.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38502875

ABSTRACT

The world population is growing exponentially, increasing demand to produce high-quality protein for human consumption. Changes in weather patterns, drought, and decreased land resources due to urbanization have increased the strain on the agriculture sector to meet world demands. An alternative method to combat these issues and continue to produce high-quality livestock feed would be through a controlled environment vertical farming system. Commonly, cereal grains, such as barley, are used in these systems to produce livestock feed. However, there is little information on the viability of feeding sprouted grains to beef cattle. Two diets of either feeder-quality alfalfa hay (n = 10 pairs; ALF) or the same alfalfa hay and sprouted barley (SB; 12.6% dry matter [DM]; n = 10 pairs) were fed for 90 d to Angus pairs with a steer calf during mid to late lactation. On days 0 and 90, body weight (BW), milk, rumen fluid, and body condition score were collected from cows and hip height and BW were recorded for calves. On day 10, BW was recorded for cows and calves and rumen fluid was collected from cows. Rumen fluid was also collected from cows on day 45. On day 55, BW was collected for both cows and calves and milk from cows. Intake was recorded throughout the trial via bunks with Vytelle technology. The PROC MIXED procedure of SAS was used to analyze all data with the day as a repeated measure to determine the main effect of diet. Individual volatile fatty acids (VFA) were measured as a percent of total VFA. No differences (P ≥ 0.16) were observed in calf BW, hip height, milk protein, fat, lactose, calf DM intake (DMI), or cow DMI. Cows fed SB tended (P = 0.08) to have a decreased somatic cell count compared to ALF. Percent butyrate was impacted by diet × day (P = 0.02), but no difference (P > 0.09) at any time points were detected. Additionally, a diet × day effect (P = 0.001) on rumen pH demonstrated that both groups stayed consistent until day 45 and then SB pH decreased the last 45 d. There was a day effect for total VFA (P = 0.0009), acetate:propionate (Ac:Pr; P < 0.0001), acetate (P < 0.0001), and propionate (P < 0.0001) demonstrating that total VFA, acetate, and Ac:Pr all increased throughout the trial, while propionate decreased. These results indicate that SB can be a potential alternative feed at this stage of production as it does not negatively impact health or production, but does affect the rumen pH and proportion of some VFA.


Climate variability and uncertainty associated with weather patterns can greatly impact feed security for cattle producers. Flooding, drought, and temperature extremes can reduce a farmer's ability to produce a consistent crop, resulting in feed prices that can fluctuate greatly. Vertical farming systems that sprout cereal grains in a controlled environment, using precision irrigation, may alleviate the effects of external factors such as climate and resulting feed prices. The objective of this study was to determine if sprouted barley (SB) could be used as an effective alternative feed source for cow-calf pairs. Two diets were fed to 20 cow-calf pairs, a control diet consisting of 100% feeder-quality alfalfa hay, or an experimental diet comprised of feeder-quality alfalfa hay and a 12.6% dry matter inclusion of SB for 90 d. Body weight, feed intake, and feeding behavior were analyzed in the cows and calves. Ruminal health was also assessed in cows by analyzing the ruminal fluid for pH and volatile fatty acid composition. When health and performance metrics were analyzed, no differences were found between the two diets that were administered to the cattle.


Subject(s)
Hordeum , Female , Humans , Cattle , Animals , Hordeum/metabolism , Medicago sativa/metabolism , Propionates/metabolism , Animal Feed/analysis , Rumen/metabolism , Diet/veterinary , Lactation , Fatty Acids, Volatile/metabolism , Acetates/metabolism , Fermentation
11.
Agrofor Syst ; 98(2): 491-505, 2024.
Article in English | MEDLINE | ID: mdl-38314106

ABSTRACT

Trees and shrubs expanded in the last decades in European mountains due to land abandonment and the decrease in grazing pressure, and are expected to further spread also due to climate change. As a consequence of low forage quality and topographic constraints, the management of mountain environments dominated by woody vegetation with livestock is often challenging. Silvopastoral systems based on cattle hardy breeds able to forage on woody plants, such as Highland cattle, could be a suitable option for the management and restoration of such environments. In this study, we used direct observations to explore the foraging behavior of Highland cattle in four study areas across the western Alps. In particular, we assessed: (1) cattle diet composition, (2) the selection for more than 30 tree and shrub species, and (3) the relationships between species consumption and their abundance in the environment. Highland cattle fed on a mixture of both woody and herbaceous species, including between 15 and 46% of woody plants in the diet. Some trees (e.g., Celtis australis, Fraxinus spp., and Populus tremula) and shrubs (e.g., Frangula alnus, Rhamnus spp., and Rubus idaeus) were positively selected by cattle, thus they could be an important forage supplement to their diet. Moreover, the results highlighted that relative species consumption generally increased with increasing species abundance in the environment, suggesting that this cattle breed could be suitable to control shrub expansion in highly encroached areas. The outcomes of this study can support the development of targeted silvopastoral systems in the Alps. Supplementary Information: The online version contains supplementary material available at 10.1007/s10457-023-00926-z.

12.
Prep Biochem Biotechnol ; 54(4): 470-482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37610377

ABSTRACT

For the first time in this study, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were green synthesized by the cost-effective and eco-friendly procedure using Cotton seed meal and Fodder yeast extracts. The biosynthesized NPs were characterized by UV-Vis spectroscopy, dynamic light scattering analysis (DLS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and fourier-transform infrared (FTIR) spectroscopy. Furthermore, the biosynthesized NPs were tested in vitro against biofilm formation by some pathogenic negative bacteria (Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., and Pseudomonas aeruginosa) and negative bacteria (staphylococcus aureus) as well as against human denovirus serotype 5 (HAdV-5) and anticancer activity using HepG2 hepatocarcinoma cells. UV-Vis absorption spectra of reaction mixture of AgNPs and AuNPs exhibited maximum absorbance at 440 nm and 540 nm, respectively. This finding was confirmed by DLS measurements that the highest intensity of the AgNPs and AuNPs were 84 nm and 73.9 nm, respectively. FTIR measurements identified some functional groups detected in Cotton seed meal and Fodder yeast extracts that could be responsible for reduction of silver and gold ions to metallic silver and gold. The morphologies and particle size of AgNPs and AuNPs were confirmed by the TEM and SAED pattern analysis. Biosynthesized AgNPs and AuNPs showed good inhibitory effects against biofilms produced by Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., Pseudomonas aeruginosa, and Staphylococcus aureus. In addition, they showed anticancer activities against hepatocellular carcinoma (HepG-2) and antiviral activity against human adenovirus serotype 5 infection in vitro. Finally, the results of this study is expected to be extremely helpful to nano-biotechnology, pharmaceutical, and food packing applications through developing antimicrobial and/or an anticancer drugs from ecofriendly and inexpensive nanoparticles with multi-potentiality.


Subject(s)
Metal Nanoparticles , Silver , Humans , Silver/pharmacology , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gold/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Staphylococcus aureus , Biofilms , Escherichia coli , Antiviral Agents/pharmacology , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared
13.
J Pestic Sci ; 48(4): 225-233, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38090216

ABSTRACT

Use of agro-chemicals in forage crops is restricted due to the fear of direct toxicity to livestock and risk of pesticide residue accumulation in the food chain. Wheat and barley can be used as green fodder and silage, and herbicide residue estimation in green fodder and silage is important for ensuring the safety of dairy cattle. A field experiment was conducted for two years to study pendimethalin residues in the green fodder and silage of wheat and barley. In both cereal crops, pendimethalin (1.125 kg a.i./ha) was applied as pre-emergence along with an unsprayed control. Pendimethalin residues in fodder, silage, and soil were estimated using gas chromatography-tandem mass spectrometry (GC-MS/MS). At harvest, pendimethalin residues in fodder and silage of wheat and barley were below the limit of quantification (<0.01 mg/kg) during both crop seasons. Pendimethalin can be safely used for weed control in winter cereals grown for fodder and silage.

14.
Plants (Basel) ; 12(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068679

ABSTRACT

Maralfalfa (Cenchrus purpureus (Schumach.) Morrone) is a productive fodder crop in tropical regions that has been evaluated for forage nutritional value in a Mediterranean climate. To assess the nutritional value, parameters including dry matter content (DM), ash, ether extract (EE), protein (CP), fiber contents (NDF and ADF), and the amino acids profile were determined at eight harvest times (HTs) in a non-fertilized and non-irrigated crop based in Silla (Valencia, Spain). The results showed significant differences in most of the parameters studied. While CP and ash significantly decreased over the eight HTs, NDF and ADF increased. In contrast, EE and the ratio of essential amino acids/total amino acids remained constant. Values of CP remained higher than 15% during the first two HTs (16 and 28 days). According to the analyses performed, the optimum HT can be stated at 28 days as it combines high levels of CP (including an optimal combination of essential amino acids) with low levels of fibers (NDF = 57.13%; ADF = 34.76%) and a considerable amount of dry matter (15.40%). Among the essential amino acids (EA) determined, lysine and histidine showed similar values (Lys ≈ 6%, His ≈ 1.70%) when comparing the composition of these EA to other forage species and cultivars studied, whereas methionine showed lower values. This work establishes the basis for the appropriate HT of maralfalfa according to the nutritional parameters measured. Further studies could be aimed to optimize the nutritional and phytogenic properties of maralfalfa to improve its value as a fodder crop, and to finally introduce it for sustainable livestock production in Mediterranean countries.

15.
Front Plant Sci ; 14: 1259967, 2023.
Article in English | MEDLINE | ID: mdl-37965034

ABSTRACT

Lucerne (Medicago sativa L.) is the second most significant winter leguminous fodder crop after berseem in India. Breeder seed (BS) is the first stage of the seed production chain, as it is the base material for producing foundation and certified seeds. In India, lucerne BS demand has been reduced by 85.58% during the last 24 years (1998-1999 to 2021-2022), declining from 2150 kg to 310 kg. Out of 14 varieties released and notified so far, only nine varieties entered the seed chain since 1998-1999. It shows narrow varietal diversification and, hence, needs robust breeding programs towards enriching genetic variability and varietal development. The present study also highlights the disparity in BS demand and production over the years and puts forth the possible reasons behind the reduction in BS demand and production in the country. Out of the nine varieties, the BS demand of Anand-2 (53.11%) was highest, followed by Type-9 (19.44%) and RL-88 (13.60%). Varietal replacement rate (VRR) was found to be moderate, i.e., 23.67% for the varieties having <5 years old age in the last 3 years (2019-2020 to 2021-2022). It has also been estimated that BS produced (233 kg) during 2021-2022 can cover the approximate area of 6,300 ha at farmers' fields in 2024-2025 if the seed chain functions 100%, effectively. The present study provides a holistic overview of lucerne BS demand and production, challenges in BS production, and the way forward to develop more varieties and surplus BS production in the country.

16.
Trop Anim Health Prod ; 55(5): 350, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37796345

ABSTRACT

Complex urbanisation dynamics, on the one hand, create a high demand for animal products, and on the other hand put enormous pressure on arable land with negative consequences for animal feed production. To explore the impact of accelerated urbanisation on dairy cattle health in urban farming systems, 151 farmers from different parts of the Greater Bengaluru metropolitan area in India were individually interviewed on aspects addressing cattle management and cattle health. In addition, 97 samples of forages from the shores of 10 different lakes, and vegetable leftovers used in cattle feeding were collected for nutritional analysis. Along with the use of cultivated forages, crop residues, and concentrate feed, 47% and 77% of the farmers occasionally or frequently used lake fodder and food leftovers, respectively. Nutritionally, lake fodder corresponded to high-quality pasture vegetation, but 43% of the samples contained toxic heavy metals such as arsenic, cadmium, chromium, and lead above official critical threshold levels. Therefore, lake fodder may affect cows' health if consumed regularly; however, heavy metal concentrations varied between lakes (P < 0.05), but not between fodder types (P > 0.05). Although 60% of the interviewed farmers believed that their cows were in good health, logit model applications revealed that insufficient drinking water supply and the use of lake fodder negatively impacted cattle health (P < 0.05). While it remains unknown if regular feeding of lake fodder results in heavy metal accumulation in animal products, farmers and farm advisors must address this and other urbanization-related challenges to protect cattle health.


Subject(s)
Animal Feed , Urbanization , Female , Animals , Cattle , India , Agriculture , Chromium
17.
Microorganisms ; 11(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37630483

ABSTRACT

The aim of this study was to determine the magnesium-binding capacity of Cyberlindnera jadinii yeast in media prepared from potato wastewater and glycerol (after biodiesel production), supplemented with magnesium salt. The research was carried out in two stages. In the first, the ability to binding magnesium by yeast in media supplemented with various doses of this element was tested. In the second stage, after selecting the appropriate dose of magnesium, the culture was carried out in a bioreactor. The composition of the yeast biomass was also analysed in terms of lipids and protein content and amino acid composition. Studies have shown that this type of medium can be used as a culture medium for the growth of C. jadinii yeast. In the first stage of the study, the most magnesium (8.97 mg/gd.m.) was bound by yeast cells after 48 h of cultivation in a medium supplemented with the addition of magnesium at a dose of 2 g/L. In the second stage of the research, the highest magnesium content in the biomass (7.9 mg/gd.m.) was noted after 24 h of cultivation in the same medium. The lipid and protein contents in the biomass obtained after 24 h of cultivation in the bioreactor were 6.35 and 43.73%, respectively. The main fatty acids present in the yeast lipids were oleic acid (59.4%) and linoleic acid (8.6%). Analysis of the amino acid profile of the proteins showed the highest proportions were glutamic acid (13.7%) and aspartic acid (11%).

18.
Plants (Basel) ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37631119

ABSTRACT

Adapting our food production chain and increasing the flora and fauna's livelihood in climate change-affected areas using Opuntia is not only theoretical but already exists in practice in many places. This cactus grows in unsuitable soil for most species as it is adapted to arid and semi-arid soils and hot weather. In these regions, Opuntia protects from erosion and contributes to soil health. The usage of this plant as fodder is also discussed, with immense potential in substituting a part of livestock's diet and even increasing the quality of the animal's by-products and decreasing water consumption. This would result in a feed that is low-cost and has a lower environmental impact. It is to be noted that Opuntia has a high potential as an invasive species, with caution always being recommended when dealing with this specie. The high content of specific compounds, such as proline, indicaxanthin, and betanin, found in Opuntia ficus-indica, influence the plant's adaptation to unfavourable conditions. This collective evidence depicts Opuntia as a crop that can battle climate change and ensure food security.

19.
J Adv Vet Anim Res ; 10(2): 222-227, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37534068

ABSTRACT

Objectives: The aim of the study was to assess the feasibility of fodder Sorghum as poultry feed in terms of growth performance (plant height and fresh weight), nutritional quality (moisture, ash, crude protein, extract ether, crude fiber, extract material without nitrogen, and metabolic energy), and scanning electron microscopy energy dispersive X-ray (SEM-EDX). Materials and Methods: The study used a completely randomized design with six treatments and three replications. The treatments consisted of planting times of 24, 48, 72, 120, and 240 h and a control (0 h). Results: The results showed that there was a significant effect (p ≤ 0.05) when planting Sorghum fodder (SGF) on growth performance and moisture, but it had no significant effect on fresh weight, ash, crude protein, extract ether, crude fiber, nitrogen-free extract, energy metabolic aspects, and SEM-EDX. Conclusion: SGF is suitable as a feed ingredient for poultry in terms of nutrition and contains ZrO2, which functions as an antifungal.

20.
Environ Monit Assess ; 195(9): 1117, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37648899

ABSTRACT

In the Himalaya, collection of fodder from protected areas by local communities for sustenance of their livestock is an integral part of mountain farming systems. Here, we assess the diversity and utilization patterns of fodder resources collected by local communities from Overa-Aru wildlife sanctuary in Kashmir Himalaya. A multi-stage random sampling was employed to select sample villages (5) and households (81) for the survey. Data were collected through personal interviews of household heads administering an interview schedule and then analyzed using descriptive statistics and linear regression model. The results revealed that 74 fodder species were collected by the local communities from the sanctuary. The diversity and magnitude of fodder resource utilization varied across the study area. The fodder collection and utilization on per day and annual basis ranged from 25 to 90 and 2760 to 13,770 kg/household, respectively. Across the surveyed villages, the fodder was mainly collected by the females (60%). A positive but non-significant relationship was found between the number of persons collecting fodder and quantity of fodder collection/household/day, while a positive and significant relationship was found between the herd size and quantity of fodder collection/household/day. We also found a negative but non-significant relationship between the education status of respondents and the number of livestock holding. Based on our findings, we suggest policy and management interventions such as regulating livestock grazing, promoting plantation of frequently collected fodder species, and better use of agriculture byproducts to guide the sustainable management of fodder resources in this Himalayan protected area, with learning for elsewhere.


Subject(s)
Agriculture , Environmental Monitoring , Female , Animals , Animal Feed , Animals, Wild , Farms , Livestock
SELECTION OF CITATIONS
SEARCH DETAIL
...