Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Zoo Biol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973722

ABSTRACT

Ex situ breeding constitutes an important tool for species conservation; however, many reptile species are not managed sustainably under human care due to poor fecundity in ex situ settings. In this study, we tested whether the translocation of a seasonally reproducing species to a different environment results in decoupling of extrinsic signals and intrinsic conditions. The endocrinological patterns of plasma steroid sex hormones, follicular development, and mating behaviour of two female and two male sexually mature Aldabra tortoises (Aldabrachelys gigantea) in a zoological institution in the Northern hemisphere was aligned with enclosure climate data (mean monthly daylight duration, temperature, and precipitation) and compared with respective hormone patterns of wild individuals and climate conditions in the native habitat on the Aldabra Atoll in the Southern hemisphere. Whereas occurrence of mating behaviour was not considered a limiting factor, lack of ovulation and subsequent follicular atresia was the main reason for the lack of reproductive output. While it was impossible to elucidate the triggering factors of ovulation and the multifactorial complexity of reproduction was not fully addressed, this study indicates suboptimal temperature conditions and relative temporal shifts of interacting external triggers (temperature and photoperiod) in the zoo setting.

2.
Poult Sci ; 103(8): 103912, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38943808

ABSTRACT

The proliferation and death of granulosa cells (GCs) in poultry play a decisive role in follicular fate and egg production. The follicular fluid (FF) contains a variety of nutrients and genetic substances to ensure the communication between follicular cells. Exosomes, as a new intercellular communication, could carry and transport the proteins, RNA, and lipids to react on GCs, which had been found in FF of various domestic animals. Whether exosomes of FF in poultry play a similar role is unclear. In this study, geese, a poultry with low egg production, were chosen, and the effect of FF exosomes on the proliferation and death of GCs was investigated. Firstly, there were not only a large number of healthy small yellow follicles (HSYFs) but also some atresia small yellow follicles (ASYFs) in the egg-laying stage. Also, the GC layers of ASYFs became loose interconnections, inward detachment, and diminished survival rate than that of HSYFs. Besides, compared to HSYFs, the contents of E2, P4, and the mRNA expression levels of ferroptosis-related genes GPX4, FPN1, and FTH1 were significantly decreased, while COX2, NCOA4, VDAC3 mRNA were significantly increased, and the structure of mitochondrial cristae disappeared and the outer membrane broke in the GC layers of ASYFs. Moreover, the ROS, MDA, and oxidation levels in the GC layers of ASYFs were significantly higher than those of HSYFs. All these hinted that ferroptosis might result in a large number of GCs death and involvement in follicle atresia. Secondly, FF exosomes were isolated from HSYFs and ASYFs, respectively, and identified by TEM, NTA, and detection of exosome marker proteins. Also, we found the exosomes were phagocytic by GCs by tracking CM-Dil. Moreover, the addition of ASYF-FF exosomes significantly elevated the MDA content, Fe2+ levels, and the mitochondrial membrane potential (MMP) in GCs, thus significantly inhibiting the proliferation of GCs, which was restored by the ferroptosis inhibitor ferrostatin-1. Thirdly, the proteomic sequencing was performed between FF-derived exosomes of HSYFs and ASYFs. We obtained 1615 differentially expressed proteins, which were mainly enriched in the protein transport and ferroptosis pathways. Among them, HMOX1 was enriched in the ferroptosis pathway based on differential protein-protein interaction network analysis. Finally, the role of HMOX1 in regulating ferroptosis in GCs was further explored. The highly expressed HMOX1 was observed in the exosomes of ASYF-FF than that in HSYF-FF. Overexpression of HMOX1 increased ATG5, LC3II, and NCOA4 expression and reduced the expression of FTH1, GPX4, PCBP2, FPN1 in the ferroptosis pathway, also promoted intracellular Fe2+ accumulation and MDA surge, which drove ferroptosis in GCs. The effects of HMOX1 on ferroptosis could be blocked by its inhibitor Znpp. Taken together, the important protein HMOX1 was identified in FF, which could be delivered to GCs via exosomes, triggering ferroptosis and thus determining the fate of follicles.

3.
Poult Sci ; 103(8): 103893, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38870615

ABSTRACT

Most of follicles undergo a degenerative process called follicular atresia. This process directly affects the egg production of laying hens and is regulated by external and internal factors. External factors primarily include nutrition and environmental factors. In follicular atresia, internal factors are predominantly regulated at 3 levels; organic, cellular and molecular levels. At the organic level, the hypothalamic-pituitary-ovary (HPO) axis plays an essential role in controlling follicular development. At the cellular level, gonadotropins and cytokines, as well as estrogens, bind to their receptors and activate different signaling pathways, thereby suppressing follicular atresia. By contrast, oxidative stress induces follicular atresia by increasing ROS levels. At the molecular level, granulosa cell (GC) apoptosis is not the only factor triggering follicular atresia. Autophagy is also known to give rise to atresia. Epigenetics also plays a pivotal role in regulating gene expression in processes that seem to be related to follicular atresia, such as apoptosis, autophagy, proliferation, and steroidogenesis. Among these processes, the miRNA regulation mechanism is well-studied. The current review focuses on factors that regulate follicular atresia at organic, cellular and molecular levels and evaluates the interaction network among these levels. Additionally, this review summarizes atretic follicle characteristics, in vitro modeling methods, and factors preventing follicular atresia in laying hens.

4.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791438

ABSTRACT

Geese are susceptible to oxidative stress during reproduction, which can lead to follicular atresia and impact egg production. Follicular atresia is directly triggered by the apoptosis and autophagy of granulosa cells (GCs). Adiponectin (ADPN), which is secreted by adipose tissue, has good antioxidant and anti-apoptotic capacity, but its role in regulating the apoptosis of GCs in geese is unclear. To investigate this, this study examined the levels of oxidative stress, apoptosis, and autophagy in follicular tissues and GCs using RT-qPCR, Western blotting, immunofluorescence, flow cytometry, transcriptomics and other methods. Atretic follicles exhibited high levels of oxidative stress and apoptosis, and autophagic flux was obstructed. Stimulating GCs with H2O2 produced results similar to those of atretic follicles. The effects of ADPN overexpression and knockdown on oxidative stress, apoptosis and autophagy in GCs were investigated. ADPN was found to modulate autophagy and reduced oxidative stress and apoptosis in GCs, in addition to protecting them from H2O2-induced damage. These results may provide a reasonable reference for improving egg-laying performance of geese.


Subject(s)
Adiponectin , Apoptosis , Autophagy , Avian Proteins , Follicular Atresia , Geese , Granulosa Cells , Animals , Female , Adiponectin/metabolism , Adiponectin/genetics , Follicular Atresia/metabolism , Granulosa Cells/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Ovarian Follicle/metabolism , Oxidative Stress , Avian Proteins/metabolism
5.
Parasit Vectors ; 17(1): 236, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783366

ABSTRACT

BACKGROUND: Like other oviparous organisms, the gonotrophic cycle of mosquitoes is not complete until they have selected a suitable habitat to oviposit. In addition to the evolutionary constraints associated with selective oviposition behavior, the physiological demands relative to an organism's oviposition status also influence their nutrient requirement from the environment. Yet, studies that measure transmission potential (vectorial capacity or competence) of mosquito-borne parasites rarely consider whether the rates of parasite replication and development could be influenced by these constraints resulting from whether mosquitoes have completed their gonotrophic cycle. METHODS: Anopheles stephensi mosquitoes were infected with Plasmodium berghei, the rodent analog of human malaria, and maintained on 1% or 10% dextrose and either provided oviposition sites ('oviposited' herein) to complete their gonotrophic cycle or forced to retain eggs ('non-oviposited'). Transmission potential in the four groups was measured up to 27 days post-infection as the rates of (i) sporozoite appearance in the salivary glands ('extrinsic incubation period' or EIP), (ii) vector survival and (iii) sporozoite densities. RESULTS: In the two groups of oviposited mosquitoes, rates of sporozoite appearance and densities in the salivary glands were clearly dependent on sugar availability, with shorter EIP and higher sporozoite densities in mosquitoes fed 10% dextrose. In contrast, rates of appearance and densities in the salivary glands were independent of sugar concentrations in non-oviposited mosquitoes, although both measures were slightly lower than in oviposited mosquitoes fed 10% dextrose. Vector survival was higher in non-oviposited mosquitoes. CONCLUSIONS: Costs to parasite fitness and vector survival were buffered against changes in nutritional availability from the environment in non-oviposited but not oviposited mosquitoes. Taken together, these results suggest vectorial capacity for malaria parasites may be dependent on nutrient availability and oviposition/gonotrophic status and, as such, argue for more careful consideration of this interaction when estimating transmission potential. More broadly, the complex patterns resulting from physiological (nutrition) and evolutionary (egg-retention) trade-offs described here, combined with the ubiquity of selective oviposition behavior, implies the fitness of vector-borne pathogens could be shaped by selection for these traits, with implications for disease transmission and management. For instance, while reducing availability of oviposition sites and environmental sources of nutrition are key components of integrated vector management strategies, their abundance and distribution are under strong selection pressure from the patterns associated with climate change.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Oviposition , Plasmodium berghei , Animals , Anopheles/physiology , Anopheles/parasitology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Female , Malaria/transmission , Malaria/parasitology , Plasmodium berghei/physiology , Salivary Glands/parasitology , Sporozoites/physiology , Sugars/metabolism , Mice
6.
J Biomed Sci ; 31(1): 31, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509545

ABSTRACT

BACKGROUND: The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT: PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION: PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.


Subject(s)
Follicular Atresia , Ovary , Animals , Female , Humans , Ovary/physiology , Follicular Atresia/physiology , Apoptosis/genetics , Cell Death/physiology , Oocytes/metabolism , Mammals
7.
Anim Reprod Sci ; 261: 107409, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215629

ABSTRACT

Follicular atresia (FA) has been assumed to serve different functions in reptiles, e.g. helping to develop hierarchies, limiting clutch size, and regression of ovarian structures. Reproductive output is dependent on a balance between ovulations and FA. Excessive rates of FA may not only be detrimental for the survival of a population, but have also been associated with pathological conditions. In order to gain insights into the physiological and potentially pathological processes of FA, we performed a decriptive study on the morphological features of the ovaries in sexually mature female veiled chameleons (Chamaeleo calyptratus, VC). Of 60 clinically healthy female VC with continuous ovarian cycling and at least one confirmed cycle with FA over at least 1.5 years, 30 were selected for macroscopic evaluation of ovarian appearance and 7 were subjected to histology and immunohistology. While FA of previtellogenic follicles happened at a low rate, expected for a species with two germinal beds per ovary and polyautochronic reproductive pattern, atresia in the late vitellogenic stage affected entire generations of follicles, consequential to ovulatory failure. Histologically, no pathological processes were identified in any of the animals. Rather, three stages of FA (early, middle, late) were defined and vitellogenic follicles showed two distinct morphological types of FA: yolky and cystic. Yolky FA was found in 21/30 (70%) animals, while cystic FA co-occurred in 9/30 (30%) of the animals.


Subject(s)
Follicular Atresia , Lizards , Female , Animals , Lizards/physiology , Reproduction/physiology , Ovulation , Ovary
8.
Anat Histol Embryol ; 53(1): e12977, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740677

ABSTRACT

This experiment was designed to investigate the postnatal development of the ovary in the Uttara fowl chicken and was conducted on 54 apparently healthy female birds divided into different age groups, namely Day 1 and Weeks 1, 4, 8, 12, 16, 20, 24, 28 with six birds each. During postnatal development, the left ovary gradually increased in size and complexity. The segmentation of the ovary started by 4 weeks, follicular eruption by 8 weeks, small liquor follicles (1-5 mm) appeared by 16 weeks, pre-hierarchical follicles by 20 weeks and hierarchical follicles by 24 weeks of age. The cortex was distinctly differentiated from the medulla in the early stage of ovarian development. However, the division between cortex and medulla was gradually obscured with age (transitional stage) and distinction was completely lost in the mature ovary. The different stages of follicular development in the chicken ovary were classified as primordial, primary, growing at Stage I, II and III stromal follicles besides pre-hierarchical and hierarchical surface follicles. The primordial and primary follicles showed cytoplasmic sudanophilic substances, especially in the Balbiani's yolk body, indicating the presence of lipids (Sudan Black B) with no activity for neutral polysaccharides (periodic acid Schiff method). It was observed that apoptotic changes may affect any stage of developing follicle resulting in arrested growth and atrophy. An early form of follicular atresia was the fate of the growth-arrested primordial and primary follicles, whereas the glandular form of atresia was commonly observed in growing follicles arrested at Stages I and II. The scanning electron micrographs unveiled the follicles as hollow oval structures with a follicular lumen lined by the perivitelline membrane (glycoprotein membrane) having lacunae giving a honeycomb-like appearance.


Subject(s)
Chickens , Ovary , Female , Animals , Granulosa Cells , Follicular Atresia , Ovarian Follicle
9.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069168

ABSTRACT

The reproductive lifespan in humans is regulated by a delicate cyclical balance between follicular recruitment and atresia in the ovary. The majority of the small antral follicles present in the ovary are progressively lost through atresia without reaching dominance, but this process remains largely underexplored. In our study, we investigated the characteristics of atretic small antral follicles and proposed a classification system based on molecular changes observed in granulosa cells, theca cells, and extracellular matrix deposition. Our findings revealed that atresia spreads in the follicle with wave-like dynamics, initiating away from the cumulus granulosa cells. We also observed an enrichment of CD68+ macrophages in the antrum during the progression of follicular atresia. This work not only provides criteria for classifying three stages of follicular atresia in small antral follicles in the human ovary but also serves as a foundation for understanding follicular degeneration and ultimately preventing or treating premature ovarian failure. Understanding follicular remodeling in the ovary could provide a means to increase the number of usable follicles and delay the depletion of the follicular reserve, increasing the reproductive lifespan.


Subject(s)
Follicular Atresia , Ovary , Humans , Female , Ovarian Follicle , Granulosa Cells , Theca Cells
10.
Biomed Pharmacother ; 166: 115322, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586115

ABSTRACT

Fructus psoraleae (FP) is a commonly used herb with potential reproductive toxicity. Bavachin (BV), one of essential active ingredients of FP, was found to exhibit estrogenic activity, but its effect on female reproductive system remains unknown. In this study, the impact of BV on the female zebrafish reproductive system and underlying molecular mechanism were determined in vivo and ex vivo. The results showed that BV could accumulate in zebrafish ovary, leading to obvious follicular atresia and increase in gonadal index and vitellogenin content. Endoplasmic reticulum (ER) swelling and hypertrophy were observed in the BV-treated zebrafish ovary, accompanied by an increase in the expressions of ER stress and unfolded protein response (UPR) related genes, namely atf6, ire-1α and xbp1s. In the ex vivo study, BV was found to decrease the survival rate and maturation rate of oocytes, while increasing the expression of Ca2+. Additionally, BV led to an elevation in the level of estrogen receptor ESR1 and the expressions of genes involved in ER stress and UPR, including atf6, ire-1α, xbp1s, chop and perk. Moreover, molecular docking revealed that BV could directly bind to immunoglobulin heavy chain binding protein (BiP) and estrogen receptor 1 (ESR1). Besides, the alterations induced by BV could be partially reversed by fulvestrant (FULV) and 4-phenylbutyric acid (4-PBA), respectively. Thus, long-termed BV-containing medicine treatment could generate reproductive toxicity in female zebrafish by causing follicular atresia through BiP- and ESR-mediated ER stress and UPR, providing a potential target for the prevention of reproductive toxicity caused by BV.


Subject(s)
Ovary , Zebrafish , Female , Animals , Follicular Atresia , Molecular Docking Simulation , Signal Transduction , Endoplasmic Reticulum Stress , Unfolded Protein Response , Apoptosis
11.
J Biochem Mol Toxicol ; 37(7): e23371, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37098697

ABSTRACT

Increase in success of cancer treatment with advancement in the screening, prognosis and diagnosis protocols have significantly improved the rate of cancer survivorship. With the declining cancer mortality, however, the cancer survivors are also subjected to the adverse consequences of chemotherapy, particularly in the female reproductive system. Recent studies have shown the sensitivity of the ovarian tissue to the chemotherapeutic drugs-induced toxicity. Several in vitro and in vivo studies have assessed the toxic effects of chemotherapeutic drugs. The most frequently used chemotherapeutic drugs such as doxorubicin, cyclophosphamide, cisplatin and paclitaxel have been reported to cause ovarian damage, diminution of follicular pool reserve, premature ovarian failure and early menopause, resulting into declining fertility potential among females. The chemotherapy often employs combination of drug regimen to increase the efficacy of the treatment. However, the literature mostly consists of clinical data regarding the gonadotoxicity caused by anticancer drugs but there lacks the understanding of toxicity mechanism. Therefore, understanding of the different toxicity mechanisms will be helpful in development of possible therapeutic interventions for preservation of declining female fertility among cancer survivors. The current review comprehends the underlying mechanisms of female reproductive toxicity induced by the most commonly used chemotherapeutic drugs. In addition, the review also summarizes the recent findings related to the use of various protectants to diminish or at least in managing the toxicity induced by different chemotherapeutic drugs in females.


Subject(s)
Antineoplastic Agents , Ovarian Follicle , Female , Humans , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Cyclophosphamide/adverse effects , Ovary
12.
Theriogenology ; 205: 50-62, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37086585

ABSTRACT

MicroRNAs (miRNAs) are involved in many physiological processes such as signal transduction, cell proliferation and apoptosis. Many studies have shown that miRNAs can regulate the process of follicular development. Our previous studies found that the expression of miR-29c-5p in buffalo atretic follicles was much higher than that in healthy follicles, suggesting that this miRNA may participate in the process of buffalo follicular atresia. In this study, we aim to explore to the role and molecular mechanisms of miR-29c-5p on the functions of buffalo granulosa cells (GCs). GCs cultured in vitro were transfected with miR-29c-5p mimics and its inhibitor, respectively, and it was found that the mimics significantly increased the apoptotic rate of GCs. They also inhibited the proliferation of GCs and the secretion of steroid hormones. The effect of the inhibitor was opposite to that of the mimics. MiR-29c-5p was subsequently shown to target the inhibin subunit beta A, (INHBA). Overexpression of INHBA could promote the production of activin A and inhibin A, and then reverse the effect of miR-29c-5p on buffalo GCs. In conclusion, these results suggest that miR-29c-5p promotes apoptosis and inhibits proliferation and steroidogenesis by targeting INHBA in buffalo GCs. This may ultimately promote atresia in buffalo follicles.


Subject(s)
Buffaloes , MicroRNAs , Animals , Female , Apoptosis/genetics , Buffaloes/genetics , Cell Proliferation , Follicular Atresia/genetics , Granulosa Cells/metabolism , MicroRNAs/metabolism , Ovarian Follicle
13.
Fish Shellfish Immunol ; 136: 108688, 2023 May.
Article in English | MEDLINE | ID: mdl-36935043

ABSTRACT

In aquaculture production, out-of-season spawning is beneficial to solve the seasonal shortage of fry that are normally produced once annually by species such as largemouth bass (Micropterus salmoides), thereby implementing year-round fry production. Maintaining low temperature over a period of several months can delay largemouth bass ovarian development, but it can cause severe stress to their reproductive function, leading to decreased fertility during out-of-season spawning. Feeding with antioxidants is one of the most effective methods to alleviate the negative effects of low temperature stress. Therefore, the purpose of this study is to: (a) evaluate the changes in oocyte morphology, antioxidant capacity, reproductive hormone-related index, cell apoptosis and autophagy during the out-of-season spawning of largemouth bass, and (b) to investigate the protective effect of the antioxidant resveratrol on this fish during out-of-season spawning from May through August. The study was divided into two groups (three replicates per group, 2000 fish per replicate): control group (Control) (exposure to water temperature of 12-17 °C) and resveratrol supplementation group (Res) (exposure to water temperature of 12-17 °C and fed with 200 mg/kg resveratrol). The results show that: (1) The serum hormones LH and E2 increased first and then remained unchanged, and the ovarian section showed that the ovary remained in stage IV. (2) In the process of off-season reproduction, a large number of follicles experienced follicular atresia, accompanied by endoplasmic reticulum expansion, nuclear chromatin condensation and mitochondrial swelling, which was relieved after feeding resveratrol. (3) Resveratrol decreased the ovarian ROS content and improved the activities of CAT and other antioxidant enzymes in the ovary and liver to some extent. (4) Resveratrol reduced the level of pro-apoptotic (Bax, Caspase3, Caspase8, Caspase9) and autophagy-related components (LC3-B, Beclin-1) while increasing the transcription level of anti-apoptotic (Bcl-2) factors. These findings suggest that resveratrol alleviates some adverse effects of largemouth bass during out-of-season spawning to some extent and provide a model for efficient and high-quality out-of-season spawning.


Subject(s)
Antioxidants , Bass , Female , Animals , Resveratrol/pharmacology , Seasons , Follicular Atresia
14.
Theriogenology ; 201: 83-94, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36857977

ABSTRACT

Follicular atresia is a normal physiological event in mammals, yet its mechanism remains to be studied. Granulosa cell (GC) autophagy is closely associated with follicular atresia. The N6-methyladenosine (m6A) modification is the most common post-transcriptional modification in eukaryotes, but its role in follicular atresia is still unknown. In this study, the possible relationship amongst follicular atresia, GC autophagy and m6A modification was studied. Our results showed that the level of autophagy in GCs increased with the degree of follicle atresia, whereas the overall m6A level decreased. Rapamycin treatment induced atresia in vitro cultured follicles, whereas 3-Methyladenine inhibited follicular atresia. Progressed atretic follicle (PAF) GCs had significantly lower METTL3 levels and significantly higher FTO levels than healthy follicle (HF) GCs. Differential gene expression analysis of GCs in PAF and HF by RNA sequencing was showed that the autophagy-related genes ULK1, ULK2, ATG2A, and ATG2B were significantly elevated in the PAF. In cultured GCs, overexpression of METTL3 significantly decreased the mRNA level of ULK1, as well as the autophagy level, whereas knockdown of METTL3 by RNAi significantly increased the mRNA level of ULK1, as well as the autophagy level. Our results indicate that m6A modification can regulate autophagy in GCs and play a role in the process of porcine follicular atresia.


Subject(s)
Follicular Atresia , Ovary , Animals , Female , Apoptosis/physiology , Autophagy/physiology , Follicular Atresia/metabolism , Granulosa Cells/metabolism , Mammals , Methylation , Ovary/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Methyltransferases
15.
Ecotoxicol Environ Saf ; 252: 114592, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36731181

ABSTRACT

Microcystin-LR (MC-LR), one of aquatic environmental contaminants with reproductive toxicity produced by cyanobacterial blooms, but its toxic effects and mechanisms on the ovary are not fully understood. Here, proteomic techniques and molecular biology experiments were performed to study the potential mechanism of MC-LR-caused ovarian toxicity. Results showed that protein expression profile of ovarian granulosa cells (KK-1) was changed by 17 µg/mL MC-LR exposure. Comparing with the control group, 118 upregulated proteins as well as 97 downregulated proteins were identified in MC-LR group. Function of differentially expressed proteins was found to be enriched in pathways related to adherent junction, such as cadherin binding, cell-cell junction, cell adhesion and focal adherens. Furthermore, in vitro experiments, MC-LR significantly downregulated the expression levels of proteins associated with adherent junction (ß-catenin, N-cadherin, and α-catenin) as well as caused cytoskeletal disruption in KK-1 cells (P < 0.05), indicating that the adherent junction was damaged. Results of in vivo experiments have shown that after 14 days of acute MC-LR exposure (40 µg/kg), damaged adherent junction and an increased number of atretic follicles were observed in mouse ovaries. Moreover, MC-LR activated JNK, an upstream regulator of adherent junction proteins, in KK-1 cells and mouse ovarian tissues. In contrast, JNK inhibition alleviated MC-LR-induced adherent junction damage in vivo and in vitro, as well as the number of atretic follicles. Taken together, findings from the present study indicated that JNK is involved in MC-LR-induced granulosa cell adherent junction damage, which accelerated follicular atresia. Our study clarified a novel mechanism of MC-LR-caused ovarian toxicity, providing a theoretical foundation for protecting female reproductive health from environmental pollutants.


Subject(s)
Follicular Atresia , Proteomics , Animals , Female , Mice , Granulosa Cells , Microcystins/toxicity , MAP Kinase Kinase 4/metabolism
16.
Environ Toxicol ; 38(1): 28-38, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36114797

ABSTRACT

Dysregulated follicular development may lead to follicular atresia, and this is associated with oxidative stress in granulosa cells. Kurarinone is a natural compound possessing multiple activities, including antioxidative ability. However, the role of kurarinone in granulosa cell damage during follicular atresia remains unknown. Human ovarian granulosa KGN cells were treated with hydrogen peroxide (H2 O2 ) to induce cellular damage. Cytotoxicity was investigated by lactate dehydrogenase (LDH) release assay. Oxidative stress was evaluated by detection of reactive oxygen species (ROS) generation and oxidative biomarker levels. Cell apoptosis was evaluated by flow cytometry, a Cell Death Detection ELISA Kit, and a Caspase-3 Assay Kit. The downstream target and related signaling pathway were analyzed by western blotting. Kurarinone attenuated H2 O2 -induced LDH release in KGN cells. Kurarinone relieved H2 O2 -induced increase in ROS generation and malondialdehyde level as well as decrease in superoxide dismutase-1 activity and heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1 mRNA levels. Kurarinone inhibited H2 O2 -induced apoptosis in KGN cells. Kurarinone targeted insulin-like growth factor 1 (IGF1) and upregulated IGF1 expression to activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. IGF1 silencing attenuated the suppressive effects of kurarinone on H2 O2 -induced oxidative stress and apoptosis in KGN cells. In conclusion, kurarinone attenuates H2 O2 -induced oxidative stress and apoptosis in KGN cells through activating the PI3K/Akt signaling by upregulating IGF1 expression, indicating the therapeutic potential of kurarinone in follicular atresia.


Subject(s)
Hydrogen Peroxide , Proto-Oncogene Proteins c-akt , Humans , Female , Proto-Oncogene Proteins c-akt/metabolism , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Insulin-Like Growth Factor I/metabolism , Follicular Atresia , Oxidative Stress , Signal Transduction , Apoptosis , Granulosa Cells/metabolism
17.
Mar Environ Res ; 183: 105846, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521304

ABSTRACT

Follicular atresia is an energy-saving oocyte resorption process that can allow the survival of female fish when environmental conditions are unfavourable and at the expense of fecundity. This study investigated the transcription levels of apoptosis and autophagy-related genes during atresia in the European hake that can show episodes of increased follicular atresia throughout the reproductive cycle. 169 female individuals were collected from the Bay of Biscay, and the ovaries were analysed using histological and molecular methods. Different levels of atresia were histologically detected in 73.7% of the ovaries analysed and the TUNEL assay identified apoptotic nuclei in follicles from both previtellogenic and vitellogenic stages. Transcripts of beclin-1 and ptenb were up-regulated in the ovaries containing atretic follicles, whereas p53, caspase-3, cathepsin D and dapk1 were up-regulated only in ovaries presenting vitellogenic atretic follicles. Our results indicate different implications of apoptotic vs autophagic processes leading to atresia during oocyte development, vitellogenesis being the moment of maximal apoptotic and autophagic activity in atretic hakes. The analysed genes could provide early warning biomarkers to identify follicular atresia in fish and evaluate fecundity in fish stocks.


Subject(s)
Gadiformes , Perciformes , Animals , Female , Ovary , Follicular Atresia , Apoptosis , Fishes , Transcription, Genetic , Autophagy
18.
J Histotechnol ; 46(2): 65-79, 2023 06.
Article in English | MEDLINE | ID: mdl-35912926

ABSTRACT

Limited literature was available on the effects of sitagliptin or quercetin treatments on doxorubicin induced ovarian dysfunction in diabetic animals. The study aim was test the efficacy and suggested mechanisms of quercetin/sitagliptin combined treatment on the doxorubicin-induced ovarian toxicity in rat model with streptozotocin-induced diabetes. Forty eight female Wistar rats were divided into six groups: 1) Control; 2) Streptozotocin induced diabetes; 3) Streptozotocin-induced diabetes + doxorubicin ovarian damage; 4) Streptozotocin-induced diabetes + doxorubicin ovarian damage with; 5) Streptozotocin-induced diabetes + doxorubicin ovarian damage with sitagliptin treatment and 6) Streptozotocin-induced diabetes + doxorubicin ovarian damage with concomitant quercetin/sitagliptin treatment. Biochemical tests for serum estrogen, progesterone, insulin, blood glucose, and ovarian levels of malondialdehyde, nitric oxide, and superoxide dismutase and qRT-PCR for NOBOX, FSHr, and iNOS genes were performed. Histological evaluation was done on ovary sections with hematoxylin and eosin and immunohistochemistry for 8-OHdG and iNOS followed by morphometric analysis. The streptozotocin-induced diabetic group showed varying degrees of follicle atresia and altered biochemical parameters, both were marked in the streptozotocin-induced diabetic + doxorubicin group. The mRNA of NOBOX, FSHr, and iNOS genes were disturbed with increased immunoexpression of iNOS and 8-OHdG. Quercetin and/or sitagliptin administration improved all altered histological and biochemical parameters and was more effective as a combined treatment. The study suggested equal efficacy of both quercetin and sitagliptin in mitigating the doxorubicin-induced ovarian toxicity in the streptozotocin diabetic rat model, and the combined therapy showed anti-inflammatory, anti-antioxidant, and anti-DNA damage mechanisms.


Subject(s)
Diabetes Mellitus, Experimental , Sitagliptin Phosphate , Rats , Female , Animals , Sitagliptin Phosphate/adverse effects , Quercetin/adverse effects , Streptozocin/adverse effects , Rats, Wistar , Ovary , Oxidative Stress , Doxorubicin/adverse effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications
19.
Cell Biol Toxicol ; 39(4): 1715-1734, 2023 08.
Article in English | MEDLINE | ID: mdl-36346508

ABSTRACT

Ambient particulate matters (PMs) have adverse effects in human and animal female reproductive health. Silica nanoparticles (SNPs), as a major component of PMs, can induce follicular atresia via the promotion of ovarian granulosa cell apoptosis. However, the molecular mechanisms of apoptosis induced by SNPs are not very clear. This work focuses on revealing the mechanisms of ER stress on SNP-induced apoptosis. Our results showed that spherical Stöber SNPs (110 nm, 25.0 mg/kg b.w.) induced follicular atresia via the promotion of granulosa cell apoptosis by intratracheal instillation in vivo; meanwhile, SNPs decreased the viability and increase apoptosis in granulosa cells in vitro. SNPs were taken up and accumulated in the vesicles of granulosa cells. Additionally, our results found that SNPs increased calcium ion (Ca2+) concentration in granulosa cell cytoplasm. Furthermore, SNPs activated ER stress via an increase in the PERK and ATF6 pathway-related protein levels and IP3R1-dependent calcium mobilization via an increase in IP3R1 level. In addition, 4-PBA restored IP3R1-dependent calcium mobilization and decreased apoptosis via the inhibition of ER stress. The ATF4-C/EBP homologous protein (CHOP)-ER oxidoreductase 1 alpha (ERO1α) pathway regulated SNP-induced IP3R1-dependent calcium mobilization and cell apoptosis via ATF4, CHOP, and ERO1α depletion in ovarian granulosa cells. Herein, we demonstrate that ER stress cooperated in SNP-induced ovarian toxicity via activation of IP3R1-mediated calcium mobilization, leading to apoptosis, in which the PERK-ATF4-CHOP-ERO1α pathway plays an essential role in ovarian granulosa cells.


Subject(s)
Calcium , Nanoparticles , Animals , Female , Humans , Calcium/metabolism , Oxidoreductases/metabolism , Silicon Dioxide/toxicity , Follicular Atresia , Apoptosis , Granulosa Cells/metabolism , Endoplasmic Reticulum Stress , eIF-2 Kinase/metabolism , Activating Transcription Factor 4/metabolism
20.
Cells ; 11(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36497179

ABSTRACT

Our previous study demonstrated that ovarian wild-type P53-induced phosphatase 1 (WIP1) expression decreased with age. We hypothesized that WIP1 activity was related to ovarian aging. The role of WIP1 in regulating ovarian aging and its mechanisms remain to be elucidated. Adult female mice with or without WIP1 inhibitor (GSK2830371) treatment were divided into three groups (Veh, GSK-7.5, GSK-15) to evaluate the effect of WIP1 on ovarian endocrine and reproductive function and the ovarian reserve. In vitro follicle culture and primary granulosa cell culture were applied to explore the mechanisms of WIP1 in regulating follicular development. This study revealed that WIP1 expression in atretic follicle granulosa cells is significantly lower than that in healthy follicles. Inhibiting WIP1 phosphatase activity in mice induced irregular estrous cycles, caused fertility declines, and decreased the ovarian reserve through triggering excessive follicular atresia and primordial follicle activation. Primordial follicle depletion was accelerated via PI3K-AKT-rpS6 signaling pathway activation. In vitro follicle culture experiments revealed that inhibiting WIP1 activity impaired follicular development and oocyte quality. In vitro granulosa cell experiments further indicated that downregulating WIP1 expression promoted granulosa cell death via WIP1-p53-BAX signaling pathway-mediated apoptosis. These findings suggest that appropriate WIP1 expression is essential for healthy follicular development, and decreased WIP1 expression accelerates ovarian aging by promoting follicular atresia and primordial follicle activation.


Subject(s)
Follicular Atresia , Ovarian Follicle , Phosphatidylinositol 3-Kinases , Protein Phosphatase 2C , Animals , Female , Mice , Ovarian Follicle/metabolism , Ovarian Follicle/pathology , Phosphatidylinositol 3-Kinases/metabolism , Protein Phosphatase 2C/metabolism , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...