Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Article in English | MEDLINE | ID: mdl-38963628

ABSTRACT

This study used an integrated approach to mainly assess the water quality of paddy field during cultivation and quantify its equivalent ecological damages. Accordingly, an isolated pilot area with 0.6 ha and subsurface drainage pipes was prepared for flow measurement and multiple pollutant examination (DO, EC, pH, COD, TKN, TN, TP, NO3, butachlor) under controlled condition during 94 days of rice cultivation. Based on life cycle impact assessment (LCIA) database, the indices of ReCiPe (2016) were used to convert the examined nutrient and herbicide pollution. Results showed that TKN and TP were significant pollutants and reached the maximum concentrations of 7.2 and 4.9 mg/L in pilot outflow, respectively. Here, their average discharged loads were 56.2 gN/day and 45.3 gP/day. These loads equal leaching 8.5% and 9.4% of applied urea and phosphate fertilizers, respectively. The nutrient export coefficients were 8.4 kgN/ha and 6.8 kgP/ha. Nevertheless, the majority of this pollution was transferred by inflow. The net export coefficients were 0.3 kgN/ha and 2.6 kgP/ha while net leaching rates were 0.3%TN and 3.3%TP. The trend of combined ecological damages also showed that the 11-17th day of cultivation imposed the highest ecological risks. The state-of-the-art index of ecological footprint per food production estimates the equivalent ratio of lost lives by impaired ecosystem against lives saved from starvation. This index showed that 7% of the potential of produced paddy rice in this area for saving lives would be spoiled by releasing pollution to the terrestrial ecosystem in the long term. Yet, it can be enhanced as a matter of direct discharge to the freshwater. Therefore, using suitable agricultural operations or improving farm management practices for pollution abatement or assimilation potential is highly recommended.

2.
Heliyon ; 10(12): e32971, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994055

ABSTRACT

In recent years, despite the fact that the Chinese government is closely monitoring food safety, the perception of food production enterprises is not obvious. The reason is that information asymmetry hinders the effective transmission of regulatory information to food production enterprises. In the present research, a choice test is conducted to explore the preference of decision-makers for the information on government regulations in 224 food production enterprises with violations. It is found out that the decision-makers of food production enterprises have a strong preference for the regulatory information released by local governments. With a preference for reference information, compared to those who violate the law just once, decision-makers in food production companies that have several infractions exhibit a high "reference dependence" mentality. Also, the preference of different decision-maker characteristics shows an evident heterogeneity, as does the preference of various enterprises for the regulatory information about food safety. It is recommended that the government should improve the mechanism of disclosing the information about food safety, and focus on tailoring the information to different types of enterprises.

3.
J Exp Bot ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38894654

ABSTRACT

To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has represented a challenging breeding target due to the inaccessibility of the root systems. Root hairs, single cell projections from the root epidermis, are perhaps the most overlooked component of root architecture traits. Root hairs play a central role in facilitating water, nutrient uptake, and soil cohesion. Current root hair architectures may be suboptimal under future agricultural production regimes, coupled with an increasingly variable climate. Here, we review the genetic control of root hair development in the world's three most important crops: rice, maize and wheat, and highlight conservation of gene function between monocots and the model dicot species Arabidopsis. Advances in genomic techniques including Gene-Editing combined with traditional plant breeding methods have the potential to overcome many inherent issues associated with the design of improved root hair architectures. Ultimately, this will enable detailed characterization of the effects of contrasting root hair morphology strategies on crop yield and resilience, and the development of new varieties better adapted to deliver future food security.

4.
Foods ; 13(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928850

ABSTRACT

This study aims to improve press equipment for safflower oil production by using a mechanism that optimizes pressure distribution within screw turns. A detailed analysis of the main components of the produced safflower oil was performed, encompassing both quantitative and qualitative assessments. Through the exploration of dependencies governing the safflower oil pressing process on the screw press, the optimal parameters were determined. As a result of the research, the optimal diaphragm gap between the gape cylinder and the pressing screw was determined, with the optimal oil yield percentage achieved at ω = 6.2 rad/s and δ = 5 mm. The study also compared the performance of the existing Dream Modern ODM-01 screw press and its upgraded version by analyzing the extracted oil. The results reveal changes in the quantitative and qualitative composition of the main oil components following the operation of the existing and the modernized screw presses. For instance, the amount of unsaturated fatty acids, such as oleic acid (7.7 ± 0.566%), linoleic acid (85.3 ± 1.185%), and linolenic acid (1.2 ± 0.223%), increased. There was an increase in the presence of inorganic substances in safflower oil: iron (0.023 ± 0.031 mg/kg), phosphorus (0.086 ± 0.059 mg/kg), silicium (0.136 ± 0.075 mg/kg), and others. The findings of this study hold significant commercial value and offer promising prospects for global market implementation.

5.
Sci Total Environ ; 944: 173976, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38879028

ABSTRACT

Sustainable agriculture involves adopting best practices in food production to promote environmental and economic sustainability. Its implementation primarily aims to utilise organic residues to increase yield, diversify production, and reduce costs. In this context, the objective of this study was to investigate different substrates for Hypsizygus ulmarius production and, from its residual substrate, to develop formulations for lettuce seedling growth and subsequent greenhouse cultivation. For mushroom production, substrates were prepared from sawdust with the addition of wheat bran, rice bran, soybean meal, and calcite, resulting in four distinct substrate formulations. The spent mushroom substrate (SMS), obtained at the end of cultivation, was used for lettuce seedling production along with the commercial substrate Carolina Soil® and the soil conditioner BacSol®. The top five formulations were selected for transplanting in the greenhouse. Regarding mushroom production, substrates with higher carbon/nitrogen ratios, around 66: 1, resulted in higher yields. For seedling production, SMS showed lower efficiency compared to the commercial substrate Carolina Soil®, which also benefited from the addition of the soil conditioner BacSol®. However, after transplanting lettuce seedlings, the formulation containing SMS showed superior results in almost all evaluated parameters. Therefore, we concluded that despite the inefficiency of using H.ulmarius SMS for lettuce seedling production, it favours the establishment of seedlings in greenhouse cultivation environments.


Subject(s)
Agaricales , Agriculture , Lactuca , Lactuca/growth & development , Agriculture/methods , Mycelium/growth & development , Seedlings/growth & development , Sustainable Development , Soil/chemistry
6.
Sci Rep ; 14(1): 14869, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937513

ABSTRACT

This study investigates the ecological interaction between honeybees (Apis mellifera) and fennel (Foeniculum vulgare) plants, examining the mutual benefits of this relationship. Field experiments conducted in Egypt from December 2022 to May 2023 recorded diverse insect pollinators attracted to fennel flowers, especially honeybees. Assessing honeybee colonies near fennel fields showed improvements in sealed brood (357.5-772.5 cells), unsealed brood (176.3-343.8 cells), pollen collection (53.25-257.5 units), honey accumulation (257.5-877.5 units), and colony strength (7.75-10) over three weeks. Fennel exposure explained 88-99% of variability in foraging metrics. Comparing open versus self-pollinated fennel revealed enhanced attributes with bee pollination, including higher flower age (25.67 vs 19.67 days), more seeds per umbel (121.3 vs 95.33), bigger seeds (6.533 vs 4.400 mm), heavier seeds (0.510 vs 0.237 g/100 seeds), and increased fruit weight per umbel (0.619 vs 0.226 g). Natural variation in seed color and shape also occurred. The outcomes demonstrate the integral role of honeybees in fennel agroecosystems through efficient pollination services that improve crop productivity and quality. Fennel provides abundant nutritional resources that bolster honeybee colony health. This research elucidates the symbiotic bee-fennel relationship, underscoring mutualistic benefits and the importance of ecological conservation for sustainable agriculture.


Subject(s)
Foeniculum , Pollination , Bees/physiology , Animals , Flowers , Crop Production/methods , Crops, Agricultural/growth & development , Egypt , Pollen
7.
J Health Popul Nutr ; 43(1): 75, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824573

ABSTRACT

One of the major concerns of development in Africa is the issue of public health. In Africa, public healthcare has been and still is a problem most African countries are faced with. The problem of public healthcare seems to be unabated even though there are measures that are put in place for its effectiveness. There is hunger, malnutrition, high mortality rate, illnesses and deterioration of life expectancy in most developing countries of Africa. The dramatic unprecedented public health disparity has become a scourge in developing countries where it has purportedly impaired the developmental efforts, economic growth and prosperity. As a result, there is a need to scrutinize possible causes that exacerbates public health issues in developing countries. The paper argues that the current food production system (conventional) contributes to current status of public health as compared to the previous food production system (organic). The purpose of this paper is to conceptualize public healthcare disparities, juxtaposing organic and conventional food production that result as human food consumption. The paper employs literature-based analysis as a methodology to assemble data in respect of public healthcare disparities and food production systems.


Subject(s)
Food Supply , Healthcare Disparities , Public Health , Humans , South Africa , Developing Countries , Health Status Disparities , Agriculture/methods
9.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38716354

ABSTRACT

The terms 'Nordic countries' or 'The Nordics' include the five countries Denmark, Finland, Island, Norway, and Sweden. This review includes evaluation of the Nordic countries against Food and Agricultural Organisation (FAO)/World Health Organizations' (WHO) guiding principles for healthy, sustainable diets with respect to environmental impact (principles #9 - #13) and sociocultural aspects (principles #14 - #16). A food systems perspective is taken to summarize and discuss the most important challenges and opportunities for achieving sustainable diets. Food system, food security, self-sufficiency, and resilience perspectives are applied. The information can underpin decisions when developing and implementing Food Based Dietary Guidelines (FBDG) in the Nordics. None of the Nordic countries are on track to reach the 2030 UN climate and biodiversity goals. We describe how food production, processing, and consumption contribute to these and other environmental challenges, and what kinds of dietary changes/transitions consistent with these goals are required. A major challenge is the high production and consumption of meat and too low consumption of fish, vegetables, and fruits. Meat production is a major source of emissions and, together with farmed fish, heavily dependent on imported feed ingredients, leaving a large land-use and water footprint in exporting countries while domestic land resources are not used optimally. Dietary patterns have changed drastically over the past 50 years, and in large parts of the population, meat consumption has doubled since the 1970s, rendering historic food culture less useful as a basis for present-day recommendations. The Nordics have Europe's lowest use of antibiotics in animal and fish production and have made some progress in reducing food waste along the food chain. A major opportunity is better alignment of food production and consumption based on local or regional production potentials, in conjunction with better and more constructive integration with the global food system while integrating novel technologies to reduce emissions and resource use.

10.
Heliyon ; 10(9): e30796, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756606

ABSTRACT

The agricultural sector is essential for economic growth. However, agricultural performance can be limited by factors such as climatic risks. This paper aims to analyse the effect of climate extreme events on selected food crop yield in sub-Saharan Africa (SSA). The study uses data from the Food and Agriculture Organisation (FAO) database for maize, rice, and sorghum yields. Also, we used data obtained from the International Disaster Database of the Centre for Research on the Epidemiology of Disasters (CRED) for floods and droughts over the period 1990-2020. The data were analysed based on the Fully Modified Ordinary Least Squares (FMOLS). The results showed that climate extreme events negatively affected maize, rice and sorghum yields. Also, the findings showed that floods and droughts in past years negatively influence current yields of maize, rice and sorghum. Moreover, agricultural labour force, fertilizer and financial development are the main transmission channels through which floods and droughts can affect maize, rice and sorghum yields. The study concludes by recommending that policies aimed at promoting climate change adaptation measures as well as agricultural insurance could make the agriculture sector more resilient to climate extreme events and in turn that could improve agricultural productivity and reduce food insecurity.

11.
Nutrients ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732570

ABSTRACT

Black trumpet (Craterellus cornucopioides) is a mushroom present in many countries but underestimated. The aim of this publication is to present the latest state of knowledge about the chemical composition and bioactivity of C. cornucopioides and the possibility of its application in food. According to researchers, black trumpet is very rich in nutritional compounds, including unsaturated fatty acids (mainly oleic and linoleic acids), ß-glucans, minerals, and vitamins as well as polyphenols and tannins. It also contains compounds influencing the sensory properties, like free amino acids and nucleotides as well as sugars and polyols, mainly mannitol. Many of the described components show high nutritional and bioactive properties. Therefore, C. cornucopioides shows antioxidant activity and immunostimulating, anti-inflammatory, and anticancer effects as well as antibacterial, antifungal, antiviral, and antihyperglycemic effects. This makes black trumpet, also called horn of plenty, a mushroom with great potential for use both in medicine and directly in food. So far, black trumpet is not widely used in food, especially processed food. There are only a few studies on the use of dried black trumpet in sausages, but there is great potential for its use in food.


Subject(s)
Nutritive Value , Humans , Antioxidants/pharmacology , Agaricales/chemistry , Health Promotion/methods , Polyphenols/analysis , Polyphenols/pharmacology , beta-Glucans/pharmacology , Functional Food
13.
Environ Sci Technol ; 58(22): 9689-9700, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780255

ABSTRACT

Nitrogen (N) supports food production, but its excess causes water pollution. We lack an understanding of the boundary of N for water quality while considering complex relationships between N inputs and in-stream N concentrations. Our knowledge is limited to regional reduction targets to secure food production. Here, we aim to derive a spatially explicit boundary of N inputs to rivers for surface water quality using a bottom-up approach and to explore ways to meet the derived N boundary while considering the associated impacts on both surface water quality and food production in China. We modified a multiscale nutrient modeling system simulating around 6.5 Tg of N inputs to rivers that are allowed for whole of China in 2012. Maximum allowed N inputs to rivers are higher for intensive food production regions and lower for highly urbanized regions. When fertilizer and manure use is reduced, 45-76% of the streams could meet the N water quality threshold under different scenarios. A comparison of "water quality first" and "food production first" scenarios indicates that trade-offs between water quality and food production exist in 2-8% of the streams, which may put 7-28% of crop production at stake. Our insights could support region-specific policies for improving water quality.


Subject(s)
Fertilizers , Nitrogen , Rivers , China , Rivers/chemistry , Water Quality , Agriculture , Models, Theoretical
14.
Health Place ; 88: 103276, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768548

ABSTRACT

The study seeks to provide insights into the subjective experiences and perceived benefits of urban gardening by gardeners in the city of Belgrade. It encompassed several forms of urban gardens, both collective and individual. The study involved conducting semi-structured interviews with 44 gardeners, supplemented by field observations. Thematic analysis revealed seven key themes of benefits. The findings slightly diverged from studies in developed countries, demonstrating less emphasis on the social aspects of urban gardening, as participants did not view social interaction as a primary motivation. Also, there was a stronger focus on the productive and economic aspects of gardening among the retired low-income population of home gardeners with previous experience in agriculture.


Subject(s)
Gardening , Interviews as Topic , Qualitative Research , Urban Population , Humans , Female , Male , Middle Aged , Adult , Gardens , Aged , Cities
15.
Compr Rev Food Sci Food Saf ; 23(3): e13341, 2024 05.
Article in English | MEDLINE | ID: mdl-38720590

ABSTRACT

New food sources and production systems (NFPS) are garnering much attention, driven by international trade, changing consumer preferences, potential sustainability benefits, and innovations in climate-resilient food production systems. However, NFPS can introduce new challenges for food safety agencies and food manufacturers. Most food safety hazards linked to new foods have been identified in traditional foods. However, there can be some food safety challenges that are unique to new foods. New food ingredients, inputs, and processes can introduce unexpected contaminants. To realize the full potential of NFPS, there is a need for stakeholders from governments, the food industry, and the research community to collectively work to address and communicate the safety of NFPS products. This review outlines known food safety hazards associated with select NFPS products on the market, namely, plant-derived proteins, seaweeds, jellyfish, insects, microbial proteins, as well as foods derived from cell-based food production, precision fermentation, vertical farming, and 3D food printing. We identify common elements in emerging NFPS regulatory frameworks in various countries/regions. Furthermore, we highlight current efforts in harmonization of terminologies, use of recent scientific tools to fill in food safety knowledge gaps, and international multi-stakeholder collaborations to tackle safety challenges. Although there cannot be a one-size-fits-all approach when it comes to the regulatory oversight for ensuring the safety of NFPS, there is a need to develop consensus-based structured protocols or workflows among stakeholders to facilitate comprehensive, robust, and internationally harmonized approaches. These efforts increase consumers' confidence in the safety of new foods and contribute toward fair practices in the international trade of such foods.


Subject(s)
Food Safety , Humans , Animals , Food Supply/standards , Food Contamination/prevention & control
16.
J Nutr ; 154(6): 1907-1916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608871

ABSTRACT

BACKGROUND: Child undernutrition is prevalent in Tanzania, and households rely primarily on local markets and home production as food sources. However, little is known about the contribution of food market purchases to nutrient intakes among children consuming complementary foods. OBJECTIVES: To quantify the relationships between diversity of foods purchased and produced by households and adequate child nutrient intake in Mara, Tanzania. METHODS: Cross-sectional baseline dietary and household food source data from the Engaging Fathers for Effective Child Nutrition and Development in Tanzania study were collected from mothers of 586 children aged 9-23 mo clustered in 80 villages in Mara, Tanzania. We conducted mixed effects linear regressions to quantify the association between the diversity of foods consumed at home, from market purchases and home production, and nutrient intake adequacy (based on 24-h food recalls). RESULTS: Children had inadequate diets, with fewer than half of children consuming adequate amounts of vitamin A, vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B9 (folate), calcium, iron, and zinc. Breastfeeding was associated with higher overall mean adequacy (b = 0.15-0.19 across models, P < 0.001). Diversity of foods purchased was positively associated with the intake of vitamin B12 and calcium (both P < 0.001); this effect was attenuated among breastfed children. Among nonbreastfed children, production diversity was positively associated with vitamin A intake (b=0.04; P < .05) but not with intake of other nutrients. CONCLUSIONS: Both household food purchase and food production diversities were positively associated with children's nutrient intake in rural Mara, Tanzania. Nutrition programming should consider the role of food markets in addition to home food production to improve child diets. This trial was registered at clinicaltrials.gov as NCT03759821, https://clinicaltrials.gov/study/NCT03759821.


Subject(s)
Diet , Humans , Tanzania , Infant , Female , Male , Cross-Sectional Studies , Family Characteristics , Food Supply , Breast Feeding , Micronutrients/administration & dosage
17.
Foods ; 13(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672953

ABSTRACT

In today's landscape, digital technologies hold immense potential in tackling challenges associated with food sustainability. This study aims to contextualize a broader investigation of food sustainability and digitalization within the agricultural sector. Its objective is to explore the influence of digital technologies on sustainable food production and consumption, particularly examining relationships among digital technologies, municipal waste, agricultural output, nitrogen emissions, methane emissions from agriculture, and Goal 12 Responsible Consumption and Production (SDG12). Through the use of Structural Equation Modeling, the empirical investigation scrutinizes the relationships between digital technology use and critical variables linked to food sustainability in a longitudinal analysis. The results highlight the significant impact of extensive digital technology use on municipal waste, sustainable production, and consumption, indirectly influencing greenhouse gas (GHG) emissions. Empirical research findings reveal a negative influence of digital technologies on responsible consumption and production (path coefficient -0.349, p values < 0.001), suggesting an impact of digital technologies on diminishing sustainability in consumption and production. The relationship between digital technologies and municipal solid waste is also negative (path coefficient -0.360, p values < 0.001), suggesting that the use of digital technologies can contribute to reducing the amount of municipal solid waste. Digitalization has the potential to improve the sustainability of supply chains by reducing resource consumption and greenhouse gas emissions associated with production and distribution operations.

18.
Microorganisms ; 12(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38674654

ABSTRACT

Understanding the role of foods in the emergence and spread of antimicrobial resistance necessitates the initial documentation of antibiotic resistance genes within bacterial species found in foods. Here, the NCBI Pathogen Detection database was used to query antimicrobial resistance gene prevalence in foodborne and human clinical bacterial isolates. Of the 1,843,630 sequence entries, 639,087 (34.7%) were assigned to foodborne or human clinical sources with 147,788 (23.14%) from food and 427,614 (76.88%) from humans. The majority of foodborne isolates were either Salmonella (47.88%), Campylobacter (23.03%), Escherichia (11.79%), or Listeria (11.3%), and the remaining 6% belonged to 20 other genera. Most foodborne isolates were from meat/poultry (95,251 or 64.45%), followed by multi-product mixed food sources (29,892 or 20.23%) and fish/seafood (6503 or 4.4%); however, the most prominent isolation source varied depending on the genus/species. Resistance gene carriage also varied depending on isolation source and genus/species. Of note, Klebsiella pneumoniae and Enterobacter spp. carried larger proportions of the quinolone resistance gene qnrS and some clinically relevant beta-lactam resistance genes in comparison to Salmonella and Escherichia coli. The prevalence of mec in S. aureus did not significantly differ between meat/poultry and multi-product sources relative to clinical sources, whereas this resistance was rare in isolates from dairy sources. The proportion of biocide resistance in Bacillus and Escherichia was significantly higher in clinical isolates compared to many foodborne sources but significantly lower in clinical Listeria compared to foodborne Listeria. This work exposes the gaps in current publicly available sequence data repositories, which are largely composed of clinical isolates and are biased towards specific highly abundant pathogenic species. We also highlight the importance of requiring and curating metadata on sequence submission to not only ensure correct information and data interpretation but also foster efficient analysis, sharing, and collaboration. To effectively monitor resistance carriage in food production, additional work on sequencing and characterizing AMR carriage in common commensal foodborne bacteria is critical.

19.
J Biotechnol ; 389: 68-77, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38663518

ABSTRACT

Sustainable farming on ever-shrinking agricultural land and declining water resources for the growing human population is one of the greatest environmental and food security challenges of the 21st century. Conventional, age-old organic farming practices alone, and foods based on costly cellular agriculture, do not have the potential to be upscaled to meet the food supply challenges for feeding large populations. Additionally, agricultural practices relying on chemical inputs have a well-documented detrimental impact on human health and the environment. As the available farming methods have reached their productivity limits, new approaches to agriculture, combining friendly, age-old farming practices with modern technologies that exclude chemical interventions, are necessary to address the food production challenges. Growing genetically modified (GM) crops without chemical inputs can allow agricultural intensification with reduced adverse health and environmental impacts. Additionally, integrating high-value pleiotropic genes in their genetic improvement coupled with the use of modern agricultural technologies, like robotics and artificial intelligence (AI), will further improve productivity. Such 'organic-GM' crops will offer consumers healthy, agrochemical-free GM produce. We believe these agricultural practices will lead to the beginning of a potentially new chemical-free GM agricultural revolution in the era of Agriculture 4.0 and help meet the targets of the United Nations Sustainable Development Goals (SDGs). Furthermore, given the advancement in the genome editing (GE) toolbox, we ought to develop a new category of 'trait-reversible GM crops' to avert the fears of those who believe in ecological damage by GM crops. Thus, in this article, we advocate farming with no or minimal chemical use by combining chemical-free organic farming with the existing biofortified and multiple stress tolerant GM crops, while focusing on the development of novel 'biofertilizer-responsive GE crops' and 'trait-reversible GE crops' for the future.


Subject(s)
Crops, Agricultural , Gene Editing , Plants, Genetically Modified , Sustainable Development , United Nations , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Plants, Genetically Modified/genetics , Gene Editing/methods , Humans , Agriculture/methods
20.
Proc Natl Acad Sci U S A ; 121(18): e2215682121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648481

ABSTRACT

Sustainability challenges related to food production arise from multiple nature-society interactions occurring over long time periods. Traditional methods of quantitative analysis do not represent long-term changes in the networks of system components, including institutions and knowledge that affect system behavior. Here, we develop an approach to study system structure and evolution by combining a qualitative framework that represents sustainability-relevant human, technological, and environmental components, and their interactions, mediated by knowledge and institutions, with network modeling that enables quantitative metrics. We use this approach to examine the water and food system in the Punjab province of the Indus River Basin in Pakistan, exploring how food production has been sustained, despite high population growth, periodic floods, and frequent political and economic disruptions. Using network models of five periods spanning 75 y (1947 to 2022), we examine how quantitative metrics of network structure relate to observed sustainability-relevant outcomes and how potential interventions in the system affect these quantitative metrics. We find that the persistent centrality of some and evolving centrality of other key nodes, coupled with the increasing number and length of pathways connecting them, are associated with sustaining food production in the system over time. Our assessment of potential interventions shows that regulating groundwater pumping and phasing out fossil fuels alters network pathways, and helps identify potential vulnerabilities for future food production.


Subject(s)
Food Supply , Pakistan , Humans , Rivers , Agriculture , Conservation of Natural Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...