Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Animal ; 18(5): 101158, 2024 May.
Article in English | MEDLINE | ID: mdl-38703756

ABSTRACT

The transformation of pastures from a degraded state to sustainable productivity is a major challenge in tropical livestock production. Stoloniferous forage legumes such as Arachis pintoi (forage peanut) are one of the most promising alternatives for intensifying pasture-based beef livestock operations with reduced greenhouse gas (GHG) emissions. This 2-year study assessed beef cattle performance, nutrient intake and digestibility, and balance of GHG emissions in three pasture types (PT): (1) mixed Palisade grass - Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster (syn. Brachiaria brizantha Stapf cv. Marandu) and forage peanut (A. pintoi Krapov. & W.C. Greg. cv. BRS Mandobi) pastures (Mixed), (2) monoculture Palisade grass pastures with 150 kg of N/ha per year (Fertilised), and (3) monoculture Palisade grass without N fertiliser (Control). Continuous stocking with a variable stocking rate was used in a randomised complete block design, with four replicates per treatment. The average daily gain and carcass gain were not influenced by the PT (P = 0.439 and P = 0.100, respectively) and were, on average, 0.433 kg/animal per day and 83.4 kg/animal, respectively. Fertilised and Mixed pastures increased by 102 and 31.5%, respectively, the liveweight gain per area (kg/ha/yr) compared to the Control pasture (P < 0.001). The heifers in the Mixed pasture had lower CH4 emissions (g/animal per day; P = 0.009), achieving a reduction of 12.6 and 10.1% when compared to the Fertilised and Control pastures, respectively. Annual (N2O) emissions (g/animal) and per kg carcass weight gain were 59.8 and 63.1% lower, respectively, in the Mixed pasture compared to the Fertilised pasture (P < 0.001). Mixed pasture mitigated approximately 23% of kg CO2eq/kg of carcass when substituting 150 kg of N/ha per year via fertiliser. Mixed pastures with forage peanut are a promising solution to recover degraded tropical pastures by providing increased animal production with lower GHG emissions.


Subject(s)
Animal Feed , Animal Husbandry , Arachis , Greenhouse Gases , Animals , Cattle/physiology , Animal Feed/analysis , Greenhouse Gases/analysis , Animal Husbandry/methods , Diet/veterinary , Male , Female , Animal Nutritional Physiological Phenomena , Digestion , Fabaceae
2.
J Agric Food Chem ; 72(18): 10247-10256, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683760

ABSTRACT

Some forage legumes synthesize phytoestrogens. We conducted a glasshouse study to investigate how water stress (drought and waterlogging) influences phytoestrogen accumulation in red clover and kura clover. Compared to the red clover control, the 20 day drought resulted in an over 100% increase in the phytoestrogens formononetin and biochanin A, which together accounted for 91-96% of the total phytoestrogens measured. Waterlogging resulted in elevated concentrations of daidzein, genistein, and prunetin but not formononetin or biochanin A. Concentrations of phytoestrogens in kura clover were low or undetectable, regardless of water stress treatment. Leaf water potential was the most explanatory single-predictor of the variation in concentrations of formononetin, biochanin A, and total phytoestrogens in red clover. These results suggest that drought-stressed red clover may have higher potential to lead to estrogenic effects in ruminant livestock and that kura clover is a promising alternative low- or no-phytoestrogen perennial forage legume.


Subject(s)
Phytoestrogens , Trifolium , Trifolium/metabolism , Trifolium/chemistry , Trifolium/growth & development , Phytoestrogens/metabolism , Phytoestrogens/analysis , Water/metabolism , Water/analysis , Isoflavones/metabolism , Isoflavones/analysis , Droughts , Genistein/analysis , Genistein/metabolism
3.
Plants (Basel) ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447079

ABSTRACT

Rhizoctonia solani is one of the most common soil-borne fungal pathogens of legume crops worldwide. We collected rDNA-ITS sequences from NCBI GenBank, and the aim of this study was to examine the genetic diversity and phylogenetic relationships of various R. solani anastomosis groups (AGs) that are commonly associated with grain legumes (such as soybean, common bean, pea, peanut, cowpea, and chickpea) and forage legumes (including alfalfa and clover). Soybean is recognized as a host for multiple AGs, with AG-1 and AG-2 being extensively investigated. This is evidenced by the higher representation of sequences associated with these AGs in the NCBI GenBank. Other AGs documented in soybean include AG-4, AG-7, AG-11, AG-5, AG-6, and AG-9. Moreover, AG-4 has been extensively studied concerning its occurrence in chickpea, pea, peanut, and alfalfa. Research on the common bean has been primarily focused on AG-2, AG-4, and AG-1. Similarly, AG-1 has been the subject of extensive investigation in clover and cowpea. Collectively, AG-1, AG-2, and AG-4 have consistently been identified and studied across these diverse legume crops. The phylogenetic analysis of R. solani isolates across different legumes indicates that the distinct clades or subclades formed by the isolates correspond to their specific anastomosis groups (AGs) and subgroups, rather than being determined by their host legume crop. Additionally, there is a high degree of sequence similarity among isolates within the same clade or subclade. Principal coordinate analysis (PCoA) further supports this finding, as isolates belonging to the same AGs and/or subgroups cluster together, irrespective of their host legume. Therefore, the observed clustering of R. solani AGs and subgroups without a direct association with the host legume crop provides additional support for the concept of AGs in understanding the genetic relationships and evolution of R. solani.

4.
Front Plant Sci ; 14: 1189662, 2023.
Article in English | MEDLINE | ID: mdl-37235014

ABSTRACT

Improvement of persistency is an important breeding goal in red clover (Trifolium pratense L.). In areas with cold winters, lack of persistency is often due to poor winter survival, of which low freezing tolerance (FT) is an important component. We conducted a genome wide association study (GWAS) to identify loci associated with freezing tolerance in a collection of 393 red clover accessions, mostly of European origin, and performed analyses of linkage disequilibrium and inbreeding. Accessions were genotyped as pools of individuals using genotyping-by-sequencing (pool-GBS), generating both single nucleotide polymorphism (SNP) and haplotype allele frequency data at accession level. Linkage disequilibrium was determined as a squared partial correlation between the allele frequencies of pairs of SNPs and found to decay at extremely short distances (< 1 kb). The level of inbreeding, inferred from the diagonal elements of a genomic relationship matrix, varied considerably between different groups of accessions, with the strongest inbreeding found among ecotypes from Iberia and Great Britain, and the least found among landraces. Considerable variation in FT was found, with LT50-values (temperature at which 50% of the plants are killed) ranging from -6.0°C to -11.5°C. SNP and haplotype-based GWAS identified eight and six loci significantly associated with FT (of which only one was shared), explaining 30% and 26% of the phenotypic variation, respectively. Ten of the loci were found within or at a short distance (<0.5 kb) from genes possibly involved in mechanisms affecting FT. These include a caffeoyl shikimate esterase, an inositol transporter, and other genes involved in signaling, transport, lignin synthesis and amino acid or carbohydrate metabolism. This study paves the way for a better understanding of the genetic control of FT and for the development of molecular tools for the improvement of this trait in red clover through genomics assisted breeding.

5.
Vet Anim Sci ; 19: 100281, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36582669

ABSTRACT

The goal of this study was to compare the productivity and reproduction of Horro ewes treated with concentrate supplements (T1), and Gebis-17 (T2) and Beresa-55 (T3) Lablab purpurues varieties. Horro ewes (n = 21, 7 ewes per treatment) with a mean premating weight of 26.3 + 2.1 kg (Mean + SD) were employed in the study. Ewes with uniform parity were selected from the Bako Agricultural Research Center sheep breeding flock. They were then blocked based on the premating weight into seven groups of three ewes each, and within each group randomly allocated to one of the three dietary treatments assigning seven ewes per treatment. Over an 8-month period, the ewes were supplemented with respective feed regimens, which encompassed 5 months of gestation and 3 months of lamb growth up to weaning. The results showed that supplementation enhanced lamb birth weight (3.01 vs. 3.42 vs. 3.42 kg) and ewe weight gain during pregnancy (76.94 vs. 42.11 vs. 58.05 g/day) for T1, T2, and T3, respectively as well as all reproductive features studied, except for abortion instances that occurred in ewes fed a diet in T2 and T3. The causes of abortion in T2 and T3 cannot be ascertained because the experimental ewes were grazing during the day. Even though the T1 diet improved ewe performance in a similar way to T3 and T2, the use of such supplements is usually limited due to their high cost and inaccessibility to smallholder farmers. This emphasizes the importance of seizing the chance to replace conventional protein supplements with low-cost, on-farm cultivated forage legumes like the one studied in this study. As a result, enhancing Horro ewes' performance with either T2 (Gebisa-17) or T3 (Beresa-55) diets throughout their mating season is a promising strategy for maximizing their genetic potential. Future research should focus on the effect of supplements on lambs' post-weaning growth rate and survival.

6.
Plants (Basel) ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365339

ABSTRACT

Red clover (Trifolium pratense L.) is an important forage crop and serves as a major contributor of nitrogen input in pasture settings because of its ability to fix atmospheric nitrogen. During the legume-rhizobial symbiosis, the host plant undergoes a large number of gene expression changes, leading to development of root nodules that house the rhizobium bacteria as they are converted into nitrogen-fixing bacteroids. Many of the genes involved in symbiosis are conserved across legume species, while others are species-specific with little or no homology across species and likely regulate the specific plant genotype/symbiont strain interactions. Red clover has not been widely used for studying symbiotic nitrogen fixation, primarily due to its outcrossing nature, making genetic analysis rather complicated. With the addition of recent annotated genomic resources and use of RNA-seq tools, we annotated and characterized a number of genes that are expressed only in nodule forming roots. These genes include those encoding nodule-specific cysteine rich peptides (NCRs) and nodule-specific Polycystin-1, Lipoxygenase, Alpha toxic (PLAT) domain proteins (NPDs). Our results show that red clover encodes one of the highest number of NCRs and ATS3-like/NPDs, which are postulated to increase nitrogen fixation efficiency, in the Inverted-Repeat Lacking Clade (IRLC) of legumes. Knowledge of the variation and expression of these genes in red clover will provide more insights into the function of these genes in regulating legume-rhizobial symbiosis and aid in breeding of red clover genotypes with increased nitrogen fixation efficiency.

7.
Cells ; 11(9)2022 05 06.
Article in English | MEDLINE | ID: mdl-35563875

ABSTRACT

In forage crops, age-dependent and stress-induced senescence reduces forage yield and quality. Therefore, delaying leaf senescence may be a way to improve forage yield and quality as well as plant resilience to stresses. Here, we used RNA-sequencing to determine the molecular bases of age-dependent and dark-induced leaf senescence in Medicago truncatula. We identified 6845 differentially expressed genes (DEGs) in M3 leaves associated with age-dependent leaf senescence. An even larger number (14219) of DEGs were associated with dark-induced senescence. Upregulated genes identified during age-dependent and dark-induced senescence were over-represented in oxidation-reduction processes and amino acid, carboxylic acid and chlorophyll catabolic processes. Dark-specific upregulated genes also over-represented autophagy, senescence and cell death. Mitochondrial functions were strongly inhibited by dark-treatment while these remained active during age-dependent senescence. Additionally, 391 DE transcription factors (TFs) belonging to various TF families were identified, including a core set of 74 TFs during age-dependent senescence while 759 DE TFs including a core set of 338 TFs were identified during dark-induced senescence. The heterologous expression of several senescence-induced TFs belonging to NAC, WKRY, bZIP, MYB and HD-zip TF families promoted senescence in tobacco leaves. This study revealed the dynamics of transcriptomic responses to age- and dark-induced senescence in M. truncatula and identified senescence-associated TFs that are attractive targets for future work to control senescence in forage legumes.


Subject(s)
Medicago truncatula , Gene Expression Regulation, Plant , Humans , Medicago truncatula/genetics , Medicago truncatula/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Plants (Basel) ; 11(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336679

ABSTRACT

Crop wild relatives represent a valuable resource for the breeding of new crop varieties suitable for sustainable productivity in conditions of climate change. The aim of the present study was to assess salt tolerance of several wild accessions of T. fragiferum from habitats with different salinity levels in controlled conditions. Decrease of plant biomass and changes in partitioning between different organs was a characteristic response of plants with increasing substrate salinity, but these responses were genotype-specific. In several accessions, salinity stimulated reproductive development. The major differences in salinity responses between various T. fragiferum genotypes were at the level of dry biomass accumulation as well as water accumulation in plant tissues, resulting in relatively more similar effect on fresh mass. Na+ and Cl- accumulation capacity were organ-specific, with leaf petioles accumulating more, followed by leaf blades and stolons. Responses of mineral nutrition clearly were both genotype- and organ-specific, but several elements showed a relatively general pattern, such as increase in Zn concentration in all plant parts, and decrease in Ca and Mg concentration. Alterations in mineralome possibly reflect a reprogramming of the metabolism to adapt to changes in growth, morphology and ion accumulation resulting from effect of NaCl. High intraspecies morphological and physiological variability in responses of T. fragiferum accessions to salinity allow to describe them as ecotypes.

9.
Plants (Basel) ; 10(7)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34371616

ABSTRACT

Legumes, one of the most important sources of human food and animal feed, are known to be susceptible to a plethora of plant viruses. Many of these viruses cause diseases which severely impact legume production worldwide. The causal agents of some important virus-like diseases remain unknown. In recent years, high-throughput sequencing technologies have enabled us to identify many new viruses in various crops, including legumes. This review aims to present an updated list of legume-infecting viruses. Until 2020, a total of 168 plant viruses belonging to 39 genera and 16 families, officially recognized by the International Committee on Taxonomy of Viruses (ICTV), were reported to naturally infect common bean, cowpea, chickpea, faba-bean, groundnut, lentil, peas, alfalfa, clovers, and/or annual medics. Several novel legume viruses are still pending approval by ICTV. The epidemiology of many of the legume viruses are of specific interest due to their seed-transmission and their dynamic spread by insect-vectors. In this review, major aspects of legume virus epidemiology and integrated control approaches are also summarized.

10.
PeerJ ; 9: e10615, 2021.
Article in English | MEDLINE | ID: mdl-33604168

ABSTRACT

While intercropping is known to have positive effects on crop productivity, it is unclear whether the effects of mixing species start at the early plant stage, that is, during germination. We tested whether the germination of two legume species, alsike clover and black medic, characterized by a contrasting response to water availability and temperature is affected by mixing. We set up four experiments in each of which we compared a 1:1 mixture against the two monocultures, and combined this with various other experimental factors. These additional factors were (i) varied seed densities (50%, 100% and 150% of a reference density) in two field trials in 2016 and 2017, (ii) varied seed densities (high and low) and water availability (six levels, between 25% and 100% of water holding capacity (WHC)) in a greenhouse pot trial, (iii) varied seed spacing in a climate chamber, and (iv) varied temperatures (12 °C, 20 °C and 28 °C) and water availability (four levels between 25% and 100% of WHC) in a climate chamber. Across all experiments, the absolute mixture effects (AME) on germination ranged between -9% and +11%, with a median of +1.3%. Within experiments, significant mixture effects were observed, but the direction of these effects was inconsistent. In the field, AME on germination was significantly negative at some of the tested seed densities. A positive AME was observed in the climate chamber at 12 °C, and the mean AME decreased with increasing temperature. Higher density was associated with decreased germination in the field, indicating negative interaction through competition or allelopathy, among seedlings. Our findings indicate that interaction among seeds in species mixtures may be ongoing during germination, but that the direction of the mixture effect is affected by complex interactions with abiotic and biotic factors.

11.
Front Plant Sci ; 11: 721, 2020.
Article in English | MEDLINE | ID: mdl-32582251

ABSTRACT

In the face of increasingly frequent droughts threatening crop performance, ecological theory suggests that higher species diversity may help buffering productivity by making systems more resistant through resource complementarity and more resilient through higher response diversity. However, empirical evidence for these diversity effects under drought stress has remained patchy. In two pot experiments, we explored whether mixing two legume species with a contrasting response to water availability, alsike clover (AC) and black medic (BM), promotes resistance to cumulative drought stress, and resilience of aboveground crop biomass to a transient drought event. The mixture was more productive than the average of the sole crops, and this mixture effect was higher in the non-stressed than in the drought-stressed plants. However, with six levels of constant drought intensities, the mixture effect was not consistently affected by drought level. Response diversity was evident as asynchrony of growth in the two species after the drought event, with BM re-growing faster than AC. Significant resilience to drought was observed in sole AC, i.e., without response diversity. Resilience was larger in AC than in BM and increased from 44 to 72 days after sowing (DAS). The mixture was more resilient than the average resilience of the sole crops at 72 DAS, but it was never more resilient than AC, indicating that resilience is promoted by, but not dependent on response diversity. We conclude that crop diversity may contribute to drought resilience through growth asynchrony, but that species identity plays a crucial role in making systems more drought-resilient.

12.
J Plant Physiol ; 249: 153180, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32422486

ABSTRACT

Several Lotus species are perennial forage legumes which tolerate waterlogging, but knowledge of responses to partial or complete shoot submergence is scant. We evaluated the responses of 15 Lotus accessions to partial and complete shoot submergence and variations in traits associated with tolerance and recovery after de-submergence. Accessions of Lotus tenuis, L. corniculatus, L. pedunculatus and L. japonicus were raised for 43 d and then subjected to aerated root zone (control), deoxygenated stagnant root zone with shoots in air (stagnant), stagnant root zone with partial (75 %) and complete submergence of shoots, for 7 d. The recovery ability from complete submergence was also assessed. We found inter- and intra-specific variations in the stem extension responses (i.e. promoted or restricted compared to controls) depending on water depth. Eight of 15 accessions promoted the stem extension when in partial submergence, while three of those eight (all L. tenuis accessions) had a restricted stem extension when under complete submergence. Two accessions (belonging to L. corniculatus and L. penduculatus species) also promoted the stem extension under complete submergence. The accessions that attained better recovery in terms of leaves produced after de-submergence, were those that had high leaf and root sugar concentration at de-submergence, and high thickness and persistence of gas films on leaves during submergence (all L. tenuis accessions). We conclude that all Lotus accessions were able to tolerate 7 d of partial and complete shoot submergence, despite adopting different stem extension responses.


Subject(s)
Lotus/physiology , Plant Shoots/physiology , Immersion , Lotus/growth & development , Plant Roots/growth & development , Plant Roots/physiology , Plant Shoots/growth & development , Species Specificity
13.
Animal ; 14(5): 1093-1101, 2020 May.
Article in English | MEDLINE | ID: mdl-31658927

ABSTRACT

Currently, consumers are increasingly interested in obtaining high-quality and healthy lamb meat. Compared to grain-based diets, dietary forage legumes such as alfalfa and condensed tannin (CT)-rich sainfoin increase the levels of polyunsaturated fatty acids (PUFAs) that are beneficial for health in lamb meat thanks to their high content in PUFA and/or their impact on ruminal biohydrogenation. However, they can therefore adversely affect its oxidative stability. Thus, the impact of dietary forage legumes on lamb longissimus thoracis (LT) muscle FA composition and their stability to peroxidation was studied in 36 Romane lambs grazing alfalfa (AF; n = 12) or alfalfa plus daily supplementation with CT-rich sainfoin pellets (AS; n = 12; 15 g DM/kg BW, 42 g CT/kg DM) or stall-fed concentrate and grass hay indoors (SI; n = 12). Lambs were slaughtered at a mean age of 162 ± 8.0 days after an average experimental period of 101 ± 8.1 days. Forage legumes-grazing lambs outperformed SI lambs in LT nutritional quality, with more conjugated linoleic acids and n-3 PUFAs, especially 18:3n-3, eicosapentaenoic and docosahexaenoic acids (P < 0.001), and thus lower n-6 PUFA/n-3 PUFA and 18:2 n-6/18:3 n-3 ratios (P < 0.001). Peroxidizability index was higher (P < 0.001) in LT muscle of forage legumes-grazing lambs. Concurrently, two endogenous antioxidant enzyme activities, superoxide dismutase and glutathione peroxidase, were, respectively, similar and lower (P < 0.001) for forage legumes-grazing compared with SI lambs. A lower vitamin E level in SI lambs compared with forage legumes-grazing lambs (1.0 v. 3.8 mg/g, P < 0.001) could explain that malondialdehyde content, a marker of lipid oxidation intensity, was 0.63 µg/g in SI after 8 days in aerobic packaging conditions, whereas it remaining steady at 0.16 µg/g in forage legumes-grazing lambs. Dietary forage alfalfa thus improved FA composition of lamb LT muscle and their stability to oxidation when compared to SI lambs. However, supplementation of alfalfa-grazing lambs with CT-rich sainfoin pellets did not affect the nutritional quality of LT muscle FAs.


Subject(s)
Animal Feed/analysis , Fabaceae/chemistry , Fatty Acids/chemistry , Lipids/chemistry , Meat/analysis , Animal Husbandry , Animals , Diet/veterinary , Dietary Supplements , Fatty Acids, Omega-3 , Fatty Acids, Unsaturated , Linoleic Acids, Conjugated , Proanthocyanidins , Sheep
14.
Plant Dis ; 104(3): 904-920, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31859588

ABSTRACT

Annual forage legumes across southern Australia continue to be devastated by soilborne diseases. Nine fungicide seed treatments (thiram, metalaxyl, iprodione, phosphonic acid, propamocarb, fluquinconazole, difenoconazole + metalaxyl, ipconazole + metalaxyl, sedaxane + difenoconazole + metalaxyl) and four foliar fungicide treatments (phosphonic acid, metalaxyl, propamocarb, iprodione) were tested on four subterranean clover cultivars against individual oomycete soilborne pathogens Pythium irregulare, Aphanomyces trifolii, and Phytophthora clandestina and the fungal pathogen Rhizoctonia solani. Best treatments were then further tested across southern Australia in 2 years of field experiments. Under controlled conditions, seed treatment with thiram was best against damping-off caused by P. irregulare across the four cultivars (Woogenellup, Riverina, Seaton Park, Meteora), while metalaxyl was the most effective for maximizing root and shoot weights. Against A. trifolii, metalaxyl, iprodione, difenoconazole + metalaxyl, ipconazole + metalaxyl, and sedaxane + difenoconazole + metalaxyl, all reduced damping-off; sedaxane + difenoconazole + metalaxyl, fluquinconazole, and ipconazole + metalaxyl all reduced lateral root disease across two or more cultivars; while iprodione, thiram, and sedaxane + difenoconazole + metalaxyl increased shoot dry weight. Against P. clandestina, metalaxyl was the most effective in reducing tap and lateral root rot followed by ipconazole + metalaxyl or phosphonic acid for tap and lateral rot, respectively. Against R. solani, there were no effects of fungicides. For P. irregulare and P. clandestina, there were strong seed fungicide × cultivar interactions (P < 0.001). Under controlled conditions for foliar fungicide spray treatments, phosphonic acid was best at preventing productivity losses from A. trifolii, but was ineffective against P. clandestina, P. irregulare, or R. solani. Overall, controlled environment studies highlighted strong potential for utilizing seed treatments against individual pathogens to ensure seedling emergence and early survival, with seed and foliar sprays enhancing productivity by reducing seedling damping-off and root disease from individual pathogens. However, in field experiments over 2 years across southern Australia against naturally occurring soilborne pathogen complexes involving these same pathogens, only rarely did fungicide seed treatments or foliar sprays tested show any benefit. It is evident that currently available fungicide seed and/or foliar spray treatment options do not offer effective field mitigation of damping-off and root disease on annual forage legumes that underpin livestock production across southern Australia. The main reason for this failure relates to the unpredictable and ever-changing soilborne pathogen complexes involved, highlighting a need to now refocus away from fungicide options, particularly toward developing and deploying new host tolerances, but also in deploying appropriate cultural control options.


Subject(s)
Fungicides, Industrial , Phytophthora , Pythium , Plant Diseases , Rhizoctonia
15.
J Anim Sci ; 97(11): 4625-4634, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31588955

ABSTRACT

Livestock production systems are an essential agribusiness activity in Brazil, but a critical challenge of Brazilian farmers is to maintain the equilibrium of the ecosystem, using herbage resources efficiently with a minimum impact on the environment. Nitrogen (N) fertilization and the inclusion of forage legumes into tropical grass pastures are management strategies which increase the productivity and nutritive value of pastures and may also affect methane (CH4) production by ruminants. The objective of this study was to examine the effects of either fertilizing palisade grass pastures with N or including the forage peanut (Arachis pintoi) into grass pastures on enteric CH4 emission, microbial protein production in the rumen via purine derivatives in the urine, and N balance. Twenty-one nonlactating crossbred dairy heifers were used in a completely randomized design with 3 treatments. The treatments consisted of pastures of palisade grass without N fertilization (control), fertilized with urea (fertilized), and palisade grass mixed with forage peanut (mixed). Seven animals (replications) were used to evaluate dry matter intake, digestibility, CH4 emission, urea, purine derivatives, and volume of urine, and N ingestion and excretion. Four paddocks (replications) were used to measure herbage mass; morphological, botanical, and chemical composition of herbage; and herbage allowance. The CH4 emissions were determined using the sulfur hexafluoride (SF6) tracer gas technique. The efficiency of N utilization (ENU) was calculated using the N balance data. Crude protein (CP) concentration of herbage increased with fertilization or legumes inclusion (P < 0.0001) while neutral detergent fiber (NDF) concentration decreased (P = 0.0355). The leaf allowance was higher in the fertilized treatment (P = 0.0294). Only uric acid excretion increased with N fertilization (P = 0.0204). The ENU was not affected by fertilized or mixed compared to control and averaged 55% (P = 0.8945). The enteric CH4 production was similar between treatments and averaged 129 g/d (P = 0.3989). We concluded that the changes in chemical composition of herbage provided by N fertilization or the inclusion of the legume showed no reduction in enteric CH4 emissions, but the ENU was more significant than previous studies with palisade grass, suggesting that different management strategies might alter the ENU under grazing conditions.


Subject(s)
Animal Feed/analysis , Arachis , Cattle/physiology , Methane/metabolism , Nitrogen/metabolism , Poaceae , Animals , Brazil , Dairying , Diet/veterinary , Dietary Fiber/metabolism , Ecosystem , Fabaceae , Female , Fertilizers , Nutritive Value , Rumen/metabolism , Seasons
16.
Front Plant Sci ; 10: 1043, 2019.
Article in English | MEDLINE | ID: mdl-31543883

ABSTRACT

In alkaline soils in arid and semi-arid areas toxic concentrations of the micronutrient boron (B) are problematic for many cereal and legume crops. Molecular markers have been developed for B toxicity in cereals and Medicago. There is a need for such tools in clovers-Trifolium. To this end, we undertook a genome-wide association study (GWAS) with a diversity panel of subterranean clover (Trifolium subterraneum L.), an established model pasture legume for genetic and genomic analyses for the genus. The panel comprised 124 T. subterraneum genotypes (97 core collection accessions and 27 Australian cultivars). Substantial and useful diversity in B toxicity tolerance was found in T. subterraneum. Such variation was continuously distributed and exhibited a high broad sense heritability H 2 = 0.92. Among the subspecies of T. subterraneum, ssp. brachycalycinum was most susceptible to B toxicity (P < 0.05). From the GWAS, the most important discoveries were single-nucleotide polymorphisms (SNPs) located on Chr 1, 2, and 3, which mapped to haplotype blocks providing potential genes for a B toxicity tolerance assay and meriting further investigation. A SNP identified on Chr 1 aligned with Medicago truncatula respiratory burst oxidase-like protein (TSub_ g2235). This protein is known to respond to abiotic and biotic stimuli. The identification of these novel potential genes and their use to design markers for marker-assisted selection offer a pathway in pasture legumes to manage B toxicity by exploiting B tolerance.

17.
J Anim Physiol Anim Nutr (Berl) ; 103(2): 436-446, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30672624

ABSTRACT

According to climate change scenarios, central Europe may expect extending drought periods during summer. Lower water availability may influence the ruminal digestion of individual forage legume species differently. To test this hypothesis, Lotus corniculatus L. (var. Bull), Medicago lupulina L. (var. Ekola), Medicago falcata L. (wild seeds) and Trifolium repens L. (var. Rivendel) were each grown in parallel lots of control and drought-stressed monocultures. Rainout shelters (installed in May 2011 on a regrowth after first cut until harvest in mid of June) withheld rainfall of 40 mm in the drought stress treatment. Samples of dried (60°C) and milled (5 mm screen) forage legumes were incubated in a simulation experiment using Rusitec to assess drought effects on parameters for microbial metabolism. Degradability of dry matter and organic matter as well as methane production decreased in incubations with drought-stressed compared to control variants of legume species. Degradability of crude protein, neutral detergent fibre, acid detergent fibre and residual organic matter including non-fibre carbohydrates and lipids were affected by interactions between drought stress and species. Significant interactions were also found for ammonia concentrations, molar SCFA proportions and the microbial communities. It is concluded that drought stress for growing forage legumes influences their ruminal degradation and fermentation as well as the ruminal microbial communities of Bacteria and Archaea differently in a legume species-dependent manner.


Subject(s)
Animal Feed/analysis , Bacteria , Droughts , Fabaceae/chemistry , Fabaceae/physiology , Rumen/microbiology , Stress, Physiological , Animals , Digestion , Fermentation , Microbiota
18.
Vet Anim Sci ; 8: 100073, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32734090

ABSTRACT

The objective of this study was to evaluate the effects of forage legume diets on haematological and biochemical indices of Xhosa goats. Eighteen animals, one-year-old, of average live weight 14.13 ±â€¯0.24 kg were assigned, in a completely randomized design, to three treatment diets. Animals were housed individually and sex was equally represented among treatments with 6 animals per treatment. Weights and blood samples were taken every fortnight. A pair of blood samples (5 ml each) were collected from each goat, via jugular vein puncture and were subjected to either haematological or biochemical analysis. The results show that treatment diets and sex significantly (P < 0.05) affected DMI, total gain, ADG, and feed conversion ratio. Treatment diets and sex had no effects (P > 0.05) on serum total proteins, globulins, urea, creatinine, alanine aminotransferase, alkaline phosphatase (ALP), and gamma- glutamyl transferase concentrations. The diet influenced albumin was (P < 0.05) while sex influenced ALP concentration (P < 0.05). Measured over time, the plasma concentration of urea and ALP significantly increased (P < 0.05) while creatinine and cholesterol concentration decreased (P < 0.05). Although the overall blood biochemical properties remain unchanged among the treatments and between sexes; treatment by sex, treatment by day and sex by day interactions were significant (P < 0.05). The white blood cells, red blood cell, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, haemoglobin, haematocrit, and platelet and mean platelet volume levels were similar among treatments and between sexes (P > 0.05). The mean cell volume and red cell distribution width were different among treatments (P < 0.05). Treatment diets significantly (P < 0.05) influenced neutrophil (%) content while sex influenced basophile (%) content. In conclusion forage legumes did not cause toxicity in goats or any pathological condition.

19.
Animal ; : 1-12, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30565534

ABSTRACT

Polyphenol oxidase (PPO) in red clover (RC) has been shown to reduce both lipolysis and proteolysis in silo and implicated (in vitro) in the rumen. However, all in vivo comparisons have compared RC with other forages, typically with lower levels of PPO, which brings in other confounding factors as to the cause for the greater protection of dietary nitrogen (N) and C18 polyunsaturated fatty acids (PUFA) on RC silage. This study compared two RC silages which when ensiled had contrasting PPO activities (RC+ and RC-) against a control of perennial ryegrass silage (PRG) to ascertain the effect of PPO activity on dietary N digestibility and PUFA biohydrogenation. Two studies were performed the first to investigate rumen and duodenal flow with six Hereford×Friesian steers, prepared with rumen and duodenal cannulae, and the second investigating whole tract N balance using six Holstein-Friesian non-lactating dairy cows. All diets were offered at a restricted level based on animal live weight with each experiment consisting of two 3×3 Latin squares using big bale silages ensiled in 2010 and 2011, respectively. For the first experiment digesta flow at the duodenum was estimated using a dual-phase marker system with ytterbium acetate and chromium ethylenediaminetetraacetic acid as particulate and liquid phase markers, respectively. Total N intake was higher on the RC silages in both experiments and higher on RC- than RC+. Rumen ammonia-N reflected intake with ammonia-N per unit of N intake lower on RC+ than RC-. Microbial N duodenal flow was comparable across all silage diets with non-microbial N higher on RC than the PRG with no difference between RC+ and RC-, even when reported on a N intake basis. C18 PUFA biohydrogenation was lower on RC silage diets than PRG but with no difference between RC+ and RC-. The N balance trial showed a greater retention of N on RC+ over RC-; however, this response is likely related to the difference in N intake over any PPO driven protection. The lack of difference between RC silages, despite contrasting levels of PPO, may reflect a similar level of protein-bound-phenol complexing determined in each RC silage. Previously this complexing has been associated with PPOs protection mechanism; however, this study has shown that protection is not related to total PPO activity.

20.
Front Plant Sci ; 9: 1314, 2018.
Article in English | MEDLINE | ID: mdl-30283466

ABSTRACT

Substantial improvements in access to food and increased purchasing power are driving many people toward consuming nutrition-rich foods causing an unprecedented demand for protein food worldwide, which is expected to rise further. Forage legumes form an important source of feed for livestock and have potential to provide a sustainable solution for food and protein security. Currently, alfalfa is a commercially grown source of forage and feed in many countries. However, soybean and cowpea also have the potential to provide quality forage and fodder for animal use. The cultivation of forage legumes is under threat from changing climatic conditions, indicating the need for breeding cultivars that can sustain and acclimatize to the negative effects of climate change. Recent progress in genetic and genomic tools have facilitated the identification of quantitative trait loci and genes/alleles that can aid in developing forage cultivars through genomics-assisted breeding. Furthermore, transgenic technology can be utilized to manipulate the genetic makeup of plants to improve forage digestibility for better animal performance. In this article, we assess the genetic potential of three important legume crops, alfalfa, soybean, and cowpea in supplying quality fodder and feed for livestock. In addition, we examine the impact of climate change on forage quality and discuss efforts made in enhancing the adaptation of the plant to the abiotic stress conditions. Subsequently, we suggest the application of integrative approaches to achieve adequate forage production amid the unpredictable climatic conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...